Unipotent p-adic differential systems

Bernard Le Stum* Université de Rennes 1

Version of October 18, 2001

^{*}lestum@univ-rennes1.fr

Contents

1	The 1-dimensional case (Dwork)	3
2	The motivic π_1 (Deligne)	10
3	The unipotent rig π_1 (Chiarellotto-LS)	17
4	Slope filtration (Chiarellotto-LS)	22

1 The 1-dimensional case (Dwork)

Let p be a prime and \mathbb{C}_p be the smaller complete algebraically closed field for an absolute value with $|p| = \frac{1}{p}$.

We set

$$U := D(0, 1^+) \setminus \bigcup_{i=1}^r D(x_i, 1^-) \subset \mathbf{C}_p$$

with $|x_i| = 1$ and $|x_i - x_j| = 1$, and call A^{\dagger} the ring of holomorphic functions on U:

$$A^{\dagger} = \{ f(t) := \sum_{k=0}^{\infty} a_{0,k} t^{k} + \sum_{i=1}^{r} \sum_{k=1}^{\infty} \frac{a_{i,k}}{(t - x_{i})^{k}},$$

$$\exists \lambda > 1, \forall i : 0, \dots, r, \lambda^{k} |a_{i,k}| \to 0 \}.$$

If
$$G = [f_{i,j}] \in M_n(A^{\dagger})$$
, we write $\frac{d}{dt}G := [\frac{d}{dt}f_{i,j}]$.

A differential system in the neighborhood of U is a system

$$(S): \frac{d}{dt}X + GX = 0, G \in M_n(A^{\dagger}).$$

If (S_1) and (S_2) are given by G_1 and G_2 and $H \in GL_n(A^{\dagger})$, we write

$$(\mathcal{S}_1) \sim_H (\mathcal{S}_2) \text{ iff } \frac{d}{dt}H = HG_1 - G_2H$$

and we say that they are equivalent.

If (S) is a differential system given by G, we define by induction $G_0 = I_n$ and

$$G_{i+1} = \frac{d}{dt}G_i - G_iG$$

and call

$$\epsilon(\tau) := \sum_{i=1}^{\infty} \frac{1}{i!} G_i \tau^i \in M_n(A^{\dagger}[[\tau]])$$

the Taylor series of (S).

The differential system is said *overconvergent* if the radius of convergence of the Taylor series is (at least) 1.

Back to $U \subset \mathbf{C}_p$, there exists $q = p^f$ such that for all i = 1, ..., r, we have $|x_i^q - x_i| < 1$. If $f \in A^{\dagger}$, then its Frobenius pull back $f^{(q)}$ defined by $f^{(q)}(t) := f(t^q)$ is also in A^{\dagger} . If $G = [f_{i,j}] \in M_n(A^{\dagger})$, we write $G^{(q)} := [f_{i,j}^{(q)}]$.

The *Frobenius pull back* (S^q) of a differential system (S) is the differential system given by $qt^{q-1}G^{(q)}$.

We say that S has a *strong* frobenius if $(S^{(q)}) \sim (S)$. If this is the case, the system is overconvergent.

A system (S) is called *unipotent* if it is equivalent to a system given by G strictly upper triangular.

Questions: Is a unipotent system always overconvergent? Does it always have a Frobenius?

The answer to the first question is yes, the answer to the second is no (Chiarellotto-LS).

However, the answer the second question is almost yes since one can always increase the rank of the system in order to get a Frobenius (independently, Chiarellotto, Crew and Deligne).

Example: Take r = 2 with $x_1 = 0, x_2 = 1$. Then, one can show that the differential system given by

$$G := \begin{bmatrix} 0 & \frac{1}{t} & \frac{1}{t-1} \\ 0 & 0 & \frac{1}{t} \\ 0 & 0 & 0 \end{bmatrix}$$

does not have a Frobenius.

We can extend it to

$$G_{+} := \begin{bmatrix} 0 & 0 & 0 & \frac{1}{t-1} \\ 0 & 0 & \frac{1}{t} & \frac{1}{t-1} \\ 0 & 0 & 0 & \frac{1}{t} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, we have

$$qt^{q-1}G_{+}^{(q)} = \begin{bmatrix} 0 & 0 & 0 & \frac{qt^{q-1}}{t^q-1} \\ 0 & 0 & \frac{q}{t} & \frac{qt^{q-1}}{t^q-1} \\ 0 & 0 & 0 & \frac{q}{t} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and the Frobenius is given by

$$H := \begin{bmatrix} 0 & 0 & 0 & u \\ q - 1 & 1 & 0 & 0 \\ 0 & 0 & q & 0 \\ 0 & 0 & 0 & q^2 \end{bmatrix}$$

with $u(t) = \log(1 - t^q) - \log(1 - t)^q \in A^{\dagger}$.

2 The motivic π_1 (Deligne)

If G be an affine group scheme over a field K, we call

$$Rep(G) = \{finite dim. K-linear rep. of G\}.$$

We will also write

$$G^{un} = \varprojlim H$$

where H runs through the unipotent quotients of G (subgroups of $U_{n,K}$).

