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Dans sa lettre du 29 juin 1877 & Richard Dedekind, Georg Cantor écrit « je le
vois mais ne le crois pas » car il venait de construire une bijection entre le plan
et la droite. En fait, il n’est pas trés difficile de voir qu’il n’existe pas de bijection
continue entre le plan et la droite mais la question est restée ouverte de nombreuses
années en dimension supérieure. C’est seulement en 1912 que Brouwer a montré qu’il
n’existe pas d’homéomorphisme entre (des ouverts non-vides de) R™ et R™ si n # m.
C’est un résultat difficile qui demande de développer des techniques sophistiquées.
Pour faire court, on se raméne a la méme question entre les sphéres S” et S™. On
peut attribuer des invariants algébriques aux espaces topologiques et il suffit alors de
montrer que les invariants ne sont pas les mémes pour ces deux sphéres.

Aprés quelques rappels de topologie générale, nous introduirons la notion d’ho-
motopie qui est plus fine que celle d’homéomorphisme ainsi que celles de chemins
et de lacets. Ensuite, aprés quelques rappels sur le groupes, nous introduirons la
notion de groupe fondamental et nous montrerons le théoréme de van Kampen qui
permet des les calculer. Aprés cela, nous verrons la notion de revétement et comment
le groupe fondamental est relié aux automorphismes d’un revétement. Enfin, aprés
quelques rappels d’algébre linéaire et la présentation de la notion de complexe de
chaines, nous parlerons un peu de simplexes et d’ensembles semi-simpliciaux afin de
définir '’homologie singuliére et nous conclurons avec le théoréme de Mayer-Vietoris
qui est ’analogue en homologie du théoréme de van Kampen.

Conventions
— Quand on dit espace vectoriel, on sous-entend généralement qu’il s’agit d’un
espace vectoriel réel. Par défaut, tout espace vectoriel de dimension finie est
muni de sa topologie d’espace vectoriel normé. Quand on dit boule (resp. sphére)
sans préciser le centre ou le rayon, on sous-entend généralement qu’il s’agit de
la boule (resp. sphére) unité, ¢’est-a-dire centrée a l'origine et de rayon un. Par



défaut, R™ (pour n € N) est muni de la norme euclidienne. On désigne par B™ la
boule unité fermée dans R", par B" son intérieur (boule unité ouverte si n # 0)
et par S"! := 0B™ (spheére unité) son bord. On désigne aussi par P" 'espace
projectif réel de dimension n. Lorsque la dimension est 1, nous 'omettrons
dans les notations et écrirons donc R, B, IO3, S et P. On notera aussi T := S de
maniére & considérer les produit T" :=T x --- x T # S". Enfin, on identifiera
C avec R2.

— Nous utiliserons de maniére informelle un vocabulaire issu de la théorie des
catégories. Par exemple, lorsque f: F — F, g: F — G et h: E — G satisfont
go f = h, on dira que le diagramme

E-L.F

N}

est commutatif. Selon le contexte, on dira aussi que h se factorise par f ou
par g, que h se reléve en f ou en g, ou encore que f et g sont induits par h.
Lorsqu’on parle de suite de fléches (f,)nez, on sous-entend toujours que le but
de f, est identique a la source de f,,+1. Une construction sera dite fonctorielle
si elle préserve (ou inverse) les diagrammes commutatifs (et les identités) ; on
notera alors souvent f, (ou f*) 'application correspondant & une fléche f dans
cette construction. Une propriété sera dite universelle si elle est satisfaite par
un unique objet & unique isomorphisme prés.

Un grand merci & Tobias Schmidt pour avoir mis ses notes a ma disposition ainsi
qu’aux étudiants pour leurs questions, leurs remarques et leurs commentaires qui
m’ont permis d’améliorer les premiéres versions du texte.



1.1

Topologie (rappels)

La notion fondamentale pour nous est celle d’espace topologique.

Définition 1.1.1 Une topologie sur un ensemble X est un ensemble U < P(X) qui
est stable par union quelconque et intersection finie. Si U € U, on dit que U est
ouverte. Le complémentaire [’ d’une partie ouverte U est une partie fermée. Un
ensemble muni d’une topologie est un espace topologique.

Automatiquement, X et ¢J sont a la fois ouverts et fermés comme intersection et
union vide, respectivement.

On fera ’abus de dire que X est un espace topologique (alors qu’il s’agit en fait
du couple formé par X et 'ensemble des ouverts).

Exemple 1. Un espace métrique est un ensemble X muni d’une distance. On le
munit de la topologie pour laquelle U est ouvert si et seulement si

VeeU,3e > 0,Vye X, d(z,y)<e=yel.

On dit alors que l'espace topologique X est métrisable (existence mais pas
unicité de la distance).

2. Un espace vectoriel normé est un espace métrique pour d(z,y) = |y — z| et
donc un espace topologique.

3. Dans un espace vectoriel réel de dimension finie, toutes les normes induisent
la méme topologie. Sauf mention explicite du contraire, on utilisera toujours
cette topologie.

4. On munit N := Nu {+0o0} de la topologie suivante : F' est fermée si et seulement
F est fini ou 400 € F. C’est un espace métrisable.
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5. L’espace de Sierpinski est I'ensemble {s, n} muni de U := {&, {n}, X}. Le point
s est fermé mais pas le point 7. Ce n’est pas un espace métrisable.

Remarques 1. Si U est une topologie sur X et f : Y — X une application
quelconque, alors f~1(U) est une topologie sur Y appelée topologie induite.

2. Si on se donne une famille de topologies {U; = P(X)}._;, alors (.., U; est aussi
une topologie sur X.

3. Si Uy et Uy sont deux topologies sur X telles que U; < Us, on dit que Uy est
plus fine que U .

4. La topologie la plus (resp. moins) fine de toutes est la topologie discréte (resp.
grossiére) avec U = P(X) (resp. U = {F, X}). On dit alors que X est un
espace discret (resp. grossier).

5. Si B est un ensemble de parties de X, alors la topologie engendrée par B est
la topologie la moins fine contenant B. On dit alors que B est une sous-base
de 'espace X. Une partie de X est ouverte si et seulement si ¢’est une union
d’intersections finies d’éléments de B.

6. Dans un espace topologique X, siona A c U < V avec U ouvert dans X, on
dit que V est un voisinage de A dans X

7. Une partie est ouverte si et seulement si ¢’est un voisinage de tous ses points.

8. Un ensemble {V;};c; de voisinages de A dans X est une base de voisinages de
A si tout voisinage V' de A contient 'un des V.

9. Un ensemble A de parties de X est une base de voisinages pour X si, pour tout
re X,{V e A x eV} est une base de voisinage de . Un ensemble B d’ouverts
de X est une base (de voisinages) si et seulement si tout ouvert est réunion
d’éléments de B. C’est alors une sous-base (mais ce n’est pas équivalent).

10. Un espace topologique est localement P s’il existe une base de voisinages pour X
qui sont tous P (par exemple “localement connexe” ou “localement compact”).

el el

Certaines parties ne sont ni ouvertes ni fermées mais on peut toujours les encadrer
entre un plus grand ouvert et un plus petit fermé :

Définition 1.1.2 Soit X un espace topologique. L’adhérence A (resp. lintérieur A)
d’une partie A de X est le plus petit fermé de X contenant A (resp. plus grand
ouvert contenu dans A) et sa frontiére est 0A := ﬁ\A Lorsque A = X, on dit
que A est dense dans X.

Exemple 1. Dans R", 'adhérence (resp. 'intérieur, le bord) d’une boule est la
boule fermée (resp. la boule ouverte, resp. la sphére) correspondante.
2. Dans un espace vectoriel réel de dimension finie, tous les sous-espaces vectoriels
sont fermés.
3. Le point 1 est dense dans I'espace de Sierpinski.

Remarques 1. On a toujours A = X\ (X\A) et A= X\ <X\A>.
2. Si Ac B, alors Ac Bet Ac B.
3. OnatoujoursAuB:ZUFetAmB:fimé.

4. On dit aussi que A est nulle part dense (ou rare) quand A = & (ne pas
confondre avec « non dense »). Par exemple, Z dans R ou R dans R%.
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On rappelle maintenant les notions de limite et de continuité.

Définition 1.1.3 Soient X, Y deux espaces topologiques et A < X. Une application
f:A—>Y apour limite ye Y en x € A si, pour tout voisinage W de y, il existe
un voisinage V' de z tel que f(V n A) = W (ou, si on préfére®, Vn A < f~HW)).

a. On rappelle que E c u}(F) < u(E) c F.

Remarques 1. Attention, il peut y avoir plusieurs limites en général !
2. On dit qu'une suite {z,},en converge vers x dans X, et on écrit z,, — x, si
I'application N — X, n +— x,, a pour limite z en 400 € N.
3. Si une partie F' de X est fermée, et F' 5z, — x € X, alors x € F' (mais la
condition n’est pas suffisante en général).
4. Si f: X — Y est continue (voir ci-dessous) en z, et z,, — x dans X, alors
f(x,) — f(x) dans Y (mais la condition n’est pas suffisante en général).

Définition 1.1.4 Une application f : X — Y est continue en x € X si f(x) est une
limite de f en x. Elle est continue si elle est continue en tout x € X. C’est un
homéomorphisme si elle est de plus bijective et que I'appplication réciproque est
continue. On dira alors que X et Y sont homéomorphes et on écrira X ~ Y.

On désignera I'ensemble de toutes les applications continues f : X — Y par
C(X,Y).Si Ac X et BcY, on désignera par C((X,A), (Y, B)) ’ensemble des
applications continues telles que f(A) < B. Lorsque A = {z} et B = {y}, on parle
d’espace pointé et d’application continue pointée (X, z) — (Y, y). Cela signifie donc
que f: X — Y est continue et que f(z) = y.

Exemples 1. Si X est un espace métrique, alors une application f : X — Y

est continue si et seulement si elle préserve les suites convergentes. Aussi, si
A c X, alors A est 'ensemble des limites dans X des suites dans A.

2. Une distance est une application continue (lipshitzienne).

3. L’addition ainsi que la multiplication par un scalaire sont continues sur un
espace vectoriel normé.

4. Une application linéaire entre deux espaces vectoriels réels de dimension finie
est toujours continue (pour n’importe quelles normes).

5. Le carré [0, 1]* et la boule fermée B? sont homéomorphes.

6. L’application

0.21\{1) — [0.2]\{0}, @+ {

l—z si0<z<1
T sil<ax<?2

est continue bijective mais n’est pas un homéomorphisme.
7. On montrera (théoréme 4.4.9) que si n # m, alors R” n’est pas homéomorphe
a R™.

Remarques 1. Une application f : X — Y est continue en x € X si, pour tout
voisinage W de f(z), il existe un voisinage V' de x tel que f(V) < W.

2. Une application f: X — Y est continue si et seulement si I'image réciproque

d’un ouvert (ou d’un fermé) est ouverte (ou fermée). De maniére équivalente,

si on désigne par U et V les topologies sur X et Y respectivement, alors

') cu.
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3. Soit f : X — Y une application entre deux espaces topologiques!. Si X =
U, Xi est un recouvrement ouvert (resp. fermé et I est fini) et fx, est continue
pour ¢ € I, alors f est continue.

4. Une application (continue) f est dite ouverte (resp. fermée) si I'image d’'un
ouvert est ouvert (resp. d'un fermé est fermé). Une application bijective continue
est un homéomorphisme si et seulement si elle est ouverte (resp. fermée).

5. Une topologie Us est plus fine qu'une topologie U; sur X si et seulement si
Idx : (X,Us) — (X,U;) est continue.

6. Si f: X — Y est continue en z et g : Y — Z est continue en f(z), alors
go f: X — Z est continue en x.

7. SivY Y — Y’ est une application continue, alors il existe une application

e = C(X, ) : C(X)Y) — C(X,Y'), [frotufi=1of

Si ¢ 1 Y' — Y” est une autre application continue, alors (¢’ o ), = ¢, 0 1,.
De plus, on a Idx, = Ide(x,x). C’est une manifestation de la fonctorialité.
8. Si ¢ : X' — X est une application continue, alors il existe une application

" :=C(¢,Y):C(X,Y)—C(XY), [feo'f:=fop

Si @' X” — X' est une autre application, alors (¢ o ¢')* = ¢"* o p*. De plus,
on a Idy = Ide(x x) (fonctorialité).

9. Si f: X — Y est continue et B < Y, alors f~1(B) « f(B) et f1(B)
f7Y(B). Aussi, si A < X, alors f(A4) < f(A).

Il existe des constructions dites universelles et on va décrire les plus utiles :

Proposition 1.1.5 Soit X un espace topologique.

1. Sit: Y — X est une application injective, alors il existe une unique topologie
sur Y avec la propriété suivante : si Y’ est un espace topologique, alors une
application Y’ — Y est continue si et seulement si I'application composée
Y’ - Y < X est continue.

2. Sim: X — Y est une application surjective, alors il existe une unique
topologie sur Y avec la propriété suivante : si Y’ est un espace topologique,
alors une application Y — Y’ est continue si et seulement si 'application
composée X — Y — Y’ est continue.

Démonstration. Dans le premier cas, la topologie induite répond a la question (une
partie V de Y est ouverte si et seulement si V = 7}(U) avec U ouvert dans X).
Dans le second cas, on munit Y de la topologie quotient : une partie V de Y est
ouverte si et seulement si U =: 77(V) est ouvert dans X. Les détails sont laissés en
exercice. [ |

Remarques 1. On munira systématiquement une partie A d’un espace topolo-
gique X de la topologie induite (relativement & I'inclusion A — X).

1. On munit ici les parties de X de la topologie induite.
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2.

Si R est une relation quelconque sur un ensemble X', on notera X /R le quotient
pour la relation d’équivalence engendrée par R. Si X est un espace topologique,
on munit systématiquement X /R de la topologie quotient (relativement a
lapplication quotient 7 : X — X/R).

. Soit R une relation quelconque sur un ensemble X et f : X — Y une application.

Alors f se factorise (automatiquement de maniére unique) par X /R et fournit
f:X/R —Y siet seulement si

Vo, 0 € X, x1Rae = f(x1) = f(x2).

Si X et Y sont des espaces topologiques, alors f est continue si et seulement si
f est continue.
Si f: X — Y est une application quelconque, alors la relation

r1Rae < f(x1) = f(22)

est une relation d’équivalence sur X et f induit une bijection X /R ~ im(f).
C’est la version ensembliste du premier théoréme d’isomorphisme de Noether.
Attention : si f est une application continue, alors cette bijection est continue
mais ce n’est pas nécessairement un homéomorphisme lorsque X /R a la topo-
logie quotient et im(f) a la topologie induite. Lorsque c’est le cas, on dit que
f est stricte.

Si A est une partie de X, on pose? X/A := X/R avec 2Ry < xz,y € A
(on contracte tous les points de A en un seul point @ : on a une bijection
(X\A) u {a} ~ X/A). Une application X — Y se factorise par X /A si et
seulement si elle est constante sur A.

Si une application 7 : X — Y est continue surjective et ouverte (resp. fermée),
alors la topologie sur Y est automatiquement la topologie quotient.
Sif:Y— Xetg: X —Y sont continues et go f = Id, on dit que f est une
section (continue) de g et que g est une rétraction (continue) de f. Dans ce
cas, la topologie de Y est a la fois la topologie induite par f et la topologie
quotient par g. Lorsque f est 'inclusion d’une partie Y de X, on dit que Y est
un rétract de X.

Exemples 1. SiY — X est 'inclusion d’'une partie d’un espace métrique, alors

la topologie induite sur Y est identique a la topologie définie par la distance
induite.

. Un quotient d’un espace métrique n’est pas toujours un espace métrique (par

exemple R/R* qui est — homéomorphe a — I'espace de Sierpinski).

On a [0,1]/{0,1} ~ S := {2z € C,|z| = 1}, — %™ Plus généralement, on
verra que B"/S"1 ~ S",

Si E est un espace vectoriel sur un corps K, alors ’espace projectif associé
a F est 'ensemble P(F) des droites de E. L’application x — Vect(z) induit
une bijection (E\0)/R ~ P(E) avec 2Ry < I\ € R*,y = Az. Si E est un
espace vectoriel normé sur R, on munit P(E) de la topologie quotient. On écrira
Pm .= P(R"*1).

2. Attention, cette convention n’est pas compatible avec la notation X /G pour les actions de
groupe.
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5. La sphére S™ est un rétract de R*™\{0} via z — z/||z|.

Proposition 1.1.6 Soit (X;);c; une famille d’espaces topologiques.

1. I existe une unique topologie sur le produit X := [[,_; X; avec la propriété
suivante : si X’ est un espace topologique, alors une application X’ — X
est continue si et seulement si toutes ses composantes X' — X —» X, sont
continues.

2. Il existe une unique topologie sur l'union disjointe X := [[..; X; avec la
propriété suivante : si X’ est un espace topologique, alors une application
X — X' est continue si et seulement si toutes les restrictions X; — X — X’
sont continues.

Démonstration. Dans le premier cas, on munit X de la topologie produit engendrée
par les ouverts de la forme p; *(U;) avec U; ouvert dans X; (attention, c’est seulement
une sous-base) et p; : X — X; la projection.

Dans le second cas, on munit X de la topologie pour laquelle les ouverts sont les
unions d’ouverts des X;.

Les détails sont de nouveau laissés en exercice. [ |

Exemples 1. Supposons que les X; sont des espaces métriques et que I est fin.
On pose

d((z:), (vi)) = max d(zi, yi)-

C’est une distance qui définit la topologie de X =[], .; X;.
2. Supposons que les X; sont des espaces métriques. On pose

~ | min(1,d(z,y)) sizye X,
d(x,y)—{ 2 ijeXi,yereti#j.

C’est une distance qui définit la topologie de X =[], .; X;.
3.0naR"=Rx .- xRet B" ~ B x - x B (homéomorphe) mais S"
Sx- - xS=T"
4. Si X est un espace topologique et I un espace topologique discret, on a un
homéomorphisme X x I ~ [],; X (par exemple, R x {0,1} ~ R[[R).

Corollaire 1.1.7 Si f: Z — X, g : Z — Y sont deux applications continues, alors
il existe une unique topologie sur la somme amalgamée

x|y ~ (X]_[Y) JR oi zRye3zeZ f(z)=19(2) =y
19

avec la propriété suivante : une application X ]_[f g Y — T est continue si et
seulement si les applications induites X — T et Y — T' sont continues.

Démonstration. Résulte formellement des propriétés universelles déja vues. Les dé-
tails sont de nouveau laissés en exercice. [ |
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Remarques 1. Lorsque?® g : Z < Y est Iinclusion d’une partie, la relation se
simplifie en 2Rz < x = f(z) et on écrira X [ [, Y. On dit qu’on recolle X avec
Y le long de f. On a une bijection continue X [[Y\Z et X [[,Y (qui n’est
pas un homéomorphisme).

2. Lorsque f : Z < X est aussi I'inclusion d’une partie Z de X, on écrit X [[, Y.
On peut alors identifier X, Y et Z avec des parties de T := X [[, Y si bien
que T =X uY et Z=XnY (et réciproquement).

3. Dans le cas ot Z = {z} est réduit a un point, on dit que X vY = X[ YV
est un bouquet (d’espaces pointés).

4. Si A est une partie de X, on a X/A ~ {a}[], X avec p: A — {a}.

5. La notion de somme amalgamée est duale de celle de produit fibré que nous ne
considérerons pas ici.

Exemples On verra que :
1. S"/(S"' x 0) ~S" v S" et B"/(B"! x 0) ~ B" v B™.
2. S" ~ B"[ [g.1 B" (S" = B U B et Bt A B = Sn1),
3. PP~S[[;B*avec f:S = S:z— 2%
4. Pr~ P '] B"avecp:S" ' — P L

1.2 Connexité et compacité (rappels)

Les notions suivantes ne sont pas de nature topologique (elles ne sont pas stables
par homéomorphisme) mais cependant bien utiles.

Définition 1.2.1 Soit F un espace vectoriel réel.

1. Si z,y € F, on désigne par (xy) 'ensemble des (1 — ¢)x + ty avec t € R. On
remplace « ( » par « [ » ou « | » pour indiquer que ¢ = 0 ou ¢ > 0. On
remplace « ) » par « | » ou « [ » pour indiquer que t < 1out < 1. Siz # y,
on dit alors que (zy) est une droite, que (zy|, (zy[, [ry) et Jzy) sont des
demi-droites et que [zy], |zy], [zy[ et |zy[ sont des segments.

2. On dit que A c E est affine® (resp. conveze) si Vx,y € A, (zy) < A (resp.
[zy] < A).

3. Une application entre deux parties A et B d’espaces vectoriels est affine si elle
est induite par la composée d’une application linéaire et d’une translation.

a. Ou linéaire.

Exemple 1. R™ est convexe mais pas R"\0 (pour n > 0).
2. B" est convexe mais pas S".
3. Plus généralement, une boule est convexe pour n’importe quelle norme.

Remarque 1. Une partie affine est soit vide, soit le translaté d’un sous-espace
vectoriel (on dit alors que c’est un sous-espace affine) appelé espace vectoriel
directeur. C’est une partie convexe.

2. Une intersection de parties affines (resp. convexes) est affine (resp. convexe).

3. C’est le seul cas que nous considérerons.
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3. L’envelope affine (resp. convere) d’une partie S est la plus petite partie affine
(resp. convexe) A qui contient S. On aura

A= {Ztss/ Zts =1:t;€R (resp. RZO)}.

seS

4. La dimension d’'un espace affine est la dimension de son espace directeur. La
dimension d’'un convexe est la dimension de son enveloppe affine.

5. Un produit fini de parties affines (resp. convexes) est affine (resp. convexe).

6. L’image et l'image réciproque d’une partie affine (resp. convexe) par une
application affine sont affines (resp. convexes).

7. L’adhérence ainsi que U'intérieur d’une partie affine (resp. convexe) sont affines
(resp. convexes) (pour n’importe quelle norme).

8. On rappelle aussi qu'une partie A est étoilée si dx € A,Vy e A, [zry] < A. Une
partie convexe non vide est étoilée (mais pas réciproquement).

On introduit maintenant la notion de connexité :

Définition 1.2.2 Un espace topologique X est connexe si les seuls ouverts fermés
(ouvermés *) de X sont ¢J et X.

a. Clopen en anglais.

Exemples 1. Une partie convexe est connexe (pour n’'importe quelle norme).

2. S" est connexe pour n # 0 mais pas S = {—1,1}.

3. R™0 est connexe pour n # 1 mais pas R\0 = Rg U Ry.

4. Les parties connexes de R sont les intervalles (ce sont aussi les parties convexes).

5. Une wvariété topologique de dimension n, c’est-a-dire un espace topologique
séparé (voir ci-dessous) localement homéomorphe a R", est localement connexe
(exemples : R, S™, B", P, ™).
L’adhérence du graphe de sin(1/x) est connexe mais pas localement connexe.
Q (avec sa topologie réelle) n’est ni connexe ni localement connexe.

N

Remarques 1. Un espace topologique est connexe si et seulement si on ne peut

pas l'écrire comme union de deux ouverts (resp. fermés) disjoints non vides.

2. Un espace topologique est connexe si et seulement si toute application continue
dans un espace discret est constante (et il suffit de considérer {0, 1}).

3. Un produit d’espaces topologiques non-vides est connexe si et seulement si ses
facteurs le sont.

4. Une union de parties connexes d’intersection deux & deux non vide est connexe.

5. L’image d’une partie connexe par une application continue est connexe (théo-
réme des valeurs intermédiaires).

6. L’adhérence d’une partie connexe est connexe.

7. Un espace topologique est localement connexe si et seulement s’il posséde une
base d’ouverts connexes.

8. Tout ouvert et tout quotient d’un espace localement connexe est localement
connexe.

9. Tout produit fint d’espaces localement connexes est localement connexe et
tout produit d’espaces connexes localement connexes est connexe localement
connexe.
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Définition 1.2.3 Une composante connere dans un espace topologique X est une
partie connexe non-vide maximale.

On désigne par 7y(X) I'ensemble des composantes connexes dans X.

Exemples 1. Les composantes connexes dans R* sont R.( et R_g.
2. Les composantes connexes dans un espace discret sont les points. Mais ce n’est
pas équivalent, les composantes connexes dans Q (ou dans N) sont aussi les
points.

Remarques 1. On considére aussi la notion de composante connexe C(x) d'un
point z € X. De maniére équivalente, c’est
(a) la plus grande partie connexe de X contenant z,
(b) la réunion des parties connexes de X qui contiennent z,
(¢) T'unique composante connexe qui contient x.

2. Un espace topologique est réunion de ses composantes connexes, qui sont
fermées (mais pas toujours ouvertes) et disjointes (mais a topologie n’est pas
en général celle de I'union disjointe).

3. Les composantes connexes dans ||
connexes dans les Xj;.

4. Les composantes connexes dans [ |
chacun des X;.

5. Toute application continue f : X — Y induit une application

fe =mo(f) : mo(X) > m(Y), Cw f,C

.7 X sont les produits des composantes

7 X sont les composantes connexes dans

qui envoie une composante connexe C' dans X sur la composante connexe
dans Y contenant f(C'). C’est fonctoriel : on a toujours (g o f). = gs« o fx et
Idx, = Id.

6. Un espace topologique est localement connexe si et seulement si les composantes
connexes des ouverts de X sont ouvertes.

Il existe de nombreuses conditions qui permettent de s’assurer qu’une topologie
est suffisamment riche pour séparer les points mais nous ne considérerons que la plus
courante :

Définition 1.2.4 Un espace topologique X est séparé® si pour tout x # y € X, il
existe des voisinages disjoints de z et y (condition T53).

a. Hausdorff en anglais.

Exemples 1. Un espace métrique est séparé.
2. L’espace de Sierpinski n’est pas séparé.
3. La droite avec deux origines R| [z« R n’est pas séparée.
4. Un groupe topologique est un espace topologique muni d'une loi de groupe conti-
nue avec inversion continue. Un groupe topologique est séparé si et seulement
si 1 est fermé.

Remarques 1. Un espace X est séparé si et seulement si la diagonale est fermée
dans X x X.
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Toute partie d’un espace séparé est séparée (pour la topologie induite).

Un produit d’espaces non-vides est séparé si et seulement si les facteurs le sont.
Dans un espace séparé, les limites sont uniques.

Dans un espace séparé, les points sont fermés?.

Dans un espace séparé, les rétracts sont fermés.

O Gt 0o 1

Enfin, on termine avec la condition de finitude la plus naturelle, celle de compacité :

Définition 1.2.5 Un espace topologique X est compact® s’il est séparé et si tout

recouvrement ouvert X = | J,.; U; admet un raffinement X = | J,., U; avec J fini.

a. Compact Hausdorff en anglais.

Exemples 1. Un espace métrique est compact si et seulement si toute suite

posséde une sous-suite convergente (théoréme de Bolzano-Weirstrass).

2. Une application continue f : X — Y avec X métrique compact et Y métrique
est uniformément continue.

3. Une partie d'un espace vectoriel réel de dimension finie est compacte si et
seulement si elle est fermée et bornée.

4. S" T" B™ et P" sont compacts mais pas R™ (si n # 0) ou B,

5. Le quotient [0,1]/]0, 1] n’est pas compact (car il n’est pas séparé) bien que
[0,1] est compact.

6. Une variété topologique est localement compacte.

7. Q n’est pas localement compact.

Remarques 1. Un compact est toujours fermé dans un espace séparé et un fermé

est toujours compact dans un espace compact.

2. Tout produit de compacts est compact (théoréme de Tykhonov ®).

3. Toute réunion finie dans un espace séparé et toute intersection (non triviale)
de compacts est compacte.

4. L’image d’un compact par une application continue a valeur dans un espace
séparé est toujours compacte.

5. Une application continue f : X — Y avec X compact et Y séparé est toujours
fermée et c’est donc un homéomorphisme si et seulement si elle est bijective.

6. Un espace topologique est localement compact si et seulement si tout point
posséde un voisinage compact.

7. Tout ouvert et tout fermé d’un espace localement compact est localement
compact.

On devrait définir la compacité par cette jolie caractéristique :

Théoreme 1.2.6 — Kurakovski. Un espace séparé X est compact si et seulement
s'il est universellement fermé : toute projection X x Y — Y est fermée.

Démonstration. Hors programme. |

4. Condition 7. Il existe de nombreuses conditions de séparations notées T,,.
5. Equivalent a ’axiome du choix.
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Remarques 1. Plus généralement, on dit qu’une application continue f : X — Y
est propre si elle est universellement fermée : pour tout espace topologique
Z, lapplication f xIdy : X x Z — Y x Z est fermée. Si X est séparé et Y
localement compact, c¢’est équivalent a dire que 'image inverse d’un compact
est compact.
2. On voit donc que X est compact si et seulement s’il est séparé et I’application
X — {0} est propre.

1.3 Homotopie

Nous allons avoir besoin de déformer continiiment des espaces topologiques et
des applications continues :

Définition 1.3.1 Une homotopie est une application continue h: X x [0,1] - Y
(ot X et Y sont deux espaces topologiques). Si on pose h; : X — Y,z — h(z,t),
on dit alors que hg et hy sont homotopes et on écrit h : hg ~ h;.

Exemples 1. Si f,g: X — Y sont deux applications continues avec Y conveze,
alors f ~ g. Il suffit de poser h(x,t) = (1 —t)f(z) + tg(x).
2. Les fonctions R - R*, x — 1, x — —1 ne sont pas homotopes.

Définition 1.3.2 1. Une homotopie h : X x [0,1] — Y est triviale ou constante
si

Vo e X,Vt, t' € [0,1] h(x,t) = h(z,t').
2. L’inverse d’une homotopie h : X x [0,1] — Y est 'homotopie
WX x[0,1] > Y
définie par
Vee X,Vte[0,1], h(x,t)=h(z,1-1).

3. Deux homotopies h: X x [0,1] = Y et &’ : X x [0,1] — Ysont composables
si hy = h{, et leur composée® est alors I'homotopie

R": X x[0,1] > Y
définie par

h(z,2t) sit<1/2

Vee X,Vte[0,1], R'(z,t)= { W(z,2t—1) sit>1/2.

a. Certains auteurs font la composition dans I'autres sens.

Remarques 1. Une homotopie triviale est une homotopie f ~ f. L’inverse d’une
homotopie f ~ g est une homotopie g ~ f. La composée de deux homotopies
f ~get g~k est une homotopie f ~ k.
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2. Pour que la composée soit bien définie, il faut bien stir s’assurer que h” est
continue et on utilise 'argument des fermés X = X' v X" avec X' := X x[0,1/2]
et X" :=X x[1/2,1].

Proposition 1.3.3 Si X et Y sont deux espaces topologiques, alors la relation
d’homotopie ~ est une relation d’équivalence sur C(X,Y).

Démonstration. L’homotopie triviale fournit la réflexivité. L’inverse fournit la symé-
trie. Enfin, la composition fournit la transitivité. [ |

On désigne par [X,Y] :=C(X,Y)/ ~ ensemble des classes d’homotopie et par
[f] la classe de f.

Remarques 1. Sion se donne v : Y — Y/ continueet h : f ~g: X - Y,
alors poh: (o f)~(og): X — Y est une homotopie. On en déduit une
application (fonctorielle)

2. Sion se donne ¢ : X' — X continue et h: f ~g: X — Y alors

(ho (o xIdpy)): (fop)~(gop): X' =Y

est une homotopie et on en déduit une application (fonctorielle)

381 f~f:X>Yetg~g:Y - Z alors(gof)~ (g of): X —> Z.
Autrement dit, la composition des applications induit une composition
X.Y]% [V, 2] = [X. 2}, (IfLIg) 9] o1f] =g f].
4. On a

Viel,fi~g:Xi—>Y, = Hfz‘Nngz‘iHXi—’HY;
iel el iel iel

(et idem pour les union disjointes).
5. On a aussi

Viel fi~gi:X =Y, < [~¢:X-][V
i€l

(et Panalogue - dans l'autres sens - pour les unions disjointes).
6. Une homotopie h relativement & A — X est une homotopie dont la restriction
a A est triviale :

Ve e A Ve, t' €[0,1], h(z,t) = h(z,t).

On écrit alors hg ~4 h;. Pour que f ~4 g, il est nécessaire que fla = ga.
Toutes les propriétés ci-dessus (et & venir) ont un analogue relatif qu’on utilisera
librement.
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7. 51 Ac X et BcY, on peut aussi définir une homotopie f ~ g : (X, A) —
(Y, B) en demandant que h(A x [0,1]) < B. Ici encore, toutes les propriétés
ci-dessus (et & venir) ont un analogue qu’on utilisera librement.

On veut maintenant assouplir la notion d’homéomorphisme :

Définition 1.3.4 Une application continue f : X — Y est une équivalence d’homo-
topie s’il existe une autre application continue g : Y — X telle que Idx ~ go f
et fog ~ Idy. On dit alors que X et Y ont méme type d’homotopie et on écrit
X~Y.

Exemples B" ~ {0}, C* ~ S, R* « R.

6 sur les

Remarques 1. L’équivalence d’homotopie est une relation d’équivalence
espaces topologiques et une classe d’équivalence de X est un type d’homotopie
(c’est similaire & la notion de cardinal d’un ensemble).

2. Deux espaces homéomorphes ont méme type d’homotopie.

Si, pour tout i € I, X; ~ Y;, alors [[; X; ~ [[; Vi

4. Si X ~ X' et Y ~ Y’ on a une bijection [X,Y] ~ [X",Y'].

b

Proposition 1.3.5 Si f : X ~ Y est une équivalence d’homotopie, alors f : mo(X) ~
mo(Y") est une bijection.

Démonstration. Par définition, il existe une application continue g : ¥ — X et
une homotopie h : Idx ~ go f. Si C' € 7y(X), alors h(C x [0,1]) est connexe et
contient h(C' x {0}) = C' maximal, si bien que h(C x [0,1]) = C. Mais h(C x [0, 1])
contient aussi h(C' x {1}) = (go f)(C) et on a donc (go f)(C) < C. On a donc
G« f+C = (go [).C = C, c’est-a-dire g, o f, = Id,(x). On conclut par symétrie. W

Corollaire 1.3.6 Si X est connexe et X ~ Y, alors Y est connexe. ‘

On va souvent pouvoir remplacer un espace topologique par un espace plus petit
qui a méme type d’homotopie :

Définition 1.3.7 Une rétraction (continue) r : X — A d’une inclusion ¢ : A — X
est une rétraction par déformation si Idx ~ tor. On dit alors que A est un rétract
par déformation de X.

Remarques 1. Concrétement, A est un rétract par déformation de X si et
seulement §'il existe une application continue h : X x [0,1] — X telle que

Vee X, h(z,0)=xet h(z,1)e A

(en posant r(x) = h(x,1)).
2. Si on demande que Idx ~4 ¢ or, on dit rétraction forte par déformation. Cela
revient a ajouter la condition

Vae AVte[0,1], h(a,t)=a.

6. On ne s’embarrase pas de considérations ensemblistes.
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3. Si A est un rétract par déformation de X, alors X ~ A car r ot = Idy par
définition d’une rétraction, et donc en particulier r o v ~ Id 4.

4. Inversement, on peut montrer qu’a homéomorphisme prés, deux espaces homo-
topiquement équivalents sont toujours des rétracts forts par déformation d’un
méme espace (difficile).

Exemples 1. S" est un rétract fort par déformation de R"*\{0}.
2. {1} n’est pas un rétract par déformation de C*.

| Définition 1.3.8 Un espace topologique X est contractile si X ~ {0}.

Exemples 1. Une partie étoilée (par exemple convexe non vide) est contractile.
2. S™ n’est pas contractile (trés difficile : voir remarque aprés le corollaire 4.4.8
plus bas).
3. Plus généralement, une variété topologique compacte de dimension > 0 (comme
P™ ou T") n’est jamais contractile.

Remarques 1. Un espace topologique X est contractile si et seulement s’il existe

une rétraction par déformation sur un point.

2. Un espace contractile est connexe.

3. Si X est contractile, alors deux applications continues f,g : ¥ — X sont
toujours homotopes.

4. Si X est contractile, alors toute application continue f : X — Y est homotope
a une application constante.

5. Si X est contractile et Y quelconque, alors X x Y ~ Y.

1.4 Chemins et lacets

On fixe un espace topologique X. On veut relier explicitement les points de X :

Définition 1.4.1 Un chemin dans X est une application continue ~ : [0,1] — X.
On dit alors que x := v(0) et y := (1) sont les extrémités (point initial ou origine
et point final ou extrémité) de . On dit aussi que = et y sont reliés par v ou que
v part de x pour arriver a y et on écrit (encore) v : x ~ y. Lorsque x = y, on dit
que vy est un lacet (basé) en x.

Attention a la représentation simplifiée des chemins : ne pas oublier que la courbe
de Péano par exemple est un chemin dans [0, 1]> qui recouvre tout le pavé.

Remarques 1. On dispose d’une bijection
X ~C({0},X), z— (0

et un chemin v : x ~ y correspond & une homotopie (ce qui justifie a posteriori
la notation = ~ y).

2. L’ensemble des chemins dans X est C([0, 1], X).

3. On peut identifier ensemble des lacets de X avec C(S, X) en posant 7(e*™) =
~(t) pour t € [0, 1].
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4. Sip: X — Y est continue et v : x1 ~ x9, alors
puy =0 iy = fx1) ~ y = fla2).

5. Si f:0 ~ 1 est un chemin dans [0,1] et v : 2 ~ y dans X, alors
ff)i=vofraz~y

est une reparamétrisation de 7.

6. Il revient au méme de se donner une homotopie h : X x [0,1] — Y ou une
application continue de X dans I'espace” C([0,1],Y) des chemins dans Y. En
effet, on a une bijection (curryfication)

C(X x[0,1],Y) ~C(X,C([0,1],Y)), hw— (z— (7. :t— h(z,1))).
7. De méme, toute homotopie h : X x [0,1] — Y fournit un chemin
[0,1] - C(X,Y), hw (t— h).

dans 'espace des applications continues de X vers Y. Et réciproquement lorsque
X est localement compact.

On va progressivement construire des groupes en utilisant les chemins (ces
deéfinitions sont des « cas particuliers » de ce qu’on a vu pour les homotopies) :

Définition 1.4.2 1. Siz e X, le lacet constant ou trivial en x est donné par
Vte [0,1], 1.(t) ==,
2. Si v est un chemin dans X, son inverse est le chemin donné par
vte[0,1], v '(t) =~(1—1).

3. Deux chemins v et 7' dans X sont composables si v(1) = +/(0). Leur
composé® est alors le chemin donné par

Ve [0,1], (v-)() = { 1/((2;2_ 1) 21 i i 1?;

a. On rappelle que certains auteurs font la composition dans 'autres sens.

Proposition 1.4.3 Soit f : X — Y une application continue.
1. Size X, alors fil, = 1g(y).
2. Si v est un chemin dans X, alors fuy ™' = (fuy) ™'
3. Si~ et 4 sont deux chemins composables dans X, alors f.(v-7) = fav- f&-

Démonstration. Immeédiat. [ |

7. On munit toujours C(X,Y") de la topologie compacte-ouverte (c¢’est-a-dire la topologie de la
convergence uniforme lorsque X est compact et Y métrique).
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Proposition 1.4.4 La relation 3y :  ~ y dans un espace topologique X est une
relation d’équivalence.

Démonstration. En effet, il existe un chemin x ~ y si et seulement si les applications
correspondantes z,y : {0} — X sont homotopes et on peut donc appliquer la
proposition 1.3.3. [ |

La notion de connexité est plutot abstraite mais on peut souvent la remplacer en
pratique par une propriété plus concréte :

Définition 1.4.5 Un espace X est connexe par arcs si Vo,y € X,3v:x ~y. Une
composante connexe par arcs une partie connexe par arcs non-vide maximale.

On désignera par 73*(X) := X/ ~ I'ensemble des composantes connexes par arc

de X.

Remarques 1. Un espace X connexe par arcs est toujours connexe. Et récipro-
quement si X est localement connexe par arcs.

2. Un produit d’espaces connexes par arcs est connexe par arcs. Une union d’in-
tersection non-vide d’espaces connexes par arcs est connexe par arcs. L’image
d’un espace connexe par arcs par une application continue est connexe par
arcs.

3. Un espace topologique est localement connexe par arcs si et seulement s’il
posséde une base d’ouverts connexes par arcs.

4. Si X ~ Y, alors X est connexe par arcs si et seulement si Y est connexe par
arcs.

5. Si X est contractile, il est connexe par arcs. Si X est contractile et Y est
connexe par arcs, alors deux applications X — Y sont toujours homotopes.

6. Si X est localement connexe par arcs, alors ses composantes connexes sont
ouvertes (et fermées) et localement connexes par arcs. En particulier, m(X) =
e (X).

7. Toute application continue f : X — Y induit une application

fo = w5 (f) s mg (X)) = w5 (V)

Et c’est fonctoriel. De plus, si f ~ g, alors f, = g.. Enfin, f, est une bijection
lorsque f est une équivalence d’homotopie.

Exemples 1. R* B" S" T" et P" sont connexes par arcs — a part S° et TC.

2. Une variété topologique est localement connexe par arcs.

3. L’adhérence T' du graphe de sin(1/z) dans R? est connexe mais pas connexe
par arcs ni localement connexe. L’union I' U R x 1 est connexe par arcs mais
pas localement connexe.

4. L’exemple précédent montre que I'adhérence d’un connexe par arcs (la partie
droite de I') n’est pas nécessairement connexe par arcs (la partie droite de T).

Afin d’obtenir une véritable loi de composition, il va falloir s’autoriser a remplacer
un chemin par un autre. On rappelle pour cela que nous avons introduit dans la
section 1.3 la notion d’homotopie relative a une partie.
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I Définition 1.4.6 Deux chemins v et 4/ dans X sont homotopes (a extrémités fixées)
sty ~11 7

Remarques 1. On aura donc 7 ~1} 7' si et seulement si v et 7' ont mémes
extrémités z et y et s'il existe une application continue & : [0,1]*> — X telle
que pour tout s,t € [0,1], on ait

h(t,0) = ~(t), h(t,1) =4'(t), h(0,s)=x et h(l,s)=y. (1.1)

On peut se représenter ces conditions sur le diagramme suivant

/

1 xiﬁy

L]

r—=1Y

0—=1
2. On dit qu'un chemin v est trivial s’il existe v € X tel que v ~¢01; 1,. On dit
de méme qu'un chemin 7 est un inverse pour 7 si v ~o1; ~v~1. On dira aussi
quun chemin 4" est un composé de v et 7' si v ~013 -7
3. Un chemin ~ est trivial si et seulement si c’est un lacet en x et qu’il existe une
application continue & : [0,1]> — X telle que pour tout s,t € [0,1], on ait

h(t,0) =~(t) et h(t,1) =h(0,s) =h(l,s) ==
ce qu’on peut représenter par

T

=$
H o H
—T.

T

4. Un lacet v est trivial si et seulement si 'application correspondante 5 : S — X
se prolonge (a l'intérieur) en une application continue ¥ : B2 — X (voir exercice
1.18).

5. L’espace ambiant est important : si X < X', on peut avoir v # 1, lorsque =
est vu comme un chemin dans X bien que v ~ 1, vu comme chemin dans X’
(prendre X = C*, X' = C et y(t) = *™).

Proposition 1.4.7 La relation d’homotopie (& extrémités fixées) sur les chemins
entre x et y dans X est une relation d’équivalence.

Démonstration. On applique a nouveau le lemme 1.3.3 (variante relative). [
On désigne par

m(X) == C([0,1], X)/ ~0,13
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I'ensemble des chemins & homotopie prés et par [v] la classe de 7. On aura donc par
définition

v~ 7 < [v] =[]

et ca implique qu’ils ont mémes extrémités. Si f : X — Y est continue et v ~13 7'
dans X, alors f,y ~0,1) f+7'. Il suit que f induit une application

fo=m(f) :m(X) > n(Y), [v] = filv] = [far]:

Cest fonctoriel : (go f)x = g 0 fi et Idx . = Idz(x).
On peut maintenant définir une notion de connexité bien plus fine :

| Définition 1.4.8 L’espace X est simplement connexe siVa,y e X, 3![v]:z ~ .

Cela signifie qu’il existe toujours un chemin entre deux points x et y et que deux
tels chemins sont toujours homotopes.

Exemples 1. R™ et B" sont simplement connexes.
2. S™ et R™™\0 sont simplement connexes pour n > 2 (voir exercice 1.19).
S et C* ne sont pas simplement connexes (voir théoréme 2.2.13).
SY et R* ne sont pas simplement connexes car ils ne sont pas connexes !
Une variété topologique est localement simplement connexe.
La boucle d’oreille hawaienne X = |, . S((1/n,0),1/n) = R? n’est pas locale-
ment simplement connexe.

SEEA

neN

Remarques 1. Un espace X est connexe par arcs (resp. simplement connexe) si
et seulement si application

m(X) = X x X, [7] = (7(0),7(1)) (1.2)

est surjective (resp. bijective).

Un espace simplement connexe est connexe par arcs.

Un espace convexe (ou étoilé) est simplement connexe.

On montrera qu'un espace contractile est simplement connexe (corollaire 2.2.9).
On montrera plus généralement que, si X ~ Y alors X est simplement connexe
si et seulement si Y est simplement connexe (corollaire 2.2.9 encore).

A

Proposition 1.4.9 Si 4/ est une reparamétrisation d’'un chemin v dans X, alors
Y ~013 Y-

Démonstration. Si on désigne par f : [0,1] — [0, 1] la reparamétrisation, alors
Id ~¢oq1y f car [0, 1] est simplement connexe et donc v = Id*y ~ 13 f*y=+". N

Lemme 1.4.10 Siv; et 71 sont deux chemins composables dans X et si 71 ~(,1} 72
et 7 ~o,1} 73, alors 7, et 5 sont composables et 1 - ] ~0.13 V2 Vs

Démonstration. Si on désigne par h et h' les homotopies, il suffit de poser

h(2t, s) sit<1/2

vte[0,1], A'(t,s) = { R'(2t —1,8) sit>1/2.
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Remarques 1. On peut décomposer un chemin v dans X. Si 7 € [0, 1] et qu’on
pose 11(t) = v(7t) et 72(t) = ¥(7 + (1 = 7)t), alors ¥ ~jo,13 71 - V2. En effet,

(271) sit<1/2
Vie[0,1],  (n-2)(t) = { 1(7 +2(1—7)t) sit>1/2

est une reparamétrisation de ~.

2. Comme conséquence du lemme, on voit que la composition des chemins passe au
quotient pour fournir une composition sur 7(X) : on peut poser [Y][7'] := [7-7]
lorsque les chemins sont composables.

3. Si f: X — Y est une application continue, on aura fi([Y][Y']) = (f<[7]) (f<[7])-

Les chemins (& homotopie prés) forment ce qu’on appelle un groupoide :

Théoreme 1.4.11 1. Sivyiz~y, v :y~zet~y:z~w,alors
(V7)Y ~ - (")
2. Sivy:x ~y, alors
Lo -y~ vet v 1y ~o13 7

3. Sivy:x~uy, alors

vyt ~p01) Lo et vy~ 1.

Démonstration. Par définition, on a pour tout ¢ € [0, 1],

~(4t) sit<1/4

(v )N =1 Y4t —1) sil/d<t<1/2
V(2 —1) sit>1/2

et

v (2t) sit < 1/2

(V- (Y ANE) =1 Y(At-2) sil2<t<3/4
V(4 —3) sit > 3/4.

Il suffit donc de composer 7 - (7' - ") avec la reparamétrisation

2t sit<1/4
fit—< t+1/4 sil/d<t<1/2
t/24+1/2 sit>1/2
pour tomber sur (v -v) - ~".
On fonctionne de méme pour la seconde assertion. Pour ¢ € [0, 1], on a

x sit<1/2 (2t) sit<1/2
(L - 7)(8) = { v2t—1) sit=12 & R = { ; sit>1/2.
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Il suffit alors de prendre les reparamétrisations de =y :

_ 0 sit<1/2 _ 2t sit<1/2
f'tH{ ot —1 sit=1/2 & 97 { 1 sit>1/2
respectivement.
Enfin, pour la derniére assertion, on aura pour ¢ € [0, 1],
g [ 20 sit<1/2
(v = { Y21 —t) sit>1/2
Il suffit alors de poser
(201 = 9)t) sit<1/2
hlt, s) = { V21— s)(1—1t) sit>1/2
(et de remarquer que (y7!)7! = ~). [

Corollaire 1.4.12 Un espace topologique X est simplement connexe si et seulement
s’il est connexe par arcs et tout lacet est homotope au lacet constant.