Recall also that an object of a "Tannakian" category is *unipotent* if it is an iterated extension of the unit object. Then,

 $\operatorname{Rep}(G^{un}) \sim \{\text{fin. dim. unipotent } K\text{-linear rep. of } G\}.$

Now, if π is any group, then

$$\pi^{alg}=\varprojlim G$$

where G runs trough all Zariski dense morphism $\pi \to G(K)$ with G algebraic. Then,

 $\operatorname{Rep}(G) \sim \{\text{finite dim. } K\text{-linear rep. of } \pi\}.$

As an example, take $K = \mathbf{C}$ and $\pi = \mathbf{Z}$. Then,

$$\mathbf{Z}^{alg} = \mathbf{G}_{a,\mathbf{C}} \times \mathcal{H}om(\underline{\mathbf{C}}^{\times}, \mathbf{G}_{m,\mathbf{C}}),$$

but
$$(\mathbf{Z}^{alg})^{un} = \mathbf{G}_{a,\mathbf{C}}$$
.

Now, let V be a connected smooth algebraic variety over \mathbf{C} and $x \in V(\mathbf{C})$. Then,

$$Rep(\pi_1(V(\mathbf{C}), x)^{alg})$$

 \sim {fin. dim. **C**-linear rep. of π_1 }.

 \sim {Integrable differential systems on $V(\mathbf{C})$ }.

 \sim {Int. diff. systems on V regular at $\infty\}.$

Since a unipotent integrable differential system is always regular at infinity, we also get

$$Rep((\pi_1(V(\mathbf{C}), x))^{alg})^{un})$$

 \sim {Unipotent int. differential systems on V}.

In general, if V/K is a connected smooth algebraic variety over a field of characteristic zero and $x \in V(K)$, there exists an affine group scheme $\pi_1^{dR}(V, x)$ such that

 $Rep(\pi_1^{dR}(V, x)) \sim \{\text{Int. diff. systems on } V \text{ reg. at } \infty\}.$

Of course, when $K = \mathbf{C}$, we get

$$\pi_1^{dR}(V,x) = \pi_1(V(\mathbf{C}),x)^{alg}.$$

Unfortunaltely, when $K \subset K'$, we have

$$K' \otimes_K \pi_1^{dR}(V, x) \neq \pi_1^{dR}(V_{K'}, x)$$

in general as the following example shows

$$\pi_1^{dR}(\mathbf{G}_{mK}, 1) = \mathbf{G}_{aK} \times \mathcal{H}om(\underline{K/\mathbf{Z}}, \mathbf{G}_{mK}),$$

If we consider the unipotent part, we know that

$$Rep(\pi_1^{dR}(V,x)^{un}) \sim \{\text{Unip. int. diff. sys. on } V\}.$$

and it is true that

$$K' \otimes_K \pi_1^{dR}(V, x)^{un} = \pi_1^{dR}(V_{K'}, x)^{un}$$

In particular, if

$$[K:\mathbf{Q}]<\infty,$$

we have for each embedding $K \hookrightarrow \mathbf{C}$,

$$\mathbf{C} \otimes_K \pi_1^{dR}(V, x)^{un} = (\pi_1(V(\mathbf{C}), x)^{alg})^{un}.$$

It is therefore natural to study also for each embedding $K \hookrightarrow \mathbf{C}_p$, the group $\pi_1^{dR}(V_{\mathbf{C}_p}, x)^{un}$.

Deligne shows that under suitable geometric hypothesis, $\pi_1^{dR}(V,x)^{un}$ can be endowed with a Frobenius automorphism F.

Question: Is there a natural construction for this Frobenius automorphism?

The answer is yes and this construction requires the use of overconvergent crystals (Chiarellotto-LS).

3 The unipotent rig π_1 (Chiarellotto-LS)

Let K be a complete field of char 0 with |p| = 1/p,

$$\mathcal{V} := \{ x \in K, |x| \le 1 \}, \mathfrak{m} := \{ x \in K, |x| < 1 \},$$

 $k := \mathcal{V}/\mathfrak{m}$ and $x \mapsto \bar{x}, \mathcal{V} \to k$ the reduction map.

Let X/k be a smooth algebraic variety and $X \hookrightarrow P$ an embedding in a formal scheme with proper Zariski closure.

The generic fibre P_K of P is a K-analytic variety, there is a specialization map $sp: P_K \to P$ and the tube of X in P is $]X[_P:=sp^{-1}(X)$. Then \mathcal{O}_P^{\dagger} is the sheaf of analytic functions in the neighborhood of $]X[_P$.

Example: Assume $K = \mathbf{C}_p$ and with the notations of the first paragraph,

$$X = \mathbf{A}^1 \setminus \{\bar{x}_1, \dots, \bar{x}_r\},\$$

and $P = \mathbf{P}^1$. Then $P_K = \mathbf{P}^{1,an}$, the set of rational points of X_P is U and

$$\Gamma(]X[,\mathcal{O}_P^{\dagger}) = A^{\dagger}.$$

Note that sp takes a point of homogeneous coordinates (a,b) with $\max(a,b)=1$ to the point of homogeneous coordinates (\bar{a},\bar{b}) .