Démonstration. Les conditions sont clairement nécessaires. Pour la réciproque, il
suffit de montrer que I'application (1.2) est injective. Or, si on se donne v,v" : x ~ v,
on aura

Y ~on Y e~ 7 )~ () Y~ Loy~ W

Il est parfois nécessaire de considérer des homotopies qui ne fixent pas les extré-
mités :

Lemme 1.4.13 Soit h : 4 ~ +' une homotopie quelconque (ne fixant pas nécessaire-
ment les extrémités). On pose

Vte[0,1], 6(t) = h(0,t) et &'(t) = h(1,t).
On a alors

v o' ~{0,1} J- 7,-

Démonstration. On a

/ v(2t) = h(2t,0) sit<1/2
vt € [0,1], (7-5)@):{ §(2t—1)=h(L,2t—1) sit>1/2

et

, 5(2t) = h(0,2t) sit<1/2
vee (0.1, (07 = { Y2t —1) =h(2t —1,1) sit>1/2.

Il suffit donc d’utiliser I’homotopie suivante :

d(2t) = h(0,2t) sit<s/2
Vte[0,1], g(t,s) =% h(2t—s,s) sis/2<t<(s+1)/2 N

§(2t—1)=h(1,2t—1) sit> (s+1)/2.
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Proposition 1.4.14 Soit h: f ~g: X —> Y et v: 21 ~ x5 dans X. On pose
Vit e [0, ]_], (51(75) = ]’L(Il,t) et 52(t) = h(l’g, t)
On a alors

(f«7) - 02 ~j0,13 61 (947)

Démonstration. On considére I’homotopie composée

Bo0,1] % [0,1] TE8Y X < [0,1] Ly

entre f,y et g«y. On peut alors appliquer le lemme 1.4.13.
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1.5 Exer

cices

1.5.1 Topologie

Exercice 1.1 1. Soient I et J deux intervalles infinis de R. Montrer qu’il existe

W N

une bijection entre I et J. Montrer qu’il existe une bijection continue si
et seulement si I et J sont tous les deux ouverts, ou fermés bornés ou
semi-ouverts. Montrer qu’alors c¢’est un homéomorphisme.

Montrer que si m,n > 0, il existe une bijection entre R" et R™.

Montrer qu’il existe une bijection continue [0, 1[— S mais pas d’homéomor-
phisme.

Montrer qu’il n’existe pas de surjection continue R — R\0 (et donc pas
d’homéomorphisme).

Montrer qu’il n’existe pas de bijection continue R*> — R (et donc pas
d’homéomorphisme).

Montrer ¢ qu’il existe une surjection continue [0,1] — [0,1]* (courbe de
Péano par exemple) mais pas de bijection continue (et donc pas d’homéo-
morphisme).

a.
local

Le résultat reste valide si on remplace [0, 1]? par n’importe quel espace compact connexe
ement connexe & base dénombrable (théoréme de Hahn-Mazurkiewicz).

Solution. 1. On procéde a 'envers. On remarque d’abord que deux intervalles

4.

bornés qui sont ouverts, ou fermés ou semi-ouverts sont homéomorphes (par
une application affine). On rappelle ensuite que les applications

R—]—1,1[ ou Rso—[0,1], x+~—

1+ |z

sont des homéomorphismes. On en déduit que deux intervalles ouverts ou
semi-ouverts sont automatiquement homéomorphes. La réciproque résulte du
théoréme de la bijection : une application continue sur un intervalle est injective
si et seulement si elle est strictement monotone. Or, si f :]a,b[— R est continue
et strictement croissante alors f(]a,b[) =|inf f(z),sup f(z)[. Les autres cas se
traitent de la méme maniére.

On considére maintenant la notion de cardinal d’un ensemble. On rappelle
que, par définition, #X = #Y (resp. #X < #Y) si et seulement s’il existe
une bijection (resp. injection) X — Y et le théoréme de Cantor-Bernstein dit
que < est une relation d’ordre sur les cardinaux. Pour terminer, il suffit donc
de montrer que si I est un intervalle infini, il existe une application injective
R — I. Quitte & remplacer R par un intervalle ouvert borné, c’est immeédiat.

. Il suffit de traiter le cas de R et R%, car on aura alors des bijections R ~

R" ! x R~ R"! x R? ~ R""! et il suffit en fait de montrer que #R? < #R.
On utilise alors le fait que, si X # J, alors #X < #Y si et seulement s’il
existe une surjection Y — X. Il suffit alors d’envoyer, en écriture décimale,

> a; 10" sur (3 ag 107, > ag;110%).

. Il s’agit bien str de t — €2, Pour la seconde assertion, il suffit de remarquer

que S est compact mais pas [0, 1].
Il suffit de remarquer que R est connexe mais pas R\0.
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5. S'il existait une bijection continue f : R? — R, alors il existerait une bijection
continue f : R*\0 — R\ f(0) mais la source est connexe et pas le but.
6. On rappelle que la courbe de Péano est donnée par t — (x,y) ou, si on pose

t = Z th37F oz = Z 3% et y= Z Y3~k

k>0 k>0 k>0

avec tp,, T,y € {0, 1,2}, alors on a

o tznfl si Zz;i tQk- =0 mod 2
"l 2—ty,—; mod3 sinon

et

B tgn si ZZ:I tQk_l =0 mod 2
A ta, mod 3 sinon.

Par contre, il n’existe pas de bijection continue. Sinon, ce serait un homéomor-
phisme car [0, 1] est compact et [0, 1]? est séparé. Mais [0, 1]\{1/2} n’est pas
connexe, alors que, si a désigne 'image de 1/2, alors [0, 1]*\{a} est toujours
connexe. |

Exercice 1.2 1. On désigne par B,,, U, et A, les groupes des matrices réelles
inversibles d’ordre n qui sont respectivement triangulaires supérieures, tri-
angulaires supérieures unipotentes (des 1 sur la diagonale) et diagonales.
Montrer que la multiplication induit un homéomorphisme A, x U, ~ B,,.

2. On désigne maintenant par O, le groupe orthogonal et par B} < B, le
sous-groupe des matrices a coefficients diagonaux > 0. Montrer ¢ que la
multiplication induit un homéomorphisme O,, x B} ~ GL,,.

a. Clest la décomposition d’Iwasawa (ou de Gram-Schmidt).

Solution. 1. Dans l'espace vectoriel M,, des matrices carrées, on a ¢ = ab si et
seulement si ¢;; = >, a;bg;. En particulier, les composantes sont polynomiales
et la multiplication est donc continue. Si a est diagonale, on aura c; = a;;b;5, et
si de plus b est triangulaire unipotente, alors a; = ¢;; et b;; = ¢;j/c;;. On a donc
bien une bijection et c¢’est un homéomorphisme car toutes les composantes de
I’application réciproque sont continues (car rationnelles).

2. On a O, n B} = {I,}. 1l en résulte que la multiplication O,, x B} — GL,
est injective. Si on écrit a = [ay,...,a,] et ¢ = [c1,...,¢,] comme suite de
vecteurs colonnes, on aura

J
Z bijal- = Cj.
i=1

. . _ t
Puisque (ay,...,a,) est une base orthonormale, on voit que b;; = ¢;'a; est
uniquement déterminé par a et c. De plus, on aura

b

j—1

J— , [pp— .o .. .

iy = a; 1= ¢ Z bija;
i=1
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et donc bj; = [bj;| = [aj|. C'est le procédé d’orthogonalisation de Gram-
Schmidt : on définit par récurrence

.

. . a
bij == ¢jla; (i <j), a):=c;— Z bijai, b= |laj| et a; =
- ji

S

On a donc bien un homéomorphisme. [ |

1.5.2 Connexité, compacité

Exercice 1.3 1. Soit C (resp. C”) une partie convexe compacte de R™ telle que
0e C (resp. 0 e ().
(a) Montrer que si  # 0, alors [0x) rencontre dC' en un unique point *
y =: 0c(x) et que [0x) n C' = [0y].
(b) Montrer que l'application f : 0C — 0C",x — 0c/(x) est bijective.
(c) Montrer que f se prolonge en une application bijective

F:C—-C, z~ H(?LIH Ocr(z) sixz#0
| 0 siz=0.

(d) Montrer que f et F' sont des homéomorphismes (on se raménera au cas
' =B").
2. En déduire que si C' et C” sont des convexes compacts de méme dimension
finie, alors il existe un homéomorphisme C' ~ C’ qui induit un homéomor-
phisme 0C' ~ 0C".

a. C’est la projection radiale issue de 0.

Solution. 1. (a) Siz # 0, alors [0x) N C est une partie convexe fermée bornée de
la demi-droite qui contient 0 et ¢’est donc un intervalle de la forme [Oy].
De plus, [0z) n C < [0y[ (image inverse de lintérieur) et donc y € 0C.
Pour l'unicité, il suffit de montrer que [Oy[c C. On peut remplacer
g’ par I'enveloppe convexe de y et de B(0,r) = C. Si z € [0y[, alors
B(z,7|y — 2|/llyl) = C. En effet, si b € B(z, 7y — 2|/]yl) et qu'on pose
a:=y+ Hy‘y‘zH (b—1y), on aura a € B(0,r) et b€ [ay].
(b) 1l résulte de la premiére question que l'application f~!: 0C" — 0C, 2" —
Oc(2') est la réciproque de f.
(c) L’application
L0, A e { o lo(@) sia’ #0
0 siz' =0
est la réciproque de F'.
(d) On peut supposer par transitivité que C’ = B". On a alors f(z) =
z/|x| qui est continue. Puisque dC et S™™! sont compacts, f est un
homéomorphisme. De méme, on a

F() = { ||| f1 (ﬁ—i”) siz' #0
0

siz' =0.
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L’application F~! est donc continue, y compris en 0, puisque f~! est
continue sur un compact et donc bornée. C’est un homéomorphisme car

C et B™ sont compacts.
2. Si C est un convexe de dimension n, on peut supposer que C' < R™. Aprés une
translation, on peut supposer que 0 € C. |

Exercice 1.4 1. Montrer que 'application z — induit un homéomor-

phisme R™ ~ B
2. On désigne par a := (0,...,0,1) € R*™! et on identifie R" avec I'hyperplan
d’équation z,,1; = 0 dans R"*!.
(a) Soit x € S™. Montrer que si x # a, la droite (ax) rencontre R™ en un
unique point f(z) que 'on déterminera.
(b) Montrer que l'application f : S"\a — R™ est bijective et déterminer
son inverse.
(c) En déduire que f est un homéomorphisme .

_z
L[]

a. Cest la projection stéréographique (sur ’hyperplan équatorial).

Solution. 1. On vérifie aisément que
x T =4
Ve,yeR", y=—"— < { 1=yl
1+ [z lyll < 1.
En effet, puisque |z|| < 1+ |z, siy := Ti7a]> On aura toujours ly| = 1m‘lc” <1
On suppose dorénavant que |y| < 1. On a alors
=i e ym eyl =
1+ | 1+ H [ 1+ [
< w=0+zl)yet 1+ o] = ——
1=yl
||y||
< r= et ] =
HyH 1=yl
Y
<< = .
1=yl
2. (a) Siz = (x1,...,Zp41), alors la droite (ax) est paramétrée par
t— (txy,... te,, 1+ t(x,g — 1))
et f(z) est donc caractérisé par 1+ (2,41 — 1) = 0 ou encore t = — —.

On a donc

T T
f(x> a (1—5(,’”4_17'”, 1—1’”4_1) '

(b) On va donner deux démonstrations.
i. Pour déterminer 'inverse de f, on doit résoudre
i

- dn+
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On aura donc obligatoirement

O SOD v UL B L st TS St MU B0
i=1 z (1 —2p41)? (1= 2p41)? (1= 2p41)? 1 -2,

si bien que 1 + z,,1 = |[y[*(1 — 2,41). On en déduit que

lyl* -1 lyl* -1 2y,
Tnp1 =77 et vi=y(l-zp1) =y |1- =
TR ’ lyl>+1/ > +1
pour i = 1,...,n. On voit donc que f est bijective et que
f—l(y) _ ( 2y1 o 2yn ’ y|21) ]
[yl +1 lyl>+ 17 Jy)* + 1

ii. On procéde comme dans la question précédente mais dans I'autres sens.
On se donne un point y € R™ et on considére I'intersection de la droite
(ay) avec la sphére S™\a, ce qui conduit a poser x = (tyy, ..., ty,, 1 —t)
avec t # 0 et a résoudre

N et =1 PyP -2+ =0t =
=1

2
lyl> +1

On retrouve bien str la méme formule.
(c) C’est un homémorphisme car les composantes de f et f~! sont continues.
[ |

Exercice 1.5 1. Montrer que si X est un espace topologique séparé et que
K, K’ ¢ X sont compacts disjoints, alors il existe des voisinages ouverts
disjoints U et U" de K et K’ dans X.

2. Soit p : X — X’ une application surjective continue fermée a fibres compactes
(p~1(2") compact si 2’ € X"). Montrer que si X est séparé, alors X’ aussi.

3. Soit p : X — X’ une application surjective continue fermée. Montrer que si
X est compact, alors X’ aussi.

4. Montrer que si X est séparé (resp. compact) et A — X est compact, alors
X /A est séparé (resp. compact).

Solution. 1. On traite d’abord le cas oi K = {x} est réduit & un point. Si 2’ € K’,
il existe des voisinages ouverts disjoints U,s et U., de z et 2’ respectivement.
Puisque K’ est compact, il existe 21, ..., 2], € K’ tels que K’ < U’ := JI, U;;.
On pose alors U := (., Uy . On traite maintenant le cas général. Par ce qui
précede, il existe pour tout x € K, des voisinages ouverts disjoints U, et U, de
x et K’ respectivement. Puisque K est compact, il existe x1,...,x, € K tels
que K c U :=J;_, Uy,. On pose alors U := (", U, .

2. On se donne 2’ # ' € X’. Par hypothése, p~1(2’) et p~1(3/) sont des compacts
nécessairement disjoints dans un espace séparé. Il existe donc des voisinages
ouverts disjoints U > p~1(2) et V o p~!(y'). Puisque p est une application
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fermée, p(X\U) et p(X\V') sont fermés dans X' et leurs complémentaires U’
et V' sont donc ouverts. D’autre part, si 2’ € X', on aura

delU < 2¢pX\U)ep'(Z)n(X\U)=@<p()cU

et le résultat analogue pour V. On en déduit que immeédiatement que x' € U’ et
y' € V. Enfin, si 2/ €e U nV’ alors p~}(2/) c UnV = &, ce qui est impossible
car f est surjective.

3. Il suffit de montrer que X’ est séparé car I'image d’un compact par une
application continue dans un espace séparé est toujours compact. Puisque X
est séparé, ses points sont fermé. Puisque p est surjective et fermée, les points
de X' aussi sont fermés. Puisque f est continue, les fibres sont fermées, donc
compactes car tout fermé d’un compact est compact. On peut donc appliquer
le résultat précédent.

4. 11 suffit de vérifier les hypothéses mais si F' est un fermé de X et p: X — X /A
désigne I'application quotient, on aura p~'(p(F)) = F si Fn A = O et
p~Y(p(F)) = F U A sinon. Puisque A est compact dans X séparé, c’est un
fermé et p est donc fermée. De plus, si 2’ € X /A et 2/ = p(z), alors p~1(2') = {z}
siz¢ Aet pl(z') = A sinon et les fibres sont donc compactes. [ |

Exercice 1.6 Montrer que la bouteille de Klein, c’est-a-dire, le quotient Ky de T?
par la relation

, 27z =1
G R { 00
est un espace compact (on rappelle que T=S = {z € C,|z]| = 1}).

Solution. Puisque T? est compact, il suffit de montrer que 'application canonique
p: T? > K, est fermée. L automorphisme o : (z,w) — (27!, —w) de T? est continu.
Orsi FcT? onap (p(F)) = F uo ' (F). Dong, si F est fermé dans T2, alors
p~H(p(F)) aussi et il suit que p(F) est fermé dans Ky par définition de la topologie
quotient. [ |

Exercice 1.7 Soit Z une partie de Y, f : Z — X une application continue et
pX[[y—>x]]v
f

la projection.
1. Montrer que

vAc X, plp(A)=A[]f 4
et que

VBeY, p'(p(B) = f(BAZ)[[f(f(BAZ) LB

2. Montrer que p induit une bijection continue entre X [[Y\Z et X[, Y.



34

Chapitre 1. Topologie et homotopie

3. Supposons que Z est fermé dans Y. Montrer que alors p induit un homéo-
morphisme entre X (resp. Y\Z) et un fermé (resp. un ouvert) de X [ [, Y.

4. Supposons que Z est compact. Montrer que si X et Y sont séparés (resp.
compacts), alors X [ | 1Y est séparé (resp. compact).

Solution. 1. Par définition, X [ ] ;Y est le quotient de X [TY par la relation

engendrée par f(z)Rz pour z € Z. En d’autres termes, les seules relations non
triviales sont

— x~z(et z~x)lorsque z€ X, z€ Z et f(z2) =z,

— z~ 2 lorsque z,2' € Z et f(2) = f(Z).
On voit donc que la classe de z € X est p~'(p(z)) = z U f~1(x), la classe de

ze Zestp H(p(z)) = f(2)uf(f(2)) etlaclassedey € Y\Z est p~'(p(y)) = v.
On en déduit immédiatement les formules annoncées.

. Considérons I'application induite ¢ : X [[Y\Z — X[[,Y. Siz e X, on a

M (p(2)) =, sty € Y\Z, alors o™ (p(y)) = y et si z € Z, alors 9~ (p(2)) =
f(2). Cela implique que 'application est bijective (I'image inverse d’un singleton
est un singleton).

. On a une application injective continue i : X — X]] ;Y etil suffit donc

de montrer qu’elle est fermée. Si F' est un fermé de X alors F' est fermé
dans X [[Y. De plus, puisque f est continue, f~'(F) est fermé dans Z qui
est fermé dans Y qui est lui-méme fermé dans X [[Y. Il en résulte que
p () =pH(p(F)) = Fu f~Y(F) est fermé dans X [[Y et donc que i(F)
est fermé dans X [] ;Y. On a de méme une application injective continue
j:Y\Z — X][;Y et il suffit donc de montrer qu’elle est ouverte. Si U est
un ouvert de Y\Z, alors p~*(j(U)) = p~*(p(U)) = U est ouvert dans Y\ Z, et
donc aussi dans Y (puisqu’on a supposé Z fermé), et donc aussi finalement
dans X [[Y. Il suit que j(U) est ouvert dans X [[,Y".

. Grace a 'exercice 1.5, il suffit de montrer que p est fermée a fibres compactes.

Tout fermé de X [[Y s’écrit A u B avec A fermé dans X et B fermé dans Y.
Puisque p est une application quotient, pour montrer que c¢’est une application
fermeée, il suffit de montrer que p~'(p(A)) et p~!(p(B)) sont fermés. Puisque
f est continue, f7'(A) est fermé dans Z. Puisque Z est compact dans YV
séparé, Z est fermé dans Y. Il suit que f~!'(A) est fermé dans Y et donc
pH(p(A)) = AU f71(A) est fermé dans X | [ Y. Maintenant, puisque B n Z
est fermé dans Z qui est compact, B n Z est aussi compact. Puisque X est
séparé et f continue, f(B n Z) est compact et donc fermé dans X séparé. Il
suit que f71(f(B n Z)) est fermé dans Z et donc aussi dans Y. On en déduit
que p~ Y (p(B)) = f(BnZ)u f7Y(f(Bn Z))u B est fermé dans X [[Y. 1l
faut encore s’assurer que p est a fibres compactes. Cela résulte des formules
ci-dessus et du fait que f est a fibres compactes puisque Z est compact et Y
séparé. |

Exercice 1.8 1. Montrer que R, B" et S™ sont des variétés topologiques.

2. Montrer que B"/S"™! ~ S". En déduire que [0,1]/{0,1} ~ S.
3. Montrer que S” ~ B" [ [.-1 B"
4. Montrer que S"/(S" ! x 0) ~ S" v S".
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I 5. Montrer que B"*/(B"™! x 0) ~ B" v B".

Solution. 1. Pour R", c’est clair et on a vu dans l'exercice 1.4 que B» ~ R™.
D’autre part, si z € S” et a # x, il résulte de 'exercice 1.4 que S™\a est un
voisinage ouvert de x qui est homéomorphe a R™.

2. On a une suite d’homéomorphismes B" ~ R" ~ S™\a. On compléte avec la
projection S*~! — a pour obtenir une application surjective p : B* — S" qui
induit une bijection B"/S"~! ~ S™. Puisque la source (grace a I'exercice 1.5) et
le but sont compacts, il suffit de montrer que p est continue. On propose deux
solutions :

(a) On se donne un ouvert U < S™ et on veut montrer que p~*(U) est ouvert.
Sia¢ U, alors U est un ouvert de S"\a et donc p~!(U) est un ouvert de
B" qui est lui méme ouvert dans B™. Sinon, on considére le complémentaire
F de U. C’est un fermé de S™ qui ne contient pas a et donc un fermé
de S™\a. Il suit que p~'(F) est un fermé de B™ et p~'(U) est donc bien
ouvert.

(b) Par défintion, on a p = ¢ o ¢ avec

= ¥ P
B — Y .R" e R*— % g
2
Th— —% . 2y Jy[*-1
1—[a] yr (HyH2+1’ lyl?+1 ) -

On se donne une suite convergente x,, — x dans B™ et on veut montrer que
p(z,) — p(x). On se raméne rapidement au cas ou z,, € B" et 2 € S* ! et
on veut donc montrer que p(z,) — a = (0,0,...,0,1). Puisque ||z,| — 1,
on voit que ||p(z,)| — 400 et ensuite que ¥(p(z,)) — a.
Enfin, puisque lapplication [0,1] — B,t — 2t — 1 est un homéomorphisme
qui induit une bijection entre {0,1} et S°, on a une suite d’homéomorphismes
[0,1]/{0,1} ~B/S" ~ S.
3. On désigne par E* le demi-espace +x,,1 = 0 et on pose B"* := §" n E+. On
consideére la projection p : R*™ — R™ (sur les n premiers facteurs). Montrons
que si x € R**1 alors

Ln+

En effet, on a |z|* = |p(z)|* + 23, si bien que |z| = 1 si et seulement si
22 =1—|p(2)|? cest-a-dire 1 — |p(z)|* = 0 et 211 = £4/1 — [p(2)]?. On
en déduit que p induit un homéomorphisme B"* ~ B" et un homéomorphisme
B"" n B"™ ~ S""!. En considérant les applications inverses B® ~ B"* «» S"
qui coincident sur S"7!, on obtient par définition une application continue
B" [ [gn-1 B" — S". C’est une bijection continue entre deux compacts (grace a
I'exercice 1.7) et donc un homéomorphisme.
4. On va donner deux démonstrations.
(a) On reprend les notations de la question précédente. La projection stéréo-
graphique f: S"\a — R™ induit un homéomorphisme B"~ ~ B". En effet,
on sait que

|f(@)]* =

I+ Tnt1
- Tnt1
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et on aura donc
[f(@)] 1o 14z <1204 < 2y <O

Le méme calcul montre que ||f(x)|| = 1 < x,41 = 0. Autrement dit,
f(r)eS" ' 2eS"n(R"x0)=S""1x0.

On en déduit donc un homémorphisme B"~/(S"! x 0) ~ B"/S"~! ~ S,
Par projection stéréographique a partir de —a, on a aussi un homéomor-
phisme analogue B""/(S"~! x () ~ S™ et on recolle. Plus précisément, on
a un diagramme commutatif

B™ /(S x 0) [ B™*/(S"! x 0) —=~S" [ S"

| |

S"/(S"1 x 0) S" v S".

10

Soit X := B""(¢,1/2) u B"*(—¢,1/2) avec ¢ = (0,...,0,1/2) si bien
que 0X = S"(¢,1/2) U S"(—¢,1/2). On a un homéomorphisme évident
B! v B"*! ~ X qui induit un homéomorphisme S" v S* ~ 0X. On va
maintenant construire la projection radiale® f : S® — 0X issue de 0. On
a

Vye Ry £cf® = [yl + 2y - e+ [e* = |y* £ yor1 + 1/4.
On en déduit que
yedX = lytcf’ =1/4 = |yan| = yl*.
En particulier, si y = tz avec x € S™ et t > 0, on voit que
y€0X & tran| = z|* & t = [zan] &y = [zl
On peut donc poser
f:S" = 0X, x— |r,]|r.
On a
fx)=0e2,,,=0=2eS" ! x0.

Par propriété universelle du quotient, on en déduit une application continue
f :S"/(S"! x 0) — 0X. Puisque la source est compacte, il reste a
montrer que f est bijective et il suffit de montrer que f induit une
bijection S™\(S"™! x 0) — 0X\0. Siy = f(z), alors |y,+1| = 22, et donc

|Zn11] = A/|Yns1]- On voit done que pour y # 0, on a
1

ny(ﬂﬁ)@x:\/w—nﬁy-

8. On pourrait aussi considérer la projection horizontale.
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5. On va copier presque mot pour mot la seconde démonstration de la question
précédente (et on va en fait montrer que B"™!/(B™ x 0) ~ B"*! v B"*1). D¢ja,
il suffit de montrer que B"*1/(B" x 0) ~ X. Les calculs ci-dessus montrent que

Vye R ye X < [y|* < [yl

SiyeR"™ et y:=|r,1|z, on aura |y,+1| = 22, ,. Donc, si |z| < 1, on aura

lyl* = 2n a2l < 2510 = lynel

si bien que y € X. On peut donc définir
F:B"!' - X, x|z,

exactement comme avant. Bien sir, F(x) = 0 < x € B” x 0 si bien que F
induit £ : /(B™ x 0) — X. On montre que c¢’est une bijection (et donc un
homéomorphisme) par le méme argument que précédemment. [ |

Exercice 1.9 1. Montrer que P" ~ S"/R avec x Ry < = +y = 0.
2. Montrer que P" est compact.
3. Montrer que P" ~ B"/R’ avec #R'y < x,y € S" L et x +y = 0.
4. Montrer que *

P" ~ Pn—l ]_[ B
p

ot p:S" ! — P! est I'application canonique.

5. Montrer que P™ est une variété topologique.

6. Montrer que 'application f : z — 22 induit un homéomorphime P ~ S et
que

p2 :SHBQ.
f

a. En particulier, on peut identifier B" (ou R™ si on préfére) avec un ouvert de P™ et P71
avec le fermé complémentaire.

Solution. 1. Par définition, P* ~ (R"*1\0)/S avec * Sy < I\ € R*,y = \z. Si
x,ye S"et x+y = 0, alors y = Ax avec A\ = —1. L’application d’inclusion S" «—
R™1\0 induit donc une application continue S"/R — P". Réciproquement,
on considere la rétraction r : R0 — S" z — z/|z|. Si y = Az, alors
r(y) = tr(x) et donc, soit r(x) = r(y) (réflexivité) ou alors r(x) + r(y) = 0.
On dispose donc bien d’'une application réciproque continue.

2. 1l suffit de montrer que 'application quotient p : S™ — S™/R est fermée. Or si
F < S" est fermé et qu'on pose o(z) = —x, alors p~*(p(F)) = F U o }(F) est
bien fermé.

3. On rappelle que B"* := {x € S", x,,,1 = 0} et que la projection sur les premiers
facteurs induit un homéomorphisme B"* ~ B™. On considére 'application
composée B" ~ B"" — S" — P". Celle-ci est fermée (continue) comme
composée d’application fermées (continues). Elle est surjective, car si z € S”,
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soit z € B"", ou alors —z € B"" et on a —xRx. De plus, I'image de = € B”
est la classe de (x,4/1 — |z[?) modulo R. Deux éléments z et y ont méme
image si et seulement si (x,4/1 — |z]?) + (y,+/1 — |ly|?) = 0, ce qui signifie
que z +y =0et |z| = [ly| = 1, c’est-a-dire R’y. L’homéomorphisme annoncé
en résulte formellement.

. L’application R™ — R"™! x +— (z,0) induit une application injective continue

P»~1 < P" On dispose aussi de I'application continue surjective B" — P™ in-
duite par y — (y,4/1 — |[y|?). On en déduit une application continue surjective
P"~1]]B"™ — P". De plus, on a I’équivalence suivante

AR (VT ) = M0 = { T =

Par propriété universelle de la somme amalgamée (faire un dessin), on en
déduit une application bijective continue entre deux compacts, et donc un
homéomorphisme,

Pt [B" ~P"
p

. Pour montrer que P™ est une variété topologique, il suffit de montrer qu’il existe

un point qui a un voisinage homémorphe & un ouvert de R". En effet, on peut
toujours échanger deux points quelconques par changement de base dans R™!.

Or il résulte de la description précédente qu’il existe un ouvert homéomorphe
a B™.

. Puisqu’un nombre complexe (de module 1) a deux racines opposées (de module

1), I'application f : z — z? induit une bijection continue entre deux compacts
P ~S/R — S et donc un homéomorphisme. On dispose donc d’'un homéomor-
phisme P]][B? ~ S]][B? donné sur le premier terme par p(z) — f(z) pour
z € S. On en déduit que

P>~P[[B*~S][B% u
P f

Exercice 1.10 Si X et Y deux espaces topologiques avec X séparé, alors la
topologie * de C(X,Y) est la topologie engendrée par les ouverts

Z/{K,V = C((Xv K)7 (Y7 U))

ou K est compact dans X et V' est ouvert dans Y.

1. Montrer que si ¢ : X x Y — Z est une application continue avec Y séparé,
alors ’application

o:X—-CY,2Z), x—(p;:y—o(x,y))

est bien définie et continue.
2. Montrer que si X est localement compact, alors I'application

CX,)Y)x X =Y, (f.z)— flz)
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est continue.
3. En déduire que si Y est localement compact, on a une bijection (appelée
curryfication)

C(X xY,Z) ~C(X,C(Y,Z)), ¢— &

a. Lorsque Y est un espace métrique, c’est la topologie de la convergence uniforme sur tout
compact.

Solution. 1. Pour tout x € X, puisque ¢, est 'application composée de I'inclusion
Y - X x Y,y — (z,y) et de ¢ qui sont toutes les deux continues, on voit
que @, est continue. Ensuite, il suffit de montrer que si K est compact dans
Y et W est ouvert dans Z, alors ¢~ (U ) est ouvert. Soit z € (U w).
On a donc ¢(x) = ¢, € Ukw, c'est-a-dire p,(K) < W. Si y € K, alors
o(x,y) = ¢(y) € W. Comme ¢ est continue, il existe un voisinage ouvert U,
de z dans X et un voisinage ouvert V;, de y dans Y tels que ¢(U, x V) € W.
Comme K est compact, il existe yy,...,y, tels que K < [ J;_, V.. On pose
U=(\_,U,. Siye K, alors il existe i € {1,...,r} tel que y € V},. Donc, si
' eU,ona (2,y) e U, xV, et donc ¢ (y) = p(z’,y) € W. Cela montre que
0 (K) < W ou encore que ¢(z') = ¢ € Ugw. On a donc montré que pour
tout x € $7H (Uxk.w), il existe un ouvert U 3 z tel que $(U) < Uk w, ou encore,
que U © @~ (Uxw). Cela montre que ce dernier est ouvert.

2. On se donne un point (f,z) de ’ensemble de départ et un voisinage ouvert U
de f(z). Puisque f est continue et X localement compact, il existe un voisinage
compact K de x tel que f(K) < U. Il suit que Uk iy x U est un voisinage ouvert
de (f,x) dont I'image est contenue dans U.

3. Il résulte de la premiére question que 'on a bien une telle application et c’est
clairement une bijection si on néglige les hypothéses de continuité. Il suffit
donc pour conclure de montrer qu'une application ¢ : X x Y — Z qui a la
propriété que ¢, : y — @(z,y) est continue pour tout z € X et que 'application
@ : x — @, est aussi continue, est nécessairement aussi continue. Les hypothéses
impliquent que I’application

XxY ->CY,Z2)xY, (x,y)— (¢z,Yy)
est bien définie et continue. Or on sait que 'application

CY,Z)xY — 2, (f,y) = f(y)

est continue. Si on compose ces deux applications, on retombe sur . [ |

1.5.3 Homotopies
Exercice 1.11 Soient f,g: X — S™ deux applications continues.
1. Montrer que si f(X) v g(X) < S™, alors f ~ g.
2. Montrer que la condition Vz € X, f(z) + g(z) # 0 implique que f ~ g.

Solution. 1. 11 suffit de remarquer qu’il existe par hypothése a € S™ tel que f et g
sont & valeurs dans S™\a qui est homéomorphe a un convexe par projection
stéréographique et donc contractile.
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2. 11 suffit de poser

(1 —1)f(x) +tg(x)
Vee X,Vte[0,1], h(x,t)= T=0/() + te@)]

Il faut juste s’assurer que c’est bien défini. Mais si le dénominateur s’annule,
alors (1 —t)f(x) = —tg(x) et donc

1=8)? =11 -0)f@)* =] —tg(x)]* =1
On en déduit que t = 1/2 et donc f(x) + g(x) = 0. Or ce cas est exclus. W

Exercice 1.12 Montrer qu'une application continue f : S"~! — X est homotope &
une application constante si et seulement si elle se prolonge en une application
continue F' : B" — X.

Solution. On propose plusieurs solutions.

1. Se donner une homotopie i : S"~! x [0, 1] — X avec une application constante

est équivalent a se donner 'application continue
h:C:=(S"'x[0,1])/(S" ' x 1) - X.

D’autre part, ’homotopie k : S*! x [0,1] — B", (2,t) — (1 — t)z induit
une application continue k : C' — B"™ qui est clairement bijective et donc un
homéomorphisme (puisque la source et le but sont compacts). Se donner h
revient donc & se donner Iapplication continue F' = h o E'.B" > X.De plus,
par construction, h(z,0) = F(z) si z € S"7L.

. On considére directement I'application k : S*~! x [0,1] — B, (2,t) — (1 —t)z.

C’est une application continue surjective. Plus précisément, si z # 0, alors
k=1(2) est réduit au point (z/|]z],1 —|z|) et k71(0) = S"~! x 1. On peut aussi
montrer que k est fermée (& faire) si bien que B" est muni de la topologie
quotient. Se donner F': B" — X continue est donc équivalent & se donner une
homotopie h : S x [0,1] — X constante sur S"~1 x 1.

. On se donne z € X et une application continue h : S~ x [0,1] — X telle que

V2eS" ' h(z,0)=f(z) et h(z1) ==z
On pose alors

§ T siz=0
Vz e B", F(Z)Z h(ﬁ,l—HZH) sinon.

I1 faut montrer que l'application est bien continue en 0 (& faire). Réciproquement,
toute application continue F' : B® — X est homotope a une application
constante puisque B" est contractile. Il en ira alors de méme de sa restriction a
Snt,

4. Alternativement, on pose

) BE si 2]
VzeB", F(z)= { h( = 91— HzH)) si | 2]

Izl

C’est une application continue par 'argument des fermés. [ |
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Exercice 1.13 1. Montrer que S" est un rétract (fort) par déformation de
Rn+1\0'

2. En déduire que si F est un espace vectoriel de dimension finie et H un sous-

espace vectoriel de codimension k + 1, alors le complémentaire E\H ~ S*.

Solution. 1. II suffit de poser
Vo e R"™™M0, r(z) = —

et

vr e R0, Vvt € [0,1], h(x,t) = (1 —t)z +tr(z).
On aura bien toujours

h(z,0) =z, h(z,1)=r(z) et h(z,t)=2xsizeS".

Il faut aussi s’assurer que h(x,t) # 0 mais on aurait sinon
(1—t)+t L 0
el

Puisque t,1 —t > 0, on aurait alors t = 1 — t = 0. Contradiction.
2. On peut supposer que £ =R et H =0 x R" %=1 et on a donc

E\H ~ R0 x R"*F 1 ~ 8F x 0~ SF. u

Exercice 1.14 1. Montrer que le bouquet Y = S((1,0),1) u S((—1,0),1) est
un rétract (fort) par déformation de X := R*\{(1,0), (—1,0)}.
2. Montrer que Y := S"™ U (0 x B) est un rétract (fort) par déformation de
X :=B"\(S"71(0,1/2) x 0).

Solution. 1. Soient ay := (1,0),
Xy ={reX,zy =1ou |z —ayl <1},

et a_, X_ leurs symétriques horizontaux. On désigne aussi par p la projection
verticale. On pose alors

[ayz) Y size X,
Vee X, r(x):=X la_x)nY sizeX_

[p(z)x) n'Y sinon.

Afin de s’assurer que c’est bien défini (et continu), on considére 1’expression

analytique
a; + ﬁ size X,
VeeX, r(z):=9q e+ sizeX_

(1, y2) sinon
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avec Yo = A/x1(2 — x1) si z1,29 = 0 (et symétriquement dans les autres cas).
C’est bien une rétraction continue (utiliser 'argument des fermés). On pose
alors comme d’habitude h(z,t) = (1 — t)z + tr(x).

Alternativement, on peut conserver les projections radiales issues des centres
a l'intérieur des disques et compléter avec la projection radicale issue de
0 a D'extérieur. Une autre solution, toujours avec les projections radiales a
I'intérieur, est de considérer la projection verticale pour —2 < z; < 2 en
complétant bétement avec la rétraction sur le point (2,0) (resp. (—2,0)) pour
xr1 = 2 (resp. r1 < —2).

. Soit z € X. Siz ¢ Y, on considére le demi-plan H(x) contenant x de frontiére

0 x R. On désigne par s(z) le point d’intersection de H(z) avec S"~*(1/2) x 0.
Alternativement, si p : R*"! — R" désigne la projection sur les premiers
facteurs, alors s(x) est 'intersection de la demi-droite [0, p(z)) avec S"(1/2) x 0.
On considére alors la projection radiale r : X — Y dans H(z) de z issue de

s(x) :

RN . sizeY
rer [s(x),z) n H(z) n'Y sinon.

On aura bien une rétraction (forte) par déformation en posant comme d’habi-
tude

h(z,t) = (1 —t)x + tr(x).

Il faut tout de méme s’assurer que r est bien continue. Notons tout d’abord
que, si x ¢ Y, alors

_ plx)
) = @

Supposons pour instant que que r(z) € 0 x B. On peut alors appliquer le
théoréme de Thalés dans H (). Si on désigne par ¢ : R*™! — R la projection sur

1/2 >0

le dernier facteur, on aura nécessairement r(z) = tq(x) avec t = T @

c’est-a-dire

r(z) = ~qlz)

1—2[p(x)|’

De plus, la condition |r(x)| < 1 se traduit par |¢(x)| < 1—2|p(z)||. Supposons
maintenant que cette derniére condition n’est pas satisfaite si bien que que
r(z) € S™. On peut écrire r(z) = s(x) + tx avec t > 0. La condition |r(z)| =1
se traduit alors par

Erel

ou encore

(%+tM@D +2)q(2))|? = 1,
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et aprés simplification,

3
2] + tp(a)]| - 10
Si t(z) désigne I'unique racine positive ce ce polyndéme du second degré, on
aura donc
() = | T s la@) < 1= 20p(@)] =
s(x) + t(x)z sinon.

Exercice 1.15 1. Montrer que le groupe U, est contractile et en déduire que
B, ~ A,.

2. Montrer que le groupe B} est contractile et en déduire que GL,, ~ O,,.

Solution. 1. L’espace U, qui est translaté par I,, de I’espace vectoriel des matrices
triangulaires supérieures nilpotentes (avec des 0 sur la diagonale), est affine
donc convexe donc contractile. On en déduit que B, ~ A, x U,, ~ A,,.

2. On a B} ~R%, x U, qui est convexe (comme produits de convexes) et donc
contractile. On en déduit que GL,, ~ O,, x B} ~ O,,. [ |

1.5.4 Chemins et lacets
Exercice 1.16 1. Montrer que S" est connexe (par arcs) pour n > 0.

2. Montrer que SO,, est connexe * (par arcs).
3. En déduire que, si n > 0, O,, a deux composantes connexes (par arcs).
4. Méme chose pour GL,,.

a. On rappelle que tout élément de SO,, est conjugué & une matrice diagonale par blocs de
taille < 2.

Solution. 1. On donne quatre solutions.
(a) Sixz,ye S™avec x +y # 0, on pose

(1—-t)x+ty
(1 —t)z +ty|

v(t) = |

Lorsque x + y = 0, il suffit de composer un chemin allant de x & un point
z # x,y avec un chemin allant de 2z a y.
(b) Si x,y e S, il suffit de construire un chemin dans le plan H des x,y. Or
S" n H ~ S et on dispose d’une application continue surjective R — S.
(c) Sia# be S™, alors S"\a et S"\b sont deux parties connexes par arcs (car
homémorphes a R™) et qui se rencontrent.
(d) On a S" ~ B"/S" 1. Or B" est convexe et donc connexe (par arcs) et son
image par la projection qui est continue est donc aussi connexe (par arcs).
2. 1l s’agit de montrer que si A € SO,, il existe un chemin de I,, vers A. Cette
propriété étant stable par conjuguaison, on peut supposer que A est diagonale
par blocs de taille < 2. Puisqu’un produit de chemins est un chemin, on peut
supposer que n < 2. Or on a SO; = {1} et SOy ~ S qui est connexe par arcs.
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3. Sin > 0, il existe A € O, telle que A ¢ SO,, et la multiplication par A induit un
homéomorphisme avec le complémentaire SO,, ~ O,\SO,,, ce qui montre que
ce dernier est aussi connexe. On dispose d’une application continue surjective
det : O,, — {£1}. On en déduit que SO,, et 0,\SO,, sont des complémentaires
ouverts et fermés non vides dans O,. Puisqu’ils sont connexes, ce sont les
composantes connexes de O,,.

4. On sait que O,, ~ GL,, si bien que GL,, a deux composantes connexes. [ |

Exercice 1.17 1. Montrer que Papplication [0,1] — S,t — €*™ induit une

bijection entre ’ensemble des applications continues 5 : S — X et I'ensemble
des lacets v dans X.

2. Montrer de méme que si v, 7’ sont deux lacets en z dans X, on a une bijection
entre I'ensemble des homotopies h : 4 ~1; 7' et I'ensemble des homotopies
h:y ~01 v

3. Montrer que si A’ : ¥ ~ 4" est une homotopie (quelconque) et qu’on pose
pour t € [0,1], 6(t) = A'(1,1), alors v - § ~o13 6 - 7.

Solution. 1. Puisque [0,1]/{0,1} ~ S, il revient au méme de se donner 7 : S — X
ou:[0,1] — X avec la condition v(0) = v(1).
2. 1l revient au méme de se donner h : S x [0,1] — X tel que iAz(l,t) =z
tout ¢ € [0, 1] ou bien h : [0,1] x [0,1] — X telle que h(0,¢) = h(1,t) = x pour
tout ¢ € [0, 1].
3. Pour la derniére question, il suffit d’appliquer le lemme 1.4.13 & I’homotopie
h :~ ~~" correspondante. [

Exercice 1.18 Soit v un lacet dans X et ¥ : S — X D’application correspon-
dante (donnée par J(e*™) = ~(t)). Montrer que les propositions suivantes sont
équivalentes :

1. 7 est un lacet trivial.

2. 7 est homotope relativement & 1 a une application constante.

3. 4 est homotope & une application constante.

4. % se prolonge en une application continue 7 : B> — X.

Solution. Il résulte de I'exercice 1.17 que les deux premiéres assertions sont équi-
valentes. On a montré dans l’exercice 1.12 que les deux derniéres assertions sont
équivalentes. Bien siir, la seconde assertion implique la troisiéme. Supposons pour
conclure que 7 ~ Ty. Gréace a 'exercice 1.17 encore, il existe un chemin § entre x (si
7 est basé en x) et y tel que v+ ~g13 6-1, et doncy ~go13 0-1,- 6" ~013 1, W

Exercice 1.19 1. Montrer que si v est un chemin dans une variété topologique
X, alors il existe une suite 0 =t <ty < --- <t, =1let,pourt =0,...,7r—1,
un ouvert U; € X homéomorphe a R™ tel que y([t;, t;i11]) < Us.

2. En déduire que si dim(X) > 2, alors v est homotope (& extrémités fixées) a

—

un chemin 4/ dont le support est rare : im (7') = .
3. En déduire que S™ est simplement connexe pour n > 2.
4. En déduire que si E est un espace vectoriel de dimension finie et H un
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| sous-espace vectoriel de codimension > 3, alors E\ H est simplement connexe.

Solution. 1. Si 7 € [0,1], il existe un ouvert U, < X homéomorphe & R" tel
que (1) € U,. Comme v '(U,) est un ouvert non vide de [0, 1], il contient
un voisinage connexe compact (un intervalle fermé) I, de 7. Comme [0, 1]
est compact, il existe 1g,...,7.—1 € [0,1] tels que [0,1] = U;:g I.. On a
I, = [ti, s;] et on peut supposer que 0 =ty <ty < ... <t,_;. On pose t, = 1
et Uy =U, pouri=0,...r — 1.
2. Pour la seconde question, on peut supposer que 0 =ty < ... <t,. =1 et poser

si bien que v ~1} 717 Quitte a remplacer v par 'un des 7;, on est
donc ramené au cas ou X = R"™. On peut alors poser, si x et y désignent les
extrémités de v, pour t € [0, 1], 7/(t) = x + t(y — x). Puisque R™ est simplement
connexe, on a y ~o,13 7. Puisque im (7') = [zy] est un segment de R™ et n > 2,
c’est un fermé rare (d’intérieur vide).

3. On sait déja que S™ est connexe (par arcs). Si 7y est un lacet dans S™, on peut
supposer que son support est rare. En particulier, im () # S™ et il existe a € S™
tel que v soit & valeur dans S™\a qui est simplement connexe.

4. Pour la derniére assertion, il suffit de rappeler qu’on a vu dans 'exercice 1.13
que E\H ~ S" avec n > 2. |
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Groupes (rappels)

On rappelle les définitions de base.

Définition 2.1.1 Un groupe est un ensemble G muni d’une loi interne qui satisfait
1. Vo,y,z € G, (zy)z = x(y2),
2. 11e G, Vr e G, 1x = x,
3. VeeG,3x e G,z = 1.

On fera ’abus de dire que G est un groupe (alors qu’il s’agit en fait du couple
formé par G et par sa loi).

Remarque 1. L’¢lément 7! est unique et satisfait zz=' = 1 (en effet, zz~! =

lez™ = (Y etz = (7)) Mt = (7))l = 1).
2. L’élément 1 est unique et satisfait Vo € G, 21 = z (en effet, x1 = zz~la =
lz = z).
Le groupe est dit abélien si Vr,y € G, zy = yz.
4. Le groupe opposé G est le méme ensemble avec la loi (z,y) — yx.

w

Définition 2.1.2 Un (homo) morphisme de groupes f : G — G’ est une application
qui satsifait Va,y € G, f(xy) = f(z)f(y). Cest un isomorphisme si f est bijective.

Remarque 1. Le composé de deux morphismes de groupes est un morphisme de
groupes. Si f est un isomorphisme de groupes, alors f~! aussi.
2. L’application G — G°P, z + x~! est un isomorphisme de groupes.
3. Un sous-groupe d’un groupe G est un groupe H contenu dans G tel que
I'inclusion soit un morphisme de groupes (on écrit H < G).
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4. Si f: G — G’ est un morphisme de groupes, alors
ker f:={zeG, f(x)=1} <G et imf:={f(x),zeG} <"

5. Un sous-groupe N de G est distingué s’il existe un morphisme de groupes
f:G — G tel que N =ker f (on écrit H < G).

6. Si N < @G, alors tout morphisme f : G — G’ avec ker f < N se factorise
uniquement par (la projection sur) G/N := {z N,z € G}. De plus, f induit un
isomorphisme G/ ker f ~ im f.

7. Une intersection de sous-groupes (resp. distingués) est un sous-groupe (resp.
distingué). Il existe donc une plus petit (S) < G (resp. ({(S)) < G) contenant
une partie S de G.

8 Si f: G — G’ est un morphisme de groupes, alors f et f~! induisent des
bijections réciproques entre les sous-groupes (distingués) de G' contenant ker f
et les sous-groupes (distingués) de im f.