An overconvergent isocrystal on X is a coherent \mathcal{O}_P^{\dagger} module with an "overconvergent" integrable connection.

The overconvergence condition is stable under extensions and it follows that a unipotent coherent module with an integrable connection is automatically overconvergent.

If X is connected and $x \in X(k)$, then there exists an affine group scheme $\pi_1^{rig,un}(X,x)$ on K such that

$$Rep(\pi_1^{rig,un}(X,x)) \sim \{ \text{Unip. overc. isoc. on } V \}.$$

Assume k perfect and fix a lifting $\sigma: K \to K$ of $\bar{x} \mapsto \bar{x}^q(Frobenius)$. By functoriality, the morphism

$$F_X: X \to X, f \mapsto f^q$$

induces an automorphism

$$F: \pi_1^{rig,un}(X,x) \to \pi_1^{rig,un}(X,x).$$

This will give Deligne's Frobenius structure by transport of structure.

Here is how it works: Let P/\mathcal{V} be proper smooth and Z a normal crossing divisor with smooth components in P. Let X (resp. V) be the special (resp. generic) fibre of $P\backslash Z$. Then,

$$\pi_1^{rig,un}(X,x) \simeq \pi_1^{dR}(V,x)^{un}.$$

This gives a natural description of Deligne's Frobenius structure on $\pi_1^{dR}(V,x)^{un}$.

4 Slope filtration (Chiarellotto-LS)

If X is a variety over k, an overconvergent F-isocrystal on X/K is an overconvergent isocrystal endowed with a "Frobenius" isomorphism

$$\Phi: F_X^* E \simeq E.$$

For example, an F-isocrystal on k/K is a finite dimensional K-vector space H endowed with a σ -linear automorphism $\varphi: H \to H$. A *pro-isocristal* is an inverse limit of isocristals.

Assume k is algebraically closed, the valuation of \mathcal{V} is discrete, π a uniformizer such that $\sigma(\pi) = \pi$ and let $d = [K^{\sigma} : \mathbf{Q}_{p}].$

Then we have Dieudonné-Manin decomposition: Any pro-isocristal H has an increasing \mathbf{Q} -filtration $Fil_{\lambda}H$ with $Gr_{\lambda}H$ pure of slope λ (if $\lambda d = r/s$, then $Gr_{\lambda}H$ has a basis made of u such that $\varphi^{s}(u) = \pi^{r}u$).

Theorem 1: If E is a unipotent overconvergent isocrystal, then E is a quotient of a unipotent overconvergent F-isocrystal.

The above theorem answers Dwork's question. We will prove it later. Before, we want to state another theorem.

An overconvergent F-isocrystal E is pure of slope λ if for all $x \in X(k)$ its fibre E_x is pure of slope λ .

Theorem 2: If E is a unipotent overconvergent Fisocrystal, then E has a filtration Fil_{λ} with Gr_{λ} poure
of slope λ .

We now come to the proofs.

The group $G := \pi_1^{rig,un}(X,x)$ is unipotent. Therefore, if $\mathfrak{g} := LieG$ and \mathcal{U} is the complete enveloping algebra of \mathfrak{g} , we have

$$Rep(G) \sim \{\text{Finite dim. rep. of } \mathfrak{g}\}.$$

 $\sim \{\mathcal{U}\text{-modules of finite dimension over }K\}.$

By construction \mathcal{U} comes with a Frobenius automorphism F. A \mathcal{U} -module endowed with an F^{-1} -linear automorphism is called an F- \mathcal{U} -module. Then, we have

{Unip. overc. F-isoc}
$$\sim$$
 { F - \mathcal{U} -mod. of fin. dim. over K }.

Theorem 1 follows easily: any \mathcal{U} -module of finite dimension over K is a quotient of a finite sum of $\mathcal{U}/\mathfrak{a}^n$ where \mathfrak{a} is the augmentation ideal. To prove theorem 2, we will need an intermediate result.

Lemma: \mathcal{U} is a pro-isocrystal with negative slopes.

Assume this is true. Any F- \mathcal{U} -module H of finite dimension over K is an F-isocrystal and has a slope filtration. Since the slopes of \mathcal{U} are negative, $Fil_{\lambda}H$ is stable under the action of U and is also an F- \mathcal{U} -module.

We still have to prove the lemma : since

$$\mathcal{U} = \varprojlim \mathcal{U}/\mathfrak{a}^n,$$

one easily reduces to the same assertion for $\mathfrak{a}/\mathfrak{a}^2 = \mathfrak{g}^{ab}$. But \mathfrak{g}^{ab} is dual to

$$\operatorname{Hom}(G, \mathbf{G}_a) = \operatorname{Ext}(\mathcal{O}^{\dagger}, \mathcal{O}^{\dagger}) = H^1_{rig}(X)$$

which has positive slopes.