I Définition 2.1.3 Une suite de morphismes - - — G’ LG5 G- .. est eracte
en G siim f = kerg.

Exemples 1. La suite 1 — G > G’ est exacte (en G) si et seulement f est
injective.
2. La suite G 5> G’ — 1 est exacte (en G') si et seulement si f est surjective.

3. La suite 1 — G 5 G' — 1 est exacte (en G et G’) si et seulement si f est
bijective.
4. La suite 1 - G — 1 est exacte (en G) si et seulement si G = 1.

On regarde maintenant les propriétés universelles.

Proposition 2.1.4 Soit f : G — G’ un morphisme de groupes.

1. 1l existe un morphisme injectif de groupes ¢ : K <— G tel que for =1 et
tout morphisme ¢ : H — G avec f o p = 1 se factorise de maniére unique
par ¢ (un noyau).

2. 1l existe un morphisme surjectif de groupes 7 : G’ — C tel que mo f =1 et
tout morphisme ¢ : G’ — H avec 1 o f = 1 se factorise de maniére unique
par 7 (un conoyau).

Démonstration. Dans le premier cas, il suffit de prendre K := ker f. Dans le second
cas, il suffit de poser

C := coker f := G'/{{m (f))).
Les détails sont laissés en exercice. [ |

On fera 'abus de dire que K (resp. C) est un noyau (resp. conoyau) — alors qu’il
s’agit en fait du couple formé par K (resp. C') et du morphisme d’inclusion (resp. de
projection).
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Remarques 1. Lasuitel - K — G ENYel (resp. G Lo oo 1) est exacte
(partout) si et seulement si K (resp. C) est un noyau de f (resp. conoyau de f
et im(f) < G).
2. Une suite exacte courte est une suite

1 -G 5050 >1

qui est exacte partout : ¢ est injective, imi = kerp et p est surjective. De
maniére équivalente, G’ (c’est-a-dire 7) est un noyau de p et G’ (c’est-a-dire p)
est un conoyau de .

3. Si f:G — G” est surjectif, alors 1 — ker f - G — G” — 1 est une suite
exacte courte. Si G’ < G, alors 1 - G' - G — G/G" — 1 est une suite exacte
courte.

Proposition 2.1.5 Soit (G} )i une famille de groupes.

1. 11 existe un groupe G (leur produit) et des morphismes p; : G — G; tels
que si on se donne des morphismes f; : H — G;, alors il existe un unique
morphisme f : H — G satisfaisant f; = p; o f pour tout i € I.

2. 1l existe un groupe G (leur produit libre) et des morphismes j; : G; — G,
tels que si on se donne des morphismes f; : G; — H, alors il existe un unique
morphisme f : G — H satisfaisant f; = f o j; pour tout i € I.

Démonstration. Dans le premier cas, il suffit de considérer le produit cartésien
G := ], Gi avec la multiplication terme a terme, ainsi que les projections.
Dans le second cas, il s’agit du produit libre' G qui est I’ensemble des suites fi-
nies ((z1,%1),..., (@, 0,)) avec x, € G; \{1} et ixy1 # 9% € 1. On le munit de la
concaténation

<<x17i1)7 SR (Inv Zn)) * ((yhjh ey (yrm]m))
= ((‘Tlvil)? R ($n>in>> (3/1,j1)> ooy (Yo Jm))

sauf si i, = j;. Si c’est le cas et que x,y; # 1, on prend

((5(71, il)? R (xn—la in—l)a (mnylv in)v (y27j2> R (ymajm>)

Enfin, si z,y; = 1, on prend ((x1,41), ..., (Tn_1,%n-1), (Y2,J2), - - s (Ym, jm)) (et une
récurrence). La encore, les détails sont laissés en exercice. |

Remarques 1. Le produit est donc le produit cartésien | [,.; G; et on notera
*;e1G; le produit libre.

2. Si G est un groupe, il revient au méme de se donner un morphisme Z*! :=
*ic;Z — G ou une famille (z;);,c; d’éléments de G (dans les notations de la
démonstration, x; est 'image de (1,1)).

3. Un groupe L est libre s’il existe un isomorphisme Z*! ~ L. La famille (z;)ics
correspondante est alors dite génératrice®. Alternativement, L est libre et
(x;)ier est génératrice si et seulement si pour tout groupe G et toute famille
(Yi)ier < G d’éléments de G, il existe un unique morphisme f: L — G tel que

f(x:) = yj.

1. On devrait dire coproduit.
2. On devrait dire une base.
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4. Une présentation d'un groupe G est une suite exacte L; — Ly — G — 1 ou Ly
et Ly sont des groupes libres. En pratique, on écrit

G~ {(i)ier | (rj = 1)jes)

ol les z; sont des générateurs de Lo et les r; les images dans L des générateurs
de Ll.

Exemples 1. Si L est un groupe libre sur deux générateurs t, s, alors
L={tsy={t"s" .. .t"s"™ n;;m;eZ}.
2. S3~{t,s|t?=1,8=1,(ts)® = 1) (exemple de groupe de Cozeter).

Proposition 2.1.6 Si f; : H — G; et fy : H — G5 sont deux morphismes, alors
il existe un groupe G (leur produit libre amalgamé), ainsi que des morphismes
G1 — G,G5 — G qui coincident le long de f1, fs, tels que toute paire morphismes
V1 : Gp — G 1y Gy — G telle que 1y o f1 = 1, o f5 se factorise uniquement par
G.

Démonstration. 11 suffit de poser (on devrait écrire Gy *y, f, G2)

G 1= G1*y Gy = (G1+ Go) (i (1(@)) * Ja((fo(2)) ™ 2 € H))

ou j; : G; — Gy » G5 désigne l'application canonique pour ¢ = 1,2. Détails en
exercice. |

Remarques (Voir exercice 2.6).
1. G1 *{1} GQ ~ Gl * GQ.
2. Gy xg {1} ~ coker(f1).
3. Si fy est surjectif (resp. bijectif), alors G; — Gy xy G5 aussi.
4. On peut montrer que si f; et fy sont injectifs, alors G; — G et Gy — G aussi.

Proposition 2.1.7 Si GG est un groupe, il existe alors un morphisme de groupes
p : G — G® avec G® abélien tel que, pour tout groupe abélien M et tout
morphisme de groupes f : G — M, il existe un unique morphisme de groupes
' G*® — M tel que f = f'op.

Démonstration. 1l suffit de poser G* = G/[G, G| ou [G, G] est le sous-groupe (au-
tomatiquement distingué) dérivé engendré par les commutateurs [z, y] := zyz 'yt
Détails en exercice. |

Remarques 1. Tout morphisme de groupes f : G — G’ induit un morphisme de
groupes f2 : G* — G’* et c’est fonctoriel.

2. Comme nous le verrons plus tard (lemme 4.1.1), on dispose de la notion de
somme directe @;erM; < [ [,.; M; (familles presque toujours nulles) de groupes
abéliens ainsi que de celle de groupe abélien libre (isomorphe & Z(0) := @®;e;Z
Z' .= Hie[ Z)

3. On a (*ie;Gy)* ~ @ic;G2P et en particulier (Z*7)2> ~ Z( si bien que L libre
implique L?*® abélien libre.

Nous terminons avec un mot sur les groupes topologiques.
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Définition 2.1.8 Un groupe topologique est un espace topologique G muni d’une
structure de groupe telle que la multiplication et I'inverse sont des applications
continues. Un morphisme de groupes topologiques f : G — H est un morphisme
de groupes qui est continu. C’est un isomorphisme de groupes topologiques si, de
plus, c’est un homémorphisme.

Remarques 1. On munit toujours un sous-groupe (resp. un groupe quotient)
d’un groupe topologique de la topologie induite (resp. de la topologie quotient).

2. Un morphisme de groupes topologiques f : G — G’ est strict si G/ker(f) ~
im(f) est un homéomorphisme (par exemple Idg : RY¢ — R'P n’est pas strict).

3. Une suite exacte 1 — G/ > G B G" — 1 est stricte si i et p sont stricts. De
maniére équivalente, G’ a la topologie induite et G” a la topologie quotient. On
remarquera que p est alors une application ouverte.

Exemples 1. Un espace vectoriel normé est un groupe topologique (pour 'addi-
tion).
2. Un groupe discret est un groupe topologique.
3. Les groupes linéaires (les sous-groupes fermés de GL,,) sur R et C sont des
groupes topologiques.
4. On a une suite exacte stricte 0 > Z >R —- S — 1.

Remarques 1. Si G est un groupe topologique et X un espace topologique, alors
C(X,G) est un groupe pour la loi (fg)(x) = f(z)g(x).
2. Si ¢ est un autre groupe topologique et ¢ : G — G’ un morphisme continu,
alors ¢, : C(X,G) — C(X,G’) est un morphisme de groupes.
3. De méme pour C((X, A), (G, H)) lorsque H est un sous-groupe de G et A une
partie de X.

2.2 Groupe fondamental

Définition 2.2.1 Le groupe fondamental® m (X, x) d’un espace topologique X en
un point z € X est ’ensemble des classes d’homotopie (& extrémités fixées) des
lacets basés en z.

a. Ou groupe de Poincaré.

Puisque m1(X,2) < w(X), on pourra appliquer librement tous les résultats
précédents sur les chemins a homotopie prés et on peut déja faire la remarque
suivante :

Proposition 2.2.2 Si X est un espace topologique et x € X, alors 7 (X, z) est un
groupe (pour la composition des lacets). Si f : X — Y est une application continue
et y = f(z), alors

fe=m(f) : m(X,z) > mY,y), [v]—[for]

est un morphisme de groupes.
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Démonstration. En tenant compte du lemme 1.4.10, ¢’est une conséquence immédiate
du théoréme 1.4.11 et de la proposition 1.4.3. [

Exemples 1. Si X est simplement connexe, alors m(X,z) ~ 1.
2. m(S,x) ~ Z (voir théoréme 2.2.13) et m(S",z) = 1 sinon.
3. m(T,x) ~Z" si T est un tore de dimension n (homéomorphe a T").
4. m(X,z) ~Z*" si X est un disque a n trous (voir exercice 2.20).
5. m(P" z) ~ Z/2Z pour n > 2 (difficile).

Remarques 1. Le 7 est fonctoriel dans la mesure ousi g : Y — Z est une autre
application continue, alors (g o f)s = g« o fi et que Idx, = Ids (x2)-

2. On peut aussi définir des groupes (d’homotopie supérieure) 7, (X, ) en rempla-
cant [0, 1] par [0, 1]™ et {0, 1} par J[0, 1]™. Ceux-ci sont trés difficiles & calculer
et toujours abéliens. C’est pourquoi on leur préférera les groupes d’homologie
H,,(X) que nous verrons plus tard. On peut montrer par exemple que si X est
simplement connexe, alors mo (X, x) ~ Hy(X) (théoréme d’Hurewicz) mais les
groupes d’homotopie et d’homologie différent en général.

Le point z joue un role secondaire :

Proposition 2.2.3 Si d : x ~ y dans X, alors on a un isomorphisme

ads : m (X, 2) ~ m(X,y),  [v] ~ [6]"[][6]-

Démonstration. On voit immédiatement que c’est un morphisme de groupes et on a
ad; ' = ads-1. u

Remarques 1. L’isomorphisme (X, z) ~ 7 (X, y) dépend du choix du chemin.
2. Si X est connexe par arcs, alors 71 (X, ) est indépendant de x a isomorphisme
pres.
3. Si X est connexe par arcs et qu’on choisit pour chaque y € X un chemin 9,
entre x et y, il existe une rétraction (par conjugaison)

adx : (X)) —» m(X,2),  [v] = [650]][65)] "

compatible avec les opérations.

Corollaire 2.2.4 Soit x € X. Alors X est simplement connexe si et seulement si X
est connexe par arcs et m (X, z) ~ 1.

Démonstration. L’implication est immédiate. Inversement, si §,d’ : y ~ 2z sont deux
chemins, alors [§][0'] ! € 71 (X, y). D’autre part, grace a la proposition 2.2.3, puisque
X est connexe par arcs, 71 (X,y) ~ 7 (X,2) ~ 1. On a donc [§][6'] 7t = 1 et alors
[6'] = [9]. [

Proposition 2.2.5 Si ¢ : Y — X est 'inclusion d’une composante connexe par arcs



2.2 Groupe fondamental 53

et x € Y, alors on a un isomorphisme

te 2 m (Y, 2) ~ m (X, x).

Démonstration. Résulte immédiatement des définitions. [ |

Proposition 2.2.6 Soient X7, X5 deux espaces topologiques, a; € X; et as € X5. On
dispose alors un isomorphisme de groupes

771(X1 x Xo, (a1,a2>) = 711(X1,a1) X 7T1(X2,062>
donné par

[v] = (u[7v] p2x[7]) et ([l [v2]) = i1 0] dox[e]

avec pl(xbﬁz) = xlapz(%,ﬂ?z) = xZ;il(xl) = (951,@2)7i2($2) = (a17x2)~

Démonstration. La premiére application est bien un morphisme de groupes car ses
composantes le sont. D’autre part, elle provient d'une bijection au niveau des chemins
par définition de la topologie produit. De plus, on a vu que les homotopies entre
les produits sont les produits d’homotopies. On a donc bien une bijection. Il reste a
montrer que la seconde application est bien l'inverse de la premiére (et il suffit de le
vérifier d'un coté). On a p; oi; = Idx, et p; oiy = a1 est constante. On voit donc que

Pre(ira[ 1] d24[12]) = Praiva[ ] Prados[r2] = [11][Lay] = [01]

et de méme pour p,. [

lemme 2.2.7 Sih: f~g: X — Y et qu’on pose pour t € [0,1], §(¢) := h(z,t),
alors le diagramme

m (Y, f(2))

est commutatif.

Démonstration. Résulte immédiatement de la proposition 1.4.14 qui nous dit que
(fe7) -0~y 0+ (gx7). o

Proposition 2.2.8 Si f: X ~ Y et y := f(x), on a alors un isomorphisme

form(X,z) = m(Y,y).
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Démonstration. Résulte immeédiatement du lemme 2.2.7. Plus précisément, on sait
qu’il existe g: Y — X tel que go f ~ Idyx et fog ~ Idy. On en déduit qu’il existe
deux chemins 6, ¢’ tels que

ads 0 gx 0 fi = Idy, (x2) et ads o fi 0 gx = Idy v,y

et on sait que ads et ads sont des isomorphismes. [ |
Corollaire 2.2.9 Si X ~ Y et X est simplement connexe, alors Y aussi. |
Corollaire 2.2.10 Tout espace contractile est simplement connexe. |

Proposition 2.2.11 Si ~ est un chemin d’origine 1 dans S, alors il existe un unique
chemin % d’origne 0 dans R tel que p,y = 7 avec p(t) = e*™.

Démonstration. C’est un cas particulier du corollaire 3.3.4 que nous démontrerons
plus tard (on peut aussi appliquer Iexercice 2.11 au cas f = 7). [ |

| Définition 2.2.12 Le degré d’un lacet v en 1 dans S est deg(v) := F(1).

Théoreme 2.2.13 On a un isomorphisme de groupes deg : m1(S,1) ~ Z.

Démonstration. C’est une conséquence du corollaire 3.3.7 ci-dessous (voir aussi
I'exercice 2.12). [

Remarque On a un homéomorphisme R/Z ~ S et donc un isomorphisme
WI(R/ZJG) = 7T1(S, ]-) ~Z

qui envoie la classe du chemin v : ¢ — ¢ sur 1.

Théoréeme de Van Kampen

Soit X un espace topologique et G un groupe. Par définition, un morphisme
f:m(X) — G est une application f telle que si 7 et 7/ sont composables, alors

Proposition 2.3.1 Soient X un espace topologique et X;, Xo < X tels que X =
X7 U Xs. On désigne par

i11X1‘—>X7 iQ:XQC_)X, jlinﬂXQ‘—>X1, jQZXlﬁXQC—)XQ
les applications d’inclusion. On se donne deux morphismes

fiim(X1) -G, foim(Xs) -G
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tels que fi © J1x = f2 0 jou. Il existe alors un unique morphisme f : 7(X) — G tel
que fi = foi, et fo = foig,.

Démonstration. On va définir f sur tous les chemins et on montrera a la fin que ¢a
ne dépend que de la classe d’homotopie. Soit v : x ~ y dans X. Si v est contenu
dans X; avec i € {1,2}, on pose alors f(7) = fi([y]) Ceci est bien défini grace a notre
hypothése (que f; et fy coincident sur X; n X5).

En général, puisque [0, 1] est compact, il existe 0 =ty < t;--- < t, = 1 tel que,
pour tout i = 0,...n, on ait y([t;,t;11]) contenu dans X; ou X, (on dira que la
subdivision est adaptée a 7). Le chemin défini par ~;(t) := y(t; + t(t;41 — ;) est
alors un chemin dans X; ou dans X5 et on pose

FO) = F) - f o). (2.1)

Cette définition étant forcée par les conditions montre 'unicité de f et la derniére
propriété est aussi automatique. Il faut tout de méme nous assurer que notre définition
ne dépend pas de la subdivision choisie. Il faut donc montrer que si 0 = ¢ <t} - <
t/, = 1 est une autre subdivision adaptée a -, alors

f(v0) - frn=1) = f(00) - Flma)-

On peut bien str supposer que la premiére subdivision est plus fine que la seconde,
ce qui nous raméne par récurrence au cas n’ = 1 auquel cas 'assertion résulte du fait
que fi et fo sont des morphismes.

Il faut aussi montrer que si 7y et 4’ sont deux chemins composables, alors f(y-7') =
f()f(®). Or, si on se donne deux subdivisions 0 = ¢, < t;--- < ¢, = 1 et
0=ty <t)---<t, =1 adaptées respectivement a -y, ', alors la subdivision

0=1to/2 < <tp—1/2,1/2,12+t/2<---<1/24+1t,/2=1

sera adaptée a v - /.

Pour conclure, il reste & montrer que f() ne dépend de 7 qu’a homotopie prés.
On se donc une homotopie h : v ~ 1y 7' dans X. Puisque [0, 1]? est compact, on
peut trouver comme ci-dessus 0 = tg <t - <t,=1let 0 =5y <s1--- <8, =1
tel que, pour tout ¢ = 0,...n — 1,7 = 0,...m — 1, on ait h([t;,t;11] X [}, 5;+1])
contenu dans X; ou dans X5. On pose alors

Yij () i= hti + t(tiv1 — 1), 85),  0i5(t) == h(ti, s; + t(sj11 — 85)),
et on définit

Pij : %ij* Oiv1j ~{01} Oij * Vij+1
comme dans le lemme 1.4.13 en partant de

h;j(t, S) = h(tz + t(tz‘+1 — tz); Sj + S(Sj+1 — Sj).

Tous ces chemins et homotopies sont définis dans X; ou dans X5. On aura donc
d’une part,

FO) = f(o) - fm-10) et f(V) = FOom)  f(Vn-1.m),
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et d’autre part, pour tout © =0,...n—1,7=0,...m — 1,

FOig)f(Giv1g) = f(6ig)f (Vijar)-

On obtient alors par télescopage, pour tout j = 0,...,m, puisque dp; = 1, et
5n,j = 1y7
n—1
f(vog) - frm-1) = 1_[ f(5i,j)f(%,j+1)f(5i+1,j)_1 = f(vo4+1) - f(¥n-14+1)-
i=0
Par récurrence, on aura bien f(v) = f(v/). [

Remarques 1. Dans la démonstration, on a utilisé le résultat classique suivant :
si X est un compact métrique et X = | J,_; U; est un recouvrement ouvert, il
existe € > 0 tel que, pour tout x € X, il existe i € I avec B(z,¢) < U,.
2. La proposition est plus généralement valable (avec exactement la méme dé-
monstration) en remplagant G par ce qu’on appelle un « groupoide ».
3. Un groupoide est un ensemble G muni d’une loi de composition partielle
(x,y) — xy et d’'une application z — x~1 telles que
(a) Siz,y,ze G, alors xy et yz sont définis si et seulement si (xy)z et z(yz)
sont définis, et alors (zy)z = z(yz) (=: xyz),
(b) Sixe G, alors zz~! et 'z sont définis,
(c) Siz,ye G et zy est défini, alors zyy ™' =z et z 7oy = y.

On va enfin pouvoir démontrer un théoréme qui nous permet de calculer des
groupes fondamentaux.

Théoreme 2.3. 2 — van Kampen. Soient X un espace topologique, X;, Xy ¢ X
tels que X = X1 U Xz et x € X1 n Xs. Si X7 n Xy est connexe par arcs, alors

Wl(X, 95) =~ 7T1(X1, ﬁ) *r1(X1nXo,x) 7T1(X2,$)-

Démonstration. On peut supposer que X; et X5 sont connexes par arcs. On désigne
toujours par

10 X1 =X, : Xo=X, 71: XinXo—>X, p:XinXo— Xy
les applications d’inclusion. On se donne deux morphismes de groupes
f1 27T1(X1,$) —>G7 f2 :WQ(XQ,l‘)—)G

tels que fi 0 j1x = f2 0 Jou et il s’agit de montrer qu’il existe un unique morphisme
de groupes f: m (X, x) — G tel que fi = f oy, et fo = f oig,.

On choisit maintenant pour chaque y € X; n Xy (resp. X1\ Xo, resp. X2\ X;) un
chemin A\, : © ~ y dans X; n X, (resp. dans X7, resp. dans X5). On dispose donc de
rétractions compatibles (des morphismes)

adeXQ . 7T<X1 M XQ) —» 7T1(X1 M XQ,IE),
ady, : 71(X7) & m(Xy,2), ady, : 7(X3) = m (X, x)
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données par [v] — [Ayo)][7] [)\;(11)]. 11 suffit alors d’appliquer la proposition 2.3.1 aux
applications composées

Foom(X)) — m(Xn, 1) 25 G forw(Xa) - m(Xa,2) 25 G

Clairement, on a flo Jix = ]?20 Jox €t il existe donc un unique morphisme f: (X)) —> G
tel que f1 = f oy, et fo = f oig,. Il suffit alors de considérer la restriction

f:ﬂl(X,x)L»ﬂ(X)LG. |

Corollaire 2.3.3 Sous les hypothéses du théoréme (avec X; n Xy conneze par arcs
non-vide), on a
1. Si X7 n X5 est simplement connexe, alors

m (X, x) =~ (X1, z) * (X, ).

2. Si X5 est simplement connexe, alors
(X, x) ~ coker(m (X1 n Xo, 2) — w1 (X1, )).

3. Si X; n X, ainsi que X5 sont simplement connexes, alors
m (X, x) =~ m (X1, ).

4. Si X et X, sont simplement connexes, alors X aussi.

5. Sim (X7 n Xo,z) = m(Xo, z) est surjectif (resp. bijectif), alors m (X, x) —
m (X, x) aussi.

Exemples 1. Ona S™ = (S™\a) u B avec (S"\a) n B = B""\a. Donc S™ est
simplement connexe pour n > 2.
2. Par récurrence sur n, si X est un disque a n trous, alors m(X,x) ~ Z*".

Corollaire 2.3.4 Soit Y un espace connexe par arcs tel que Y < X; est un rétract
fort par déformation d’'un ouvert U; de X; pour i = 1,2. Si X = X[ [} X3 et
r €Y, alors

7Tl()(a Z‘) =~ 7T1<X17 I’) *ﬂl(Y,I) Wl(X27‘/E)‘

Démonstration. On peut supposer que X = X; U Xs et que Y = X7 n Xy Il est
immeédiat que X| := X; u Uy (resp. X} := Uy u Xy, resp. X| n X = Uy v Us) se
rétracte par déformation sur X (resp. Xy, resp. V). En particulier, X] n X/ est
connexe par arcs et on peut appliquer le théoréme de van Kampena X = X{uX;,. R

Le résultat suivant s’applique par exemple dans le cas de variétés topologiques :
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Corollaire 2.3.5 Soient, pour ¢ = 1,2, X; un espace topologique et x; un point qui
est un rétract par déformation d’un ouvert de X;. Alors,

7T1(X1 \% X2,$) = 7T1(X1,331) *7r1(X2,x2)

(on & désigne I'image commune de x; et zo dans X; v X5).

Démonstration. C’est un cas particulier du corollaire 2.3.4. [ |

Dans le méme style que le théoréme de van Kampen (et avec le méme genre de
démonstration), on a aussi :

Proposition 2.3.6 Soient X un espace topologique, X;, X5 < X tels que X =
XiuXsetze X;n X,y SiX;et X, sont simplement connexes et X n X5 a deux
composantes connexes par arcs, alors (X, z) ~ Z.

Démonstration. On va montrer que 7 (X, z) satisfait la propriété universelle de Z.
Plus précisément, on va montrer qu'il existe [u] € 71 (X, ) tel que si G est un groupe
et g € G, alors il existe un unique morphisme de groupes f : 71 (X, z) — G tel que
F(lu) = g

On désigne par Y et Y’ les composantes connexes par arcs de X; n X,. Montrons
qu'il existe un unique morphisme ¢, : 7(X) — G tel que

g sivc Xy,7(0)¢Y' y(1)eY’

po([7]) =1 97" sive Xi,9(0) €Y', y(1) ¢ Y7,
1 sinonsiy < X; ouy < Xs.

Puisque X; est simplement connexe, on a une bijection

m(X1) =~ Xi x Xy, [v] = (7(0),v(1)).
L’application

g sia¢Y' beY’
(a,b)e Xy x X1~ < g ' siaeY b¢Y’
1 sia,beY oua,b¢yY’

correspond alors & un unique morphisme 7(X;) — G satisfaisant les premiéres
conditions ci-dessus. Puisque sa restriction & X7 n Xy =Y U Y’ est triviale, il résulte
de la proposition 2.3.1 qu’il se prolonge trivialement sur X5 de maniére unique. D’oul
I'existence et 1'unicité de ¢,.

On peut supposer que x € Y et on choisit 2’ € Y. On choisit ensuite pour i = 1, 2,
un chemin p; entre x et 2’ dans X;. On pose p := ;' - yo. Par construction, on
dispose d’un morphisme de groupes f : m (X, z) — 71(X) 2 G tel que f([u]) = g.
On dispose en particulier, de ¢, @ m(X) — m(X,2) et on a f oy = ¢, Pour
montrer 1'unicité de f et conclure, il suffit donc de s’assurer que ¢y, est surjectif.

On choisit pour chaque y € Y un chemin A\, entre z et y dans Y. On choisit pour
chaque y € Y’ un chemin X} entre 2’ et y dans Y et on pose A, = pg - A}. On choisit
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enfin pour i = 1,2 et chaque y € X;\(X; n X3) un chemin A, entre z et y dans X;.
On dispose alors de la rétraction

ad: w(X)—»m((X,2), [v]—[MollY] [/\;(11)]

qui est surjective. En considérant les différents cas un par un, on voit que ad =
Pl u

Exemple On a 7(S,1) ~ Z (voir théoréme 2.2.13 pour un énoncé plus précis).
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2.4 Exercices

2.4.1 Groupes
Exercice 2.1 — . 1. Montrer que si G est un groupe et S < G, alors

(S) = {Hs;—r,sieS} et ((S)) = {Hxis;—rxi_l,mieG,sieS}.
=1 i=1
2. Montrer que si
G ={(i)ier | (rj =1)jes) et G ={(i)ier | (rj = Djes)

alors G x G' = {(xi)ieror | (rj = 1)jesor)-
3. Montrer que Z% ~ (x,y | [z,y] = 1) ot on a posé [z,y] := xyxzty~L.

Solution. 1. Ce sont manifestement des sous-groupes qui contiennent S et tout
sous-groupe (resp. distingué) qui contient .S contient aussi (S) (resp. ({S))). Il
faut s’assurer que ((S)) est bien distingué, ce qui résulte de la formule

n

n
x (H xisiixi1> a7 = H(zxz)s:—r(x:vz)’l
i=1

=1

2. On peut déja remarquer que si L et L' sont libres de générateurs (z;);cs et
(x;)ier respectivement, alors L = L' est libre de générateurs (z;)s. . Le cas
général résulte formellement du fait que le conoyau commute avec le produit
libre, c’est-a-dire que

coker(Ly » L} — Lo » Ly) ~ coker(L; — Lg) * coker(L}] — Lg)

puisque ces deux groupes satisfont la méme propriété universelle :

Ly —>L0\—>H
7

L —~ 1,

pour H un groupe quelconque. On peut aussi (mais c’est laborieux) construire
formellement des morphismes dans chaque sens et montrer que leur composé
dans les deux sens est I'identité.

3. Cela résulte de nouveau du fait que les deux groupes ont la méme propriété
universelle mais on peut le vérifier en détail. On dispose d’'un morphisme

(w,y) > 2% x— (1,0),y— (0,1).
Puisque [z, y] est dans le noyau, on en déduit un morphisme
G =,y | [z,y]=1) - 2%

Inversement, on vérifie que l'application (m,n) — z™y" induit un morphisme
de groupes Z? — G. Ce sont clairement des inverses I'un de autre. |
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Exercice 2.2 Si GG est un groupe, on désigne par [G, G| le sous-groupe * engendré
par les commutateurs [x,y] = zyz~ly~! et on pose G** := G/[G, G].

1. Montrer que [G, G| est un sous-groupe distingué de G.

2. Montrer que G est abélien si et seulement si [G, G| = {1} si et seulement si

I'application G — G?" est bijective.

3. Montrer que si f : G — G’ est un morphisme de groupes, alors f([|G,G]) <
[G’, G'] avec égalité si f est surjectif.
En déduire que f induit un morphisme de groupes f2 : G* — G"2b.
Montrer que G est abélien.
Montrer que si M est un groupe abélien, alors tout morphisme de groupes
G — M se factorise de maniére unique par G — G2b.
Montrer que (%e;G)* ~ @;e;GP.
Montrer que si L est un groupe libre, alors L est un groupe abélien libre
(c’est-a-dire isomorphe & ZU) = @ Z).

AR o

o

a. Appelé sous-groupe dérivé.

Solution. 1. Pour z,y € G, on a [x,y] = 1 si et seulement si zy = yz.
2. Six,y,z€ @, alors z[z,ylz"! = [zz27!, 2271
Siz,yeG,ona f([z,y]) = [f(), f(y)]
C’est la propriété universelle du quotient.
Puisque [G®, G#"] est I'image de [G, G| par I'application quotient, il est trivial.
En effet, on a M ~ M?>,
Les deux groupes ont méme propriété universelle.
On applique le dernier résultat au cas G; = Z. [ |

S S

Exercice 2.3 Montrer que si® n,m € N, alors Z*" ~ Z*"" < n = m.
a. C’est vrai aussi pour des cardinaux infinis.

Solution. En passant aux abélianisés, on aura Z"™ ~ Z™. L’isomorphisme est donné
Y
par des matrices et on aura donc un isomorphisme de Q-espaces vectoriels Q" ~ Q™.
On a donc n = dimg Q" = dimg Q™ = m. |
Q Q

Exercice 2.4 On désigne par Dy, le groupe diédral des isométries du plan qui
préservent le polygone régulier & n cotés et par Do, le groupe diédral infini des
isométries de la droite (réelle) qui préservent 1’ensemble des entiers relatifs.
1. Montrer qu'on a des suite exacte 0 — Z/nZ — Dy, — Z/2Z — 0 et
0—>Z—Dy—Z/2Z — 0.
2. Montrer que

Dy, ~(r,s | r" = 1,s% = 1,(37“)2 =1
~{t,s|t*=1,5=1,(ts)" = 1).

3. Montrer que
Dy ~{t,s|t?=1,8>=1).

4. En déduire un morphisme de groupes surjectif Do, — Da,.
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I 5. Montrer que D, ~ Z/2Z » Z/2Z.

Solution. 1. Le groupe Dy, est I'ensemble des rotations d’angle 2km/n et des
réflexions par rapport aux droites joignant le centre aux sommets ou aux
milieux des cotés. Si on désigne par p la rotation d’angle 27/n et par o la
réflexion par rapport a 'une des droites joignant le centre & un sommet, on a
donc

Do, = {Lpa s 7pn_170_7 ap, ... 70pn—1}'

Puisque {p) est un sous-groupe d’indice 2, il est distingué et on donc une suite
exacte

l— <p> — Doy, — D2n/<p> — L

Il suffit alors de remarquer que {p) ~ Z/nZ (groupe cyclique) et Dy, /{p) ~ Z/2Z
(groupe a deux éléments).

Le groupe D, est 'ensemble des applications f : R - R,z — +x + n avec
n € Z. Il est clairement engendré par la translation p : x — x + 1 et par la
réflexion o : x — —x. On a donc

Do = {"'7p_171apap2a---7Op_170—70-pa0—p27"'}

et on conclut de la méme maniére.
2. Puisque op est une réflexion, on dispose d’un morphisme surjectif évident

{r,s | 1" =1,8"=1,(s1)?) = Dy, 7+>p, 50

et celui-ci est clairement injectif car tout élément de la source s’écrit sr* avec
k € Z puisque rs = sr~! et s" = s ou 1. Pour 'autre présentation, il suffit de
considérer

(t,s|1* =1,8" =1,(ts)" = 1) ~ Dy,, t+> 0p,s— 0.
3. Puisque op est une réflexion, on a un morphisme évident
(t,s|t*=1,8=1) = Dy, t+>0p,sr> 0.
On vérifie aisément qu’il est surjectif et injectif (puisque tout élément de la
source s’écrit (st)™ ou t(st)" ou (st)"s).
4. On a par définition un morphisme surjectif
,s|tP=1,=1) = {t,s|t?=1,8=1,(ts)" = 1)
et donc aussi D, — Ds,, comme annoncé.

5. Pour finir, on remarque que les groupes {(t,s | t* = 1,s* = 1) et Z/2Z x Z/2Z
ont la méme propriété universelle. [ |
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Exercice 2.5 Soit G le groupe d’isométries de R? engendré par

W=

D.

1
a:(t,s)—(t+1,8) et [B:(t,s)— (1—t,s+ 5)
Montrer que ao foa = 5.
En déduire que Boa=a"'0fB, foa ! =aoBet f2oa =ao B
Montrer plus généralement que

Vm,keZ, BMoak=alV" o™

En déduire que tout élément de G s’écrit de maniére unique o™ o ™ avec
n,m e N.

Montrer que G** = G/{a?) ~Z/2Z ® Z.

Solution. 1. On a

2.

3.

a(B(a(t,s))) =a(B((t+1,s)) = a(—t,s + %) =(1—ts+ %)

Les deux premiéres égalités sont immédiates et on a alors
ﬂ2oa:ﬁoofloﬁ:aoﬂ2,

Puisque 5% et oo commutent, le cas m pair est trivial. On traite maintenant le
cas m = 1 et on proceéde d’abord par récurrence sur k£ > 0. On aura

ﬂOO{kJ’_l:BOOékOOé:Oé_kOﬁOOé:Oé_kOO(_IOBZCY_UH_I)OB.

k

Sik <0, on aura donc foa* =aFfo et alors a ¥ o 5 = foak. Enfin, sim

est impair, alors

ﬁmoakZﬂOﬂm_loakIBOakOBm_lIO{_kOﬁOﬂm_lIOA_kOBm.

. Par définition, tout élément u de G s’écrit u = @™ o f™ o ... 0™ o ™. Si

k = 2, on a
_1\m1
n g ﬁml oa™ o /87712 ni+(—1)"lng o 6m1+m2.

et on conclut par récurrence descendante pour l’existence. Pour 1'unicité, il
suffit de montrer que si o™ = (™, alors n = m = 0. Mais on aura alors
a™(0,0) = (n,0) = (0 ou 1,m) = 5™(0,0) si bien que m = 0 et donc a™(0,0) =
(n,0) = (0,0) si bien que n = 0.

On a

[0, 8] = a0 foa o = a2

De plus, S oa®o ™" = a7 si bien que (@) < G et donc G* = G/(a?).
L’homomorphisme de groupes Z® Z — G, (n,m) a"B" est surjectif et
son noyau est 2Z @ {0}. Cela fournit l'isomorphisme annoncé. |
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Exercice 2.6 Soient f; : H — G, et fo : H — Gy deux morphismes de groupes.
1. Montrer que si H = {1}, alors Gy xg Gy ~ G1 * G».

2. Monter que si Gy = {1}, alors G xy G5 ~ coker(H Eil G1).
3. Montrer que si f> est surjectif (resp. bijectif), alors G; — G i G5 aussi.

Solution. 1. C’est immédiat, soit en considérant la propriété universelle soit en
utilisant la définition :

G xp Gy i= (G * Ga) [ (fi(x)) * ja(fo())™h € H)).

2. Méme argument.

3. Puisque G xy G5 est engendré par les images de G; et de G, il suffit pour
obtenir la surjectivité, de montrer que I'image de tout x5 € G5 est aussi 'image
d’un élément de G. Si fy est surjectif, il existe = € H tel que fo(x) = 5. Si on
pose z1 = fi(x) € G1, on aura dans Gy gy G,

Ty = fo(x) = fi(z) = 71

Enfin, si f5 est bijectif, on peut considérer les morphismes Idg, : G; — G; et
fiofst i Gy —>Gretonaldg, ofi = fi=(fiofy!) ofo Par définition,
ceux-ci se prolongent donc en un morphisme G g Gy — G1. En particulier,
I’application composée G; — G xg G5 — G est Idg, et la premiere fleche est
donc nécessairement injective. [

Exercice 2.7 Montrer qu’on dispose de suites exactes strictes de groupes topolo-
giques :
1.0-Z-C—->C*—>1,
0 >Z—->R—>S—1,
0->2Z2">R">T"—>1,
0—>Z/nZ—-C*—-C*—1,
0—>2Z/nZ—->S—S—1.

Ol WD

Solution. 1. On utilise 'application z — €*™ ainsi que l'inclusion Z < C (ou si

on préfére z — e* et n — 2imn). C’est clairement une suite exacte courte, Z
est muni de la topologie induite et I’exponentielle est une application ouverte
comme toute application holomorphe non constante.

Méme chose ou presque.

On fait le produit.

On utilise les applications z — z" et k — e
Méme chose. [

2ikm/n

G

2.4.2 Groupe fondamental
Exercice 2.8 — . 1. Montrer que si X est un espace topologique et z € X, on
a une bijection

[(87 1)7 <X7 x)]l = 7T1(X7 1‘), [:)\/] D ['7]

(le premier ensemble désigne les applications continues pointées modulo
homotopie relativement a 1).
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2. Montrer que si v et 7 sont deux lacets en x, alors 4 ~ 4’ si et seulement si
[v] et [7/] sont conjugués dans 71 (X, x).

Solution. Les deux assertions résultent de exercice 1.17. |

Exercice 2.9 Montrer que si A est un rétract (continu) de X et z € A, alors les
applications induites

m(A,z) > m(X,z2) et m(X,z) > m(A4, )

sont respectivement injective et surjective. Montrer qu’elle sont bijectives si A est
un rétract par déformation.

Solution. Par définition, si on désigne l'inclusion par ¢+ : A — X il existe une
application continue r : X — A telle que r ot = Id4. On aura donc 7, 0ty = Ids (4.2,
ce qui implique que ¢, est injective et 7, surjective. Si ¢’est un rétract par déformation,
alors ¢ : A ~ X et les applications sont donc bien bijectives. [ |

Exercice 2.10 Soit G un groupe topologique et G, la composante connexe de
I'unité e.
1. Montrer qu’on a une suite exacte (stricte) de groupes (topologiques).

1—>Ge—>G—>7T0(G)—>1.

2. On note = la loi de groupe ® de C([0, 1], G). Montrer que si 7,7’ sont deux
lacets en e, alors

(7‘16)*(18‘7/):(16',}/)*(7'16):7'7/-

3. En déduire que 7 (G, e) est abélien avec loi de groupe induite ® par .

a. c’est-a~dire (y =) (t) = v(¢)v'(¢).
b. c’est-a-dire [y -] = [y *+/].

Solution. 1. On sait que 'image d’un connexe par une application continue est
connexe et qu’un produit de connexes est connexe. Puisque la multiplication
et 'inverse sont continus sur G et préservent e, (G, est un sous-groupe de
G. Puisque la multiplication par g € G, a droite comme a gauche, est un
homéomorphisme, la composante connexe de g est égale & la fois a gG, et a
Geg. Cela montre que G, est distingué et que G/G, = mo(G). Attention que
mo(G) n’est pas discret en général (prendre G = Q).

2. Par définition, on a

a0 ={ 1SS e a0 ={ Say G151

si bien que

(G 10+ (e A0 = (1) Gt = { 100 38

comme attendu.
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3. Puisque la multiplication est continue dans G elle préserve les homotopies et
passe donc au quotient. On en déduit que dans 71 (G, e), on a toujours

= T=11+ = - [] u
Exercice 2.11 — . Soit X un compact étoilé en a et p: R —» S, t > 27t
1. Montrer que si f : X — S est une application continue, alors il existe n > 0
tel que, si |z — y| <, alors f(x)/f(y) # —1.
2. En déduire que le groupe C((X, a), (S, 1)) est engendré par C((X, a), (S\{—1},1)).
3. En déduire que si f : (X, a) — (S, 1) une application continue, alors il existe
une unique application continue f: (X,a) — (R,0) telle po f: f.

Solution. 1. Puisque f est continue sur X qui est compact, c’est une application
uniformément continue et il existe donc n > 0 tel que, si ||z — y| < 7, alors
|f(z) — f(y)| < 2. Or, dans S, on a toujours |z — 2’| < 2 avec égalité si et

seulement si z/2" = —1.

2. Il s’agit de montrer que si f : X — S est une application continue telle
que f(a) = 1, alors il existe, pour ¢ = 0,...,n, des applications continues
fi : X — S\{—1} telles que f;(a) =1 et?

vee X, fz)=filz) - fal2). (2.2)
On peut supposer que a = 0. Si n € N, alors pour tout i =0,...,net v e X,
on a

(i+1)x i
— < 1.
n+1 n+1 J=l/m +

Puisque X est borné, si on se donne n > 0, on peut choisir n € N tel que
|z||/(n + 1) < n pour tout x € X. Puisque X est étoilé en 0, on peut poser

f (i)

et on aura bien la formule (2.2). Enfin, la premiére question nous montre qu’on
peut choisir 7 de telle sorte que f;(x) # —1 pour tout = € X.

Vi=0,...,n,Vze X, fi(x)=

3. Si f est constante (égale a 1), alors f sera une fonction continue sur X a valeurs
dans Z. Puisque X est connexe et Z discret, elle est nécessairement constante
(égale a 0). Cela montre que le morphisme de groupes

P« : C((X,a), (R, 0)) — C((X,a), (S, 1))

est injectif. Supposons maintenant que Yz € X, f(x) # —1. Si on désigne
par In(z) = In(|z]) + iarg(z) avec arg(z) €] — m,n[ pour z ¢ R, il suffit
alors de poser f(z) = 5= In(f(x)). Puisque C((X,a), (S,1)) est engendré par
C((X,a),(S\{—1},1)), cela montre que p, est surjectif. Notre assertion est ainsi

démontrée. [

3. Théoriquement, c’est fii mais ¢a ne change rien ici.
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I Exercice 2.12 Montrer que 'application deg : m1(S, 1) — Z est un isomorphisme
de groupes.

Solution. On note toujours p : R — S,t — 2™ et on désigne par ¥ 1'unique

relévement basé en 0 dans R d’un chemin v basé en 1 dans S. On rappelle aussi que
si v est un lacet, alors deg(y) := J(1). On aura p(3(1)) = (p«¥)(1) = v(1) = 0 si
bien que deg(vy) € Z. On se donne maintenant deux lacets 7,7 en 1 dans S et une
homotopie h : v ~o1y 7. Il résulte alors de 'exercice 2.11 appliqué a h qu’il existe
une homotopie h : § ~0,13 7 et en particulier que deg(y) = 5(1) = 7'(1) = deg(v').
Cela montre que I'application est bien définie. Montrons que si ,~" sont deux lacets
en 1 dans S, alors

— A2 sit<1/2
Vte[0,1], (v-)() = { %(1) +7'(2t —1) sit>1/2.

En effet, si on désigne provisoirement ce chemin par ¢, on a bien p,d = v -7 et
5(0) = 0. On en déduit que

deg(y-7) = (v 7)(1) = F(1) + 7' (1) = deg(y) + deg(7).

Supposons maintenant que deg(vy) = 0. Cela signifie que ¥ est un lacet en 0. Puisque
R est simplement connexe, on en déduit que ¥ ~g 1} TO. On aura donc 7y ~y 1y 11.
Cela montre que I'application est injective. Enfin, I’application est surjective car
y(t) := e*™ deéfinit bien un lacet de degré n. |

Exercice 2.13 Montrer que si T" est un tore de dimension n, alors (7, 0) est un
groupe abélien libre de rang n.

Solution. Puisque T' ~ T" et que T = S, cela résulte de la proposition 2.2.6 et du
théoréme 2.2.13. |

Exercice 2.14 Montrer que si n < 2 et n # m, il n’existe pas d’homéomorphisme
R™ ~ R™,

Solution. On peut supposer n < m et on aurait alors un homéomorphisme R™\(0 ~
R™\a. Pour n = 0, il suffit de remarquer que R™\a est non-vide. Pour n = 1, il suffit
de remarquer que R™\a est connexe mais pas R\0. Pour n = 2, il suffit de rappeler
que R™\a ~ S™! est simplement connexe mais pas R*\0 ~ S. [ |

Exercice 2.15— . 1. Montrer que S n’est pas un rétract (continu) de B?.
2. Montrer que 'application

F:(B*xB*)\A —S, (r,y)—]ry)nS

est continue (on a posé¢ A = {(z,z),x € B?}).
3. Montrer que si f : B> — B? est une application continue sans point fixe,
alors I'application

B2 »S, z— F(f(zx),z)
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est une rétraction.
4. En déduire qu'une application continue f : B> — B? a un point fixe (théoréme
de Brouwer).

Solution. 1. Si S était un rétract de B?, on aurait une application injective
Z ~ 7(S,1) — m(B? 1) = 0. Contradiction.
2. La condition F(z,y) = z s’écrit

>0, z=x+tly—xz) et |z|]=1.

On voit donc que t est alors I'unique racine positive de I’équation polynomiale
|z + t(y — x)]*> — 1 = 0, c’est-a-dire

B —b+vVb? —ac

a

t avec a=|y—z|*b=2Re(@(y — 1)), c = |z]* -1,

qui est bien une fonction continue de x et y.

3. Puisque (f(z),z) ¢ A, l'application x — F(f(x),x) est bien définie et c’est
clairement une rétraction car |f(z),2) nS=xsix e S.

4. 1l existerait sinon une rétraction continue, ce qui contredirait la premiéere

assertion. [}
Exercice 2.16 — . Soit P € C[z] un polynome unitaire de degré n > 0 sans racine
dans C. On pose f(z) := % et on considére, pour r > 0, le lacet y(t) = f(re*™)

dans S. On considére aussi le lacet standard v, (¢) := e*™.
1. Montrer que f ~¢ f(0) : C — S et en déduire que 7 est trivial.

2. Montrer que lim;|_ 40 (% — ﬁ) = 0.

3. En déduire qu’il existe r > 0, tel que V¢ € [0, 1], |y(t) — 7.(t)] < 2, et donc
que Y(t) # —v,(t), puis finalement que ~y ~{0,1} Yn-

4. Conclure finalement que C est algébriquement clos (théoréme de D’alembert-
Gauss).

Solution. 1. L’existence de 'homotopie résulte du fait que C est contractile et S
connexe par arcs. Par composition, en déduit que « est homotope (& extrémités
fixées) au lacet trivial.

2. Quand ||z| — 400, on a P(z)/2" — 1 et donc

Plz) 2" 2" [ PR)Z" .
EoEEEE <||P<z>/zn|| 1) N

3. Sir >> 0, en posant z = re?™ pour t € [0, 1], on aura

ZTL

2]

<2

et donc nécessairement 7y(t) # —7,(f). Or on a vu dans l'exercice 1.11 qu’alors
Y ~{0,1} Vn-

4. On voit donc que 7, est trivial si bien que n = 0. Contradiction. Donc P a une
racine dans C. u
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Exercice 2.17 1. Déterminer le groupe fondamental de C*.
2. Déterminer le groupe fondamental du cylindre

X:: {(x7y7z)ax2+y2 = 1,0<Z< ]_}

3. Montrer que si L est une droite dans un espace affine £/ de dimension trois
et x ¢ L, alors m(E\L,z) ~ Z.

4. Montrer que la rétraction im : C\{i} — R n’est pas une rétraction par
déformation.

Solution. 1. On a S ~ C* et donc m (C*, 1) ~ Z.
2. Ona X ~ S x [0,1] ~ S et on trouve encore Z.
3. Ona E\L ~R x (R%0) ~ R2\0 ~ S.
4. On a m(C\{i},0) ~ Z et R est simplement connexe si bien que C\{i} » R. W

Exercice 2.18 — . 1. Montrer que l'action naturelle de A € M, (Z) sur R"
induit une application continue f : T" — T" et que f, a pour matrice A
dans la base canonique de 7 (T",0).
2. En déduire que f est bijective si et seulement si A € GL,(Z).

Solution. 1. Comme T" ~ R™/Z"™, la multiplication par A induit bien une appli-
cation continue sur le tore. L’entrée a;; de A va induire un homomorphisme
m(S,1) — m(S,1) et il faut montrer qu’il est donné par v — ~% avec
7(t) = €27, On est donc ramené au cas n = 1. On regarde donc la multiplica-
tion par a € Z sur R et 'application correspondante f sur S qui est donnée par
z+— 2% On aura alors

Fe(®) = (fo)(t) = f((1) = f(e¥™) = €™ = 4"(t)

si bien que fi[v] = [7]* On pouvait aussi travailler sur R/Z avec le générateur
y(t) = t.

2. Si A e GL,(Z), il est clair que f est bijective (son inverse étant induit par
A7), Reéciproquement, si f est bijective, ¢’est un automorphisme du groupe
topologique T" et il suit que f, est un automorphisme du groupe (T, 1) ~ Z".
Comme sa matrice est A, on doit avoir A € GL,(2). |

Exercice 2.19 Montrer que
1. m(SO,, 1) ~ m(0,,1) ~ m (GL,, 1),
2. En déduire que 71 (GLg, 1) ~ Z.

Solution. 1. On sait que SO,, est la composante connexe de O,, et que O,, ~ GL,,.
2. En effet, on sait que SOy ~ S. [ |

2.4.3 Théoréme de van Kampen
Exercice 2.20 1. Montrer (par récurrence sur n) que si £ < R? est un ensemble
an éléments et x ¢ F, alors m (R*\F, z) ~ Z*".
2. Montrer que si £ < S? est un ensemble a n > 0 éléments et x ¢ E, alors
7 (SA\E, 1) ~ Z*n1),
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| 3. Montrer que si X est un disque a n trous, alors 7 (X, x) ~ Z*".

Solution. 1. Sin=1,0onaR*FE ~ S et on peut donc supposer dorénavant que
n > 2 et procéder par récurrence forte. On peut trouver une droite A qui
rencontre l'enveloppe convexe de E mais ne passe par aucun point de £. On
désigne par H; avec i = 1,2 les demi-plans délimités par A, E; = E n H;, n; le
nombre de points de F; et X; = H;\E;. On a alors n = n; + ny avec ny,ng < n.
Par construction, RQ\E = X7 u Xy et X;n Xy =A est un rétract simplement
connexe d’ouverts de X7 et X5. Techniquement, si A : az + by + ¢ = 0 et qu’on
pose A : |ax + by + ¢ = 0| < ¢, alors A, n E = ¢J pour € petit et on prend
A; = A.n H;. On applique ensuite le (corollaire du) théoréme de van Kampen :

m(RA\E, z) ~ m (X1, x) x 1 (X, 7).

En projetant Hy sur A, on voit que X; est un rétract fort par déformation
de R\ E; et symétriquement. On a donc 7 (X;, z) = m(R*\E;, ) ~ Z*" par
récurrence et on peut conclure. Alternativement, on pouvait utiliser le vrai
théoréme de van Kampen en remplagant H; par H;. := H; u A, pour ¢ = 1,2.

2. Si E = {ay,...,a,}, on considére la projection stéréographique p : S*\a,, ~ R?.
On a alors un homéomorphisme S?\E ~ R*\{p(a,),...,p(an,_1)}

3. Un disque & n trous est une partie X de R? de la forme B?(a, )\ | J;_, B*(a;,7;)
avec B2(a;, ;) < B%(a,r) et BX(as,r;) n BX(aj,r;) = & pour i # j. Il est
clair que X est un rétract fort par déformation de X' := B2(a,r)\{ay,...,a,}.
Techniquement, on considére application r qui envoie x € B?(a;,r;)\a; sur
a; + =2 et on pose h(z,t) = (1 — t)x + tr(z). De méme X' est un rétract

|z—asl|

fort par déformation de R*\{a,...,a,}. |

Exercice 2.21 On suppose n = 3 et on considére la projection stéréographique
p:S™\a ~R" avec a = (0,...,0,1).
1. Montrer que si A < R™ est bornée, alors p induit un isomorphisme

T (" (A), z) ~ m(R™A, p(x)).

2. Montrer que p induit des homéomorphismes pour £ =1,...,n—1
SFx0~SFx0 et S™\(0xS") ~R"\(0xR".

3. En déduire le groupe fondamental de R™\(S* x 0).

Solution. 1. On pose X := S"\p~(A4) et X; := X\a ~ R"\ A. Puisque A est borné
dans R”, on voit que A est compact et puisque p est un homéomorphisme,
p~'(A) est un compact de R"*! qui ne contient pas a. Il existe donc une boule
B(a, €) qui ne rencontre pas p~*(A) et on pose X, := B(a,€) n S". On a alors
X = )2'1 U )0(2 et X1 n Xy = Xy\a. Bien stir, Xy ~ B" est simplement connexe
mais, puisque n > 3, Xy\a ~ B™\0 ~ S"~! aussi est simplement connexe. On
applique le théoréme de van Kampen.

2. Par définition, p induit un homéomorphisme

S" 1 x0=S"n(R"x0)~S"!
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et donc en particulier S¥ x 0 ~ S*¥ x 0. De méme, p induit la projection
stéréographique (0 x S*)\a ~ 0 x R¥.
3. 1l résulte de la premiére question appliquée & A = S¥ x 0 que

m (R™\(S" x 0), p(x)) = m (S"\(S" x 0), z).
D’autre part, on a aussi
S™\(S* x 0) ~ S™\(0 x S*) ~ R™\(0 x RF) ~ (R"™\0) x R ~ §"7*~1,

On trouve donc Z quand k£ = n — 2 et 0 si n > 3. Remarquons que, dans le cas
n = 3 et k = 1, on pouvait utiliser la question 2) de I'exercice 1.14 et appliquer
le théoréme de van Kampen a S? U (0 x B). |






3.1

Action de groupe (rappels)

Si X est un ensemble, on note S(X) le groupe des permutations de X (les
bijections de X dans lui méme muni de la composition).

Définition 3.1.1 Une action (& gauche) d'un groupe G sur un ensemble X est un
morphisme de groupes

G—-S8X), g (x—gux).

Remarques 1. Ca signifie que 1.z = = et (gh).x = g(h.x).

2.

Une action a droite est une action (& gauche) du groupe opposé G°P. On écrit
alors x.g et on aura donc x.1 = x et x.(gh) = (z.9).h.

L’action est dite fidéle si I'application G < S(X) est injective. On peut alors
identifier G avec un sous-groupe de S(X).

Le stabilisateur G, (resp. Uorbite Gx) de x € X est

G, ={geG,gx=u1a} (resp. Gx :={g.x:geG}).

Les stabilisateurs sont des sous-groupes, les orbites forment une partition de
X et on désigne par X /G l'ensemble quotient formé des orbites.

. On a pour tout x € X, une bijection G/G, ~ Gx,g < g.x.

L’action est transitive s’il existe une unique orbite (équivalent & G/G, ~ X).
En d’autres termes : Vo,y e X,dge G,y = g.x.

L’action est libre (ou sans points fixes) si tous les stabilisateurs sont triviaux
(équivalent & G ~ Gz). Une action libre est fidéle.

Si H < G est un sous-groupe, alors H agit librement sur GG par translation a
gauche (et a droite).
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Exemples 1. R* agit sur S"” par \.z = ﬁx On a (R*), = Reg, (R¥)z = {z, —a}
et S"/R* ~ P
2. Analogues en remplagant R* par us = {1, —1} ou S™ par R""!\0 (actions libres).

Lemme 3.1.2 Soit G un groupe agissant [tbrement sur un ensemble X et U < X.
Alors, les conditions suivantes sont équivalentes

1. L’application composée U — X X /G est injective,

2.Vg#1eG, gUnU-=¢,

3.Vg#helG, gUnhU=g.

Démonstration. Si ge G et x € gU n U, alors il existe y € U tel que x = gy et donc
p(z) = p(y). Si Iapplication composée est injective, on a x = y et donc = = gx si
bien que g € G.. Comme 'action est libre, on a g = 1.

Réciproquement, supposons que la condition est satisfaite. Soient z,y € U tels
que p(x) = p(y). Alors, il existe g € G tel que z = gy et donc z € gU n U si bien que
g =1 et donc z = y.

De plus, si ces conditions sont satisfaites et ¢ # h € G, alors gU n hU =
g(Ung™hl) = &. |

Définition 3.1.3 Une action d’un groupe topologique GG sur un espace topologique
et X est continue si I'application

GxX—->X, (g,2)—gzx
est continue.

Remarques (voir exercice 3.1).

1. On munit toujours X /G de la topologie quotient. L’application quotient p :
X — X /G est alors (continue et) ouverte.

2. Si H est un sous-groupe d’un groupe topologique G, alors ’action par translation
a gauche est continue (et libre)

3. Si une action est continue, alors c¢’est une action par homéomorphismes : pour
tout g € G, 'application x — gx est un homéomorphisme. Et réciproquement
si G est discret.

Définition 3.1.4 Une action continue d’un groupe discret G sur un espace topolo-
gique X est proprement discontinue si tout point x € X posséde un voisinage U
tel que gU nU = & pour g # 1.

Remarques 1. Attention, certains auteurs disent errante ou topologiquement

libre pour ce que nous avons appelé proprement discontinue.

2. Attention, certains auteurs disent que l'action est proprement discontinue
si pour tout compact K < X, il existe un nombre fini de g € G tels que
K ngK # 7. Cette condition est strictement plus forte que la notre quand X
est séparé.

3. Une action proprement discontinue est libre. En particulier, elle est fidéle et on
peut ainsi identifier G avec un groupe d’homéomorphismes de X.
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4. Si H est un sous-groupe discret d’un groupe topologique G, alors 'action par
translation a gauche de H est proprement discontinue (voir exercice 3.2).

3.2 Revétement

On considére maintenant une nouvelle maniére de déformer un espace :

Définition 3.2.1 Une application surjective® p : X’ — X est un revétement si,
pour tout z € X, il existe un voisinage ouvert U de z, tel que p~'(U) = [ [,.; U;
ot les U; sont des ouverts de X’ et p induit un homéomorphisme U; ~ U :

X/ <—)Hzel UZ

ok

X< Uszx U

On dit alors que {U,}ics est une trivialisation de p au dessus de U et que chaque
U; est un feuillet.

a. C’est automatique si X est connexe et X’ non vide.

On dira aussi parfois que X’ est un revétement de X sans mentionner p explicite-
ment.

2imt st un revétement.

Exemples 1. L’application p: R — S,t — e
2. Plus généralement : R™ — T" est un revétement.

L’application exp : C — C* est un revétement.

L’application S — S, z — 2" (ou C* — C*) est un revétement.

La projection S™ — P™ est un revétement.

La projection S°][S? — S° est un revétement (trivial) mais il existe une autre

décomposition p*(S°) = Vi UV avec Vi =1 [—1let Vo = —1]]1.

SERAE

Remarques 1. Un revétement est une application surjective, continue et ouverte
(et X est donc muni de la topologie quotient).

2. Si I est un espace topologique discret non vide, alors la projection p : X xI — X
est un revétement (dit trivial). En effet, on a une décomposition en union
disjointe d’ouverts X x I =[], ;(X x i) tous homéomorphes & X.

3. Réciproquement, si p : X’ — X est un revétement, il existe pour tout x € X
un voisinage ouvert U de x et un espace discret I et un homéomorphisme
p Y (U) ~ U x I compatible avec les projections :

X' <—op! UxI
lp \ /
X

4. Sip: X" — X est un revétement, Y < X et Y’ := p~1(Y), alors Papplication
induite Y’ — Y est aussi un revétement.

5. Un produit fini de revétements est un revétement.

6. Sip: X' — X est un revétement et X est séparé, alors X’ aussi.
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7. Sip: X’ — X est un revétement et X’ est connexe (ou connexe par arcs) alors
X aussi (car p est continue surjective).

8. Sip: X' — X est un revétement, X' est compact et X est séparé, alors X est
compact.

9. Si p: X' — X est un revétement, alors X est localement connexe! si et
seulement si X' l'est.

10. Sip: X' — X est un revétement et x € X, alors la fibre p~!(z) est discrete et

le degré de p en x est le cardinal de la fibre. Si X est connexe, alors le degré
est constant.

On dispose aussi d'une notion un peu plus faible (locale en haut) :

Définition 3.2.2 Une application p : X’ — X est un homéomorphisme local si, pour
tout 2’ € X' il existe un voisinage ouvert U’ de 2’ (resp. U de x := p(2’)) tel que
p induise un homéomorphisme U’ ~ U.

Exemple La projection
{(r,y) eR* sy =1ouy =0} =R, (2,9)—=z (3.1)

est un homéomorphisme local surjectif mais ce n’est pas un revétement.

Proposition 3.2.3 Si X’ est séparé, alors p : X’ — X est un revétement de degré
fini n si et seulement si ¢’est un homéomorphisme local et toutes les fibres ont
méme cardinal n.

Démonstration. La condition est clairement nécessaire et on va montrer qu’elle
est suffisante. Soit x € X et p~!(z) = {z},...,2)}. 1l existe alors des voisinages
ouverts U; et U/ de z et z) respectivement tel que p induise un homéomorphisme
U; ~ U;. Puisque X' est séparé, on peut supposer que U/ n U} = J pour i # j.
On peut ensuite remplacer U; par U := (|, U; puis U/ par U/ n p~'(U). On va
montrer qu’alors p~*(U) = [J_, U/. Soit ¥’ € X’ tel que u := p(y’) € U. 1l existe

alors pour tout i = 1,...,n, un y; € U] tel que p(y,) = y. Comme, pour i # j,
Ui nU; =&, onay; #y; Comme les fibres ont le méme nombre n d’¢léments, on a
p Hy) ={vl,...,y.} et il existe donc i tel que y' = y/. |

Proposition 3.2.4 Soit G un groupe topologique agissant contintiment sur un espace
topologique X. Alors, les conditions suivantes sont équivalentes :

1. GG est discret et ’action est proprement discontinue,

2. 'action est libre et 'application quotient est un revétement,

3. l’action est libre et 'application quotient est un homéomorphisme local.

Démonstration. On désigne la projection par p : X — X /G. Supposons que G est
discret et que l'action est proprement discontinue. On sait déja que l'action est libre.
Soit x € X et U un voisinage ouvert de x tel que gU nU = J pour g # 1. Si on pose
V = p(U), alors application U — V induite par p est surjective, continue et ouverte

1. Ou localement n’importe quoi d’ailleurs.
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mais aussi injective grace au lemme 3.1.2. C’est donc un homémorphisme. De plus,
onap Y(V)=J gec 9U qui est une union disjointe d’ouverts homéomorphes a U. Il
suit que p est un revétement.

Supposons réciproquement que 'action est libre et que p est un homéomorphisme
local. Soit x € X. Puisque 'action est libre et continue, on a une bijection continue
G ~ Gx = p~!(x) et puisque p est un homéomorphisme local, p~!(x) est discret
(clair). Il suit que G est nécessairement discret. De plus, il existe un voisinage U de x
dans X tel que p induise un homéomorphisme U ~ p(U). En particulier, 'application
composée U — X — X /G est injective. Il résulte du lemme 3.1.2 que pour tout
g#1l,onalUngU = et I'action est donc proprement discontinue. |

Corollaire 3.2.5 Soit H un sous-groupe d’un groupe topologique G. Alors, les
conditions suivantes sont équivalentes :

1. H est discret,

2. Tapplication quotient G — G/H est un revétement. |

Remarque De maniére équivalente : si 1 - G’ — G — G” — 1 est une suite exacte
stricte de groupes topologiques, alors G’ est discret si et seulement si G — G” est un
revétement.

Exemples 1. Avec Z ¢ R, on trouve R - R/Z ~ S.
2. Avec Z" < R™, on trouve R" — R"/Z" ~ T".
3. Avec 2inZ < C, on trouve C — C/2inZ ~ C*.
4. Avec p, < S (c C*), on trouve S — S/p, ~ S (C* — C*/p, ~ C).
5. Avec Z/2Z x S — S" (1,x) — —ux, on trouve S" —» S"/(Z/2Z) ~ P".

Monodromie
Définition 3.3.1 Soit p : X’ — X un revétement et f : Y — X une application
continue. Un relévement de f le long de p est une application continue f': Y — X’

telle que po f' = f.

Remarques 1. Lorsque f(y) = x et f'(y) = 2/, on dira aussi que f': (Y,y) —
(X', 2') est un relévement de f: (Y,y) — (X, x) lelongde p: (X', 2') — (X, x).
2. Size X et 2/ € p~i(x), on dira que 2’ est un relévement de z. Cette définition
est compatible avec la précédente dans la mesure ou on peut identifier un point

x € X avec application (continue) {0} — X,0 — x.

Proposition 3.3.2 Soit p : X’ — X un revétement, f : Y — X une application
continue avec Y connexe, yo € Y et z; € X'. Il existe alors au plus un relévement
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f"de f tel que f'(yo) = zj :

X' ity
7 7
f/ - i -~
g p =<
///f \(// I
Y X y0|—>gjo_

Démonstration. Soient f” un autre relévement de f tel que f"(yo) = zj et C:={y €
Y, f'(y) = f"(y)}. Soit y € C et U’ un feuillet qui contient f'(y) = f"(y). On pose
W = f=1U") n f"~1(U"). Par construction, W est un ouvert de C' qui contient y.
Cela montre que C' est ouvert. Soit maintenant y ¢ C' et U un voisinage de f(y)
qui trivialise le revétement. Puisque f'(y) # f”(y), il existe deux feuillets distincts
(et donc disjoints) U’ et U” au dessus de U tels que f'(y) € U’ et f"(y) € U". Par
construction, W := f'~YU’) n f"~1(U") est un ouvert de Y\C qui contient y. Cela
montre que Y\C' est un ouvert. Donc C' est fermé, ouvert, et non vide car il contient
yo. Puisque Y est connexe, on a Y = C et donc [ = f”. |

Proposition 3.3.3 Soit p : X’ — X un revétement, h : f ~ g : Y — X une
homotopie et ' : Y — X’ un relévement de f. Il existe alors un unique relévement
R Y x[0,1] — X" de h tel que f" = hy :

y Y . x
I =

- p

(y,0) Y % [0,1] ’ X

Démonstration. Siy e Y, alors y x [0, 1] est connexe et h'(y,0) = f'(y). L’unicité
résulte donc de la proposition 3.3.2.

On montre maintenant qu’on peut composer deux tels relévements et on suppose
déja qu'il en existe un. Posons ¢’ = hf. Soit k : Y x [0,1] — X une homotopie
satisfaisant kg = ¢g. Supposons que celle-ci aussi se reléve en une homotopie &’ :
Y x[0,1] — X’ telle que k, = ¢’. On peut alors considérer I'homotopie h-k composée
h et k. Il est clair que I’homotopie h' - K’ composée h' et £’ est un relévement de h - k
tel que f" = (b - K')o.

On montre ensuite que la question de I'existence est locale sur Y. On suppose
donc que pour tout y € Y, il existe un voisinage W), de y dans Y et une application h;
satisfaisant la propriété sur W,,. Par unicité, si yi,y2 € Y, alors h) et h] coincident
sur W, n W,,. L'existence de b’ en résulte.

Supposons maintenant que le revétement est trivial si bien qu’on a une union
disjointe d’ouverts X’ = J,.; X; tel que p induise un homéomorphisme p; : X; ~ X.
On dispose alors d’'un recouvrement ouvert disjoint Y = [ J,_;Y; en posant Y; =:
f7H(X;) et il suffit de prendre b’ = p; ' o h sur Y; x [0,1].

En général, pour tout y € Y (fixé pour linstant) et ¢ € [0,1], il existe une
trivialisation de p sur un ouvert U; 3 h(y, t). Puisque h est continue, on peut trouver
un voisinage W; de y ainsi que € > 0 (qui dépend de t) tel que h(W; x [t—¢,t+€]|) < Us.
Par compacité de y x [0, 1], on peut trouver une suite 0 =ty < ... < t, = 1 tel

el
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que h(W; x [t;_q1,t;]) < U; pour @ = 1,...,n et p est trivialisé sur U;. On pose
W, = (N, W;. L’application induite hy; : W, x [t;_1,t;] — X' posséde alors un
relevement hy ; : W, x [t;_1,t;] — X' (cas trivial). Par composition, on obtient des
relevements h; : W, x [0,1] — X' et finalement A’ en recollant. [

L’énoncé précédent dit qu'un revétement est une fibration de Hurewicz (la pro-
priété de la proposition).

Corollaire 3.3.4 Soit p : X’ — X un revétement et 2’ un relévement de x. Alors,
1. si 7 est un chemin partant de x, il existe un unique relévement v’ de v partant
de 2’ et
2. si 71 ~0,13 72 dans X (partant de ) et 7,7, désignent les relevements
respectifs de 7,7, partant de 2, alors 7] ~01} 73 -

Démonstration. 1l suffit d’appliquer le théoréme aux cas Y = {0} puis Y = [0,1]. N

Remarque 1. En d’autres termes, p induit une application bijective entre les
(classes de) chemins dans X’ partant de z’ et les (classes de) chemins dans X
partant de x : on a une bijection

P« C(([0,1],0), (X", 2)) >~ C(([0,1], 0), (X, z))

compatible avec I'homotopie (& extrémités fixées).
2. Comme conséquence, on obtient a une application injective

ps (X 2") > m (X, 2).
3. Sid:x~ydans X sereléve en §' : 2’ ~ ¢/, alors le diagramme

Wl(X,,LU/)(L m (X, )

:Lad(;/ zladg

m (X' Y ) (X, y)
est commutatif.

Exemple Dans le cas p : R — St +— €*™ x = 1 et 2’ = 0, le corollaire 3.3.4.1
redonne la proposition 2.2.11 (et la définition du degré).

Sip: X — X est un revétement, v : z ~ y est un chemin dans X et v : 2’ ~ ¢/
désigne le relévement de v partant de 2/, on pose x’ - v := ¢/. Autrement dit, 2’ -
est le point final de 'unique relévement de ~ partant de z’. Sous forme compacte :
voax ~y <y =2 p.y. Puisque ¢y ne dépend que de la classe d’homotopie de -,
on écrit aussi parfois z’ - [7].

Proposition 3.3.5 Soit p: X’ — X un revétement et 2’ un relévement de x. Alors,
1. 2/ -1, =2 et
2.siy:x~yetd:y~z alors (z'-7) -0 =1a"-94.
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Démonstration. Puisque 1,/ est un relévement de 1, partant de 2/, on a bien 2/-1, = 2.
Ensuite, soit 7/ le relévement de « partant de 2’ et ¢’ le relévement de ¢ partant de
y =a 7. Alors, 4 - ¢ est un relévement de - 9 reliant 2’ & 2’ :== ¢’ - §. On a donc
bien 2’ - v§ = 2. [ |

Corollaire 3.3.6 Si p : X' — X est un revétement et x € X, on dispose d’une
action a droite du groupe fondamental sur la fibre appelée monodromie :

pi(@) x m(X,2) > p(z), (@,[)—2y. W

2imt

Exemple Dansle cas p: R — S,t — e et £ = 1, la monodromie s’écrit

Zxm(S,1)—>2Z, (n,y)—n+deg(y).

En particulier, deg(y) =0 - .

Proposition 3.3.7 Soit p : X’ — X un revétement (avec X’) connexe par arcs
et z € X. Alors la monodromie sur p~!(x) est transitive et le stabilisateur d’un
relevement =’ de x est p,mi (X', o).

On désigne par p,m (X', ') I'image de p, : m (X', 2") — m (X, x).

Démonstration. Soient z’,y' € p~!(x). Puisque X’ est connexe par arcs, il existe un
chemin ~' : 2’ ~ ¢/. On considére alors le lacet v = p,y’ dans X. Par construction,
~" est le relévement de ~ partant de =’ et on a donc 2’ - v = 3. Cela montre que
'action est transitive. Soit maintenant z’ € p~'(x) et v un lacet en x. Si 7/ désigne
le relévement de v partant de 2/, on a 2’ -y = 2’ si et seulement si [7'] € m (X', /).
Il en résulte que le stabilisateur de 2" est p,m (X', /). [ |

Remarques 1. On a donc une bijection (a 2’ fixé)

7T1(X7 x)/p*m(X’,m') = p_l(x)7 m - -

2. Le degré du revétement est égal a 'indice de p,m (X', 2") dans m (X, z).
3. La monodromie est libre si et seulement si X’ est simplement connexe et on a
alors une bijection

m(X,2) ~p(z), [] <27

Zimt x =1et 2’ =0, on obtient une bijection

Exemple Avec p: R - S;t+— e
m(S,1) ~Z, [y] < deg(v)

et donc (presque) le théoréme 2.2.13.

Théoreme 3.3.8 Soit G un groupe agissant de maniére proprement discontinue sur
un espace topologique X connexe par arcs et p : X — X /G Papplication quotient.
Si x € X, on a une suite exacte courte

1 - m(X,z) B m(X/G,p(x)) - G — 1.
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Démonstration. On a montré dans la proposition 3.2.4 que p est un revétement. Si
[v] € (X /G, p(x)), alors z - v € p~*(p(z)) = Gzx. Puisque, par hypothése, 'action
de G sur X est libre, il existe un unique g € G tel que = - v = gx. On dispose donc
d’une application

¢:m(X/G,p(x)) —» G

déterminée par ¢([y]) = g © x -y = gx. Avant d’aller plus loin, remarquons que,
grace a la proposition 3.4.2 plus bas, puisque la multiplication par g est continue, les
deux actions commutent ? : on a toujours (gz) -y = g(x - 7). Supposons maintenant
que ¢([v]) = g et ¢([0]) = h. On aura alors x -y = gz et 2 - § = hx. On en déduit
que

z-90 = (v-7)-6=(g92) 0 =g(x-0) = g(hz) = (gh),

c’est-a-dire ¢([v][d]) = gh. Cela montre que ¢ est un omomorphisme de groupes.
Pour conclure, on applique la proposition 3.3.7. Puisque la monodromie est transitive
sur X, on voit immédiatement que ¢ est surjective. Puisque le stabilisateur de x
pour la monodromie est p,m1(X, ), on voit que ker ¢ = p,m1(X,z). On a donc bien
la suite exacte courte annoncée. [ |

Remarques 1. Comme conséquence, on voit que p,m (X, z) <7 (X /G, p(zx)) (le
sous-groupe est distingué).
2. Si X est simplement connexe, alors

T (X/G,p(r) ~G (V] gesz-v=g 7).

Exemple Dans le cas de I'action par translation de Z sur R, on trouve un isomor-
phisme de groupes

m1(S,1) ~m(R/Z,0)~Z ([y] o n<0-v=n+0),

c’est-a-dire [y] — deg(7y). On obtient enfin ainsi une démonstration compléte du
théoréme 2.2.13.

On peut aussi calculer le groupe fondamental de ’espace projectif :

Corollaire 3.3.9 Si n = 2, alors m (P", z) ~ Z/2Z. |

Corollaire 3.3.10 Soit 1 - G’ - G — G” — 1 une suite exacte stricte de groupes
topologiques avec G’ discret et G connexe par arcs. On dispose alors d’une suite
exacte courte

1— 7T1(G,1) - 7T1(G”,]_) - G/ — 1.

Démonstration. On peut supposer que G' <G et G" = G/G'. [ |

2. Ou bien directement : si z -y = y, il existe alors 7/ : x ~ y avec pxy' = 7, donc g+ : gz ~ gy
avec px gy = pxY =7 et alors (gz)[7] = gy.
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Remarques 1. Si G’ est un sous-groupe de G, alors la seconde fléche est donnée
par [y] —1-7.
2. Si G est simplement connexe, alors m(G”, 1) ~ G'.
3. On obtient automatiquement 'isomorphisme deg : m1(S,1) ~ Z & partir de la
suite exacte 0 > Z >R - S — 1.
4. On remarquera qu’on a méme une suite exacte longue

7T1(G/, 1) - 7T1(G, 1) - 7T1(G”, 1) - Gl -G - G// — 1.

5. Si on se donne un groupe G, on peut toujours trouver un espace topologique
X tel que m(X,z) ~ G. 1l suffit pour cela de considérer le « complexe sim-
plicial » EG obtenu en recollant les simplexes [go, .., gn] OU go,..., 9, € G
et de prendre pour X le quotient BG (appelé espace classifiant) par 'action
naturelle de G.

3.4 Revétement universel

Il va étre pratique de considérer des applications pointées.

Définition 3.4.1 Si p/ : X’ — X est un revétement tel que p/'(z') = z, on dit
que p' : (X', 2') - (X, x) est un revétement pointé. Un morphisme entre deux
revétement pointés p' : (X' 2') — (X, z) et p” : (X", 2") — (X, z) est une
application continue f : (X', 2') — (X", 2") telle que p’ =p" o f et f(2") =2/,

Remarques 1. Il résulte de la proposition 3.3.2 que, lorsque X’ est connexe, il

existe au plus un morphisme f : (X', 2') — (X”,2") de revétements pointés de
(X, x).

2. Si X est localement connexe par arcs et X” est connexe, alors tout morphisme
de revétements pointés f : (X', 2') — (X”,2") est aussi un revétement pointé
(voir exercice 3.11).

3. On dispose aussi bien siir de la notion de morphisme de revétements non pointés
p i X Xetp”: X" — X : clest une application continue f : X' — X' telle
que p' = p” o f. On dit encore isomorphisme si f est un homéomorphisme, et
automorphisme si, de plus, X' = X”.

Proposition 3.4.2 Un morphisme f : (X', 2’) — (X”,2") de revétements pointés de

(X, x) préserve la monodromie : Si v est un chemin partant de z, alors f(z'-v) =
/"

" -

Démonstration. Par définition, 3/ := 2’ - v est le point final du relévement ' de ~
partant de z’. Alors, 4" := f,7' est un chemin dans X” joignant " a y” := f(y/). De

//

plus, pi~" := plfiy = pl.y = . On aura donc y" = z” - . |

Proposition 3.4.3 Soit p : (X', z) = (X, xo) un revétement pointé et f : (Y, yo) —
(X, xo) une application continue pointée avec Y connexe localement connexe par
arcs. Alors, f se reléve le long de p (en une application continue pointée) si et
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seulement si f, se factorise par p, :
(X', 25) < m (X, )
wm _-7 i mn _ -7
_ - p _ - Px
(Y, %) (X, o) (Y, 4o) m1(X, To)-

Démonstration. La condition est clairement nécessaire. De plus, le relévement sera
unique car Y est connexe et la factorisation unique car p, est injectif.

Supposons donnés deux chemins v;,72 : yo ~ ¥ dans Y. Alors 7, -, * est un lacet
en yo et fi(71 -7, ") est donc un lacet en xy. Notre hypothése implique que celui-ci
se reléve en un lacet 7' en zf. Si, pour i = 1,2, on désigne par 7, 'unique chemin
partant de x, qui reléve f,v;, alors 7' -7} et y; sont deux relévements de f,vy; partant
de zf. Cela implique que 7" - 74 = 7] et donc que 7, et 74 ont méme point final.

Maintenant, puisque Y est connexe par arcs, si y € Y, il existe un chemin
v :yo ~ y. D’aprés ce qui précéde, le point final du relévement " de f,y partant de
zy ne dépend que de y et on le note f'(y).

Soit U’ un voisinage ouvert suffisamment petit de f’(y) dans X’ que l'on peut
supposer étre un feuillet au dessus de U < X. Puisque f est continue, il existe un
voisinage ouvert W de y tel que f(W) < U. Puisque Y est localement connexe par
arcs, on peut supposer que W est connexe par arcs. Si z € W, il existe donc un
chemin ¢ : y ~ z dans W. On peut alors considérer le chemin v-9 : yg ~ 2 si bien que
f'(2) est le point final du relévement de fi(7-0) partant de x. Puisque § est contenu
dans W, f.(9) est contenu dans U. Puisque p induit un homéomorphisme U’ ~ U, on
voit que f,(9) se reléve de maniére unique en un chemin ¢’ dans U’ partant de f’(y).
Il suit que ' - & est le relévement de f.(v - J) partant de z{, si bien que f'(z) € U’.
Cela montre que f est continue (comme composée W — U ~ U’ < X’ au voisinage
de y). |

Remarques 1. Le reléevement, s’il existe, est unique grace a la proposition 3.3.2.

2. La condition s’exprime plus simplement en disant que fi (71 (Y, 40)) < pemi (X', 7).

3. Lorsque Y est simplement connexe et localement connexe par arcs, toute
application continue pointée (Y, yo) — (X, x) se reléve de maniére unique le
long de p'.

4. Si X est localement connexe par arcs, alors deux revétements pointés connezes
(X', 2") et (X", 2") de (X, x) sont isomorphes si et seulement si les images de
m (X', 2") et (X", 2") dans 7m1(X, x) coincident.

Définition 3.4.4 Un revétement pointé p : (X, %) — (X, z) est universel si, pour
tout revétement pointé p’ : (X', 2') - (X, x), il existe un unique morphisme de
revétements pointés f: (X, 7) — (X', 2').

Remarques 1. Un revétement universel, s’il existe, est unique a unique isomor-
phisme prés, et on dira parfois « le » revétement universel.
2. Un revétement universel est connexe (voir exercice 3.9).
3. Un revétement simplement connexe d’un espace localement connexe par arcs
est universel grace a la proposition 3.4.3.
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Exemples 1. C est un revétement universel de C*.
2. R™ est un revétement universel du tore T" (et R est donc un revétement universel
de S).
3. S" est un revétement universel de P® pour n > 2 (et R est un revétement
universel de P).

Définition 3.4.5 Un voisinage U d’un point x d’un espace topologique X est simple
si I'image de m1 (U, x) dans m (X, z) est triviale. Un espace est semi-localement
simplement conneze si tout x € X posséde un voisinage simple.

Remarques 1. Un ouvert est simple en x si tout lacet en x dans U est homotope
au lacet trivial dans X. Si x € U’ < U, alors U’ aussi est simple.
2. Un espace localement simplement connexe est semi-localement simplement
connexe.
3. Un espace est semi-localement simplement connexe si et seulement s’il posséde
une base d’ouverts simples (attention : simple est une notion relative).

Exemples 1. La boucle d’oreille hawaienne X = [, S((1/n,0),1/n) < R?
n’est pas semi-localement simplement connexe.
2. Le cone sur la boucle d’oreille hawaienne est contractile (donc simplement
connexe, donc semi-localement simplement connexe) mais pas localement sim-
plement connexe.

Théoreme 3.4.6 Si X est un espace connexe, localement connexe par arcs et
semi-localement simplement connexe ¢, alors il posséde un revétement simplement
connexe.

a. On dit alors que X est délagable.

Démonstration. On fixe xg € X et on définit
X = {[7] : 7(0) = z0} = w(X).

Sivy:xg~xdans X et U est un voisinage simple de x, on pose
U, :={[y- 4], §€C([0,1],0), (U.2))} = X.

C’est donc I'ensemble des classes de chemins 7/ = v -d ou d : © ~ y est contenu dans
U. On a alors les propriétés suivantes :
1. Si~,y :xg ~ x, alors

Uy=Uy si[v] =[],
Uy nUy = sinon.

Démonstration. En effet, si U, n U, # J, alors il existe § et ¢’ dans U tels
que [y-6] = [v - ¢]. On a alors [y] = [y] - 80~ = [/] puisque §6! est un
lacet dans U et que U est simple. Et réciproquement. [ |

2. Sivy:zg~xzety ixg~y,alors [y]eU, < U, =U,.
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Démonstration. En effet, il existe alors o : * ~ y contenu dans U tel que
[7'] =[v-a].Sid:x ~ z est contenu dans U, alors [y-0] = [y (a™'-8)] € Uy,
et réciproquement. [ |

3. SiU’ < U est un autre voisinage (automatiquement simple) de z, alors U] < U,,.
Démonstration. Clair. [

Donnons nous maintenant pour ¢ = 1,2, v; : £y ~ z; et un voisinage simple U; de
z;. Soit v : xg ~ x. Si [y] € Uy, N Uz, et U < Uy N Us est un voisinage (simple) de
x, alors U, < U;, = U; 5, pour i = 1,2 et donc U, < Uy, n Us,,. Cela montre que
les U, forment une base pour une topologie sur X. On munit dorénavant X de cette
topologie.

On considére maintenant ’application

~

p: X —X, [v] —~(1)

qui associe le point x & v : g ~ . On montre alors ’assertion suivante :

Si~vy:xg~ xetU est un voisinage simple connexe par arcs de x, alors p induit une
bijection U, ~ U.

Démonstration. Si 6 : x ~ y est contenu dans U, alors p([y-0]) = y € U et
I’application est donc bien définie. Réciproquement, si y € U, alors il existe un
chemin ¢ : © ~ y contenu dans U et p([y - d]) = y, cela montre que I'application est
surjective. Enfin, si 8,6’ : x ~ y sont contenus dans U, alors ¢ - ! est un lacet dans
U si bien que [§] = [¢'] et donc [y - d] = [y - §']. Cela montre que 'application est
injective. [

On montre maintenant 1’assertion suivante :

Si U est un ouvert simple connexe par arcs de X, alors p~(U) = Uv(l)eU U,.

Démonstration. Soit v : g ~ x. Si [y] € p~}(U) alors y(1) = p([y]) € U et on a
bien str [y] € U,. Réciproquement, s’il existe 7' tel que 7/(1) € U et [vy] € U,, alors
v(1) € U et donc [v] € p~H(U). ]

Puisque les ouverts simples U de X forment une base pour la topologie de X et
que les ouverts de la forme U, forment une base pour la topologie de X, cela implique
que p est continue. Mais cela implique aussi que p est ouverte. En particulier, les
bijections induites U, ~ U induites par p sont des homéomorphisme. Puisque p est
clairement surjective et que les U, sont disjoints (ou confondus), on en déduit que p
est un revétement.

On pose maintenant %o := [1,,] € X et on montre

Si v est un chemin partant de xo dans X, alors le relévement 5 de v partant de ¥y
dans X est donné par Vt € [0, 1], 5(t) = [:] avec pour tout s € [0, 1], v(s) = y(ts).

Démonstration. On aura bien sir 5(0) = [y0] = [l.,] = To et pour tout ¢ € [0, 1],

(P () = (poF)(t) = p([n]) = (1) =~(t)



86 Chapitre 3. Revétements

si bien que p,y = . Il faut tout de méme s’assurer que 7 est continu. Comme =y est
continu, si t € [0,1] et si U est un voisinage ouvert simple de 7(t), alors il existe un
voisinage I de t dans [0, 1] tel que v(I) < U. Si t’ € I, alors le chemin 7 défini pour
s € [0, 1] par v (s) = v((1 — s)t + st’) est contenu dans U et on a [y] = [y - Y]
On aura donc 5 (t') = [y¢] € Us,. Il suit que §(I) < U,, si bien que 7 est continu. M

On voit donc que si 7y est un chemin partant de zy dans X, alors son relévement
v partant de Ty dans X satisfait §(1) = [y]. Autrement dit, le point final de 7 est
égal a [7v]. Il suit que X est connexe (par arcs). Si on impose de plus que 7 est un
lacet, alors [v] = [Zo] = [1ls]. Or on sait que p est un revétement, et 'application

Dx : 7T1(5<:,50) — 771(X7370)

est donc injective. Il suit que [§] = [1,]. Puisque tout chemin partant de Z, dans
X, et en particulier tout lacet basé en Zy, est le relévement 7 de son image vy par py,
cela implique que 71 (X, 7o) = 1 et X est donc simplement connexe. [ |

Remarques 1. Comme conséquence du théoréme, un espace délacable posséde
toujours un revétement universel (qui s’avére étre simplement connexe).

2. On peut montrer qu'un espace localement connexe par arcs posséde un revéte-
ment simplement connexe si et seulement si il est délacable.

3. On peut montrer plus généralement que si X est délacable, on a une bijection
entre les classes d’isomorphismes de revétements de X et les sous-groupes de
m1(X, o). Le cas du revétement universel correspond au sous-groupe trivial
(et le cas du revétement trivial correspond au groupe fondamental lui méme).
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Exercices
Action de groupe

Exercice 3.1 Soit G' un groupe topologique agissant sur un espace topologique X.
1. Montrer que si c¢’est une action par homéomorphismes, alors I’application
quotient p : X — X /G est ouverte.
2. Montrer que si I'action est continue, alors c¢’est une action par homéomor-
phismes, et réciproquement lorsque G est discret.

Solution. 1. Pour la premiére assertion, il suffit de remarquer que
p () = oU
geG

est bien ouvert puisque la multiplication par g est un homéomorphisme et que
X /G est muni de la topologie quotient.

2. Pour la seconde assertion, il suffit de rappeler qu’on dispose d’une bijection
continue

HX:GXX

geG

et que c¢’est un homéomorphisme lorsque G est discret. On voit donc que si
I’action est continue, alors chaque application X — X,z — gz est continue,
ainsi que la réciproque si G est discret. On conclut en remarquant que si g et
g~ ! sont continues, alors ce sont des homéomorphismes réciproques. [ |
Exercice 3.2 Montrer que si H est un sous-groupe discret d'un groupe topologique
(G, alors 'action par translation a gauche de H sur G est proprement discontinue.

Solution. Puisque H est discret, il existe un voisinage ouvert W de 1 dans G tel
que W n H = {1}. Puisque l'application (g,g') — gg'~! est continue, il existe des
voisinages V1,1V, de 1 dans G tel que V1V2_1 < W. On pose alors V := V] n V5. Si
he HetgeVnhV, alorsil existe ¢ € V tel que g = hg’ et donc h = g¢"te Wn H
si bien que h = 1. Par translation, la propriété sera valide en tout point de G : si
g € G,on pose U = Vg. On aura alors, pour h € H\1,UnhU = (VnhV)g=¢. R

Revétements

Exercice 3.3 Montrer que la projection
p:Ci={(r,y)eRay=1ouy=0} »R, (2,9)—x
est un homéomorphisme local mais n’est pas un revétement.

Solution. On a une union disjointe p~}(R*) = T UR* ou I := {(x,y) € R*, zy = 1}
et p induit bien des homéomorphismes I' ~ R* et R* ~ R*. Cela montre que p induit
un revétement au dessus de R*. De plus, p induit un homéomorphisme ('identité)
R ~ R au voisinage de 0. C’est donc bien un homéomorphisme local. Par contre la
fibre p~1(0) n’a qu'un élément contrairement aux autres. L’application p n’est donc
pas un revétement. [ |
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Exercice 3.4 1. Décrire p~1(S\{1}) et p~1(S\{—1}) lorsque p : R — S, t —> e*™
oup:S—S,z— 2"
2. En déduire dans les deux cas que p est un revétement.
3. En déduire aussi que R™ est un revétement de T".

Solution. 1. Dans le premier cas, on a
p S\ = Inn+ 10 et pS\=11) = JIn—1/2,n+ 1/2]
neZ neZ

Dans le second cas, on a

P (S\{1}) = S\t et pH(S\{=1}) = S\(k2n\btn)

avec
pn i={2€C,2" =1} = {62““’/" tk=0,...n—1}.

2. On a bien une trivialisation locale de p. Dans le premier cas, les feuillets sont
les n,n+ 1] et |n — 1/2,n + 1/2[ respectivement. Dans le second, ce sont les

(e 2km/n < 0 <2(k+1)7/n} et {e¥ (4k+1)7/2n < 0 < (4k+3)7/2n}.

3. Puisqu’un produit fini de revétements est un revétement et que T = S, R" est
un revétement de T". |

Exercice 3.5 Montrer que I’application canonique p : S — P™ est un revétement
de degré 2 et que pour tout a € S*, U(a) := {x € S", |x — a| < +/2} est un feuillet.

Solution. Puisque p(x) = p(y) < y = +x, on voit que si V < S™ est ouvert, alors
pH(p(V)) =V U —V est ouvert et donc p(V) est ouvert (puisque c’est la topologie
quotient). Cela montre que p est une application ouverte. Clairement, U(a) est ouvert
et —U(a) = U(—a). Puisque |z — a|?> + |z + a|? = 4, les conditions |z — a| < v/2
et |z + a| < +/2 sont incompatibles si bien que U(a) n U(—a) = &. En particulier,
p est injectif sur U(a). Il suit que p induit un homémorphisme (injectif, continu,
ouvert) entre U(a) et son image. Puisque p~'(p(U(a))) = U(a) u U(—a), on a bien
un revétement de degré 2 et U(a) est un feuillet. |

n

Exercice 3.6 Montrer que les applications exp : C — C* et C* — C*, 2 — z
sont des revétements.

Solution. On utilise les suite exactes 0 >Z —>C —->C* - 1let 0 —>Z/nZ - C* —
C* — 1 de l'exercice 2.7. [

3.5.3 Monodromie

Exercice 3.7 1. Monter que le revétement R — S, t — e*7 provient * d'une
action du groupe Z et en déduire le groupe fondamental de S. Question
analogue avec R" — T".

2. Montrer que le revétement p : S — S,z — 2" provient d’'une action du
groupe Z/nZ et en déduire une suite exacte reliant le groupe fondamental
de Set Z/nZ.

3. Montrer que le revétement S™ — P™ provient d’une action du groupe Z/2Z



3.5 Exercices 89

et en déduire le groupe fondamental de P" lorsque n > 2.

a. Un revétement p : X’ — X provient d’une action de groupes de G sur X’ si p induit un
homéomorphisme X'/G ~ X.
Solution. 1. On utilise les suitess0 > Z >R —>S > 1let0 >Z2" > R"—>T" > 1
de l'exercice 2.7.
2. On utilise la suite 0 — Z/nZ — S 5> S — 1 et on en déduit une suite exacte

1 — (S, 1) B 7,(S,1) - Z/nZ — 0.

3. On fait agir Z/2Z sur S" par 1z = —x. Il résulte de I'exercice 3.5 que c’est
une action proprement discontinue. Puisque, pour n > 2, S” est simplement
connexe, on en déduit que m (P", x) ~ Z/2Z. |

3.5.4 Revétement universel

Exercice 3.8 On identifie m1(S, 1) avec Z via le degré et u, avec Z/nZ en faisant
correspondre e?#7/" et k mod n. On considére le revétement p, : S — S, z — 2.
1. Identifier 'image de p,, avec un sous-groupe de Z.
2. Montrer qu’il existe une application continue f : (S,1) — (S, 1) telle que
Pm © f = py si et seulement si m | n.
3. Montrer que l'action de la monodromie de (S, 1) sur pu, est l'action
naturelle de Z sur Z/nZ.

Solution. 1. Clairement, p,, correspond via le degré a I’application Z > Z et son
image s’identifie donc a nZ.

2. Puisque p,, est un revétement et que S est connexe localement connexe par arcs,
on sait que p,, se reléve le long de p,, si et seulement si p,,.71 (S, 1) < pmsm1(S, 1),
c’est-a-dire nZ < mZ, ou encore m | n.

3. L’action par la monodromie est donnée par

My X 7T1(S,1) — Hn; (Ca [7]) '_)C'7

ou ( - v est le point final du relévement 7 de v partant de (. D’autre part,
'action naturelle de Z sur Z/nZ est donnée par

Z/nZ xZ—2Z/nZ, (k modn,m)—k+m modn.

Posons ¢ = e*™/™ et Vt € [0, 1], 7(t) = e*™. Rappelons que les deux définitions
de 4™ (en utilisant la loi de groupe de S ou la composition des lacets) coincident
a homotopie prés. Le relévement § de 4™ en ¢* doit satisfaire §(0) = ¢* et
Pnx(6) =~™. Or on a pour t € [0, 1],

Pos(8)(t) = pu((5(£)) = 6(6)" et ™ (t) = Xt

(en utilisant la loi de groupe de S) et la condition p,.(d) = 4™ s’écrit donc
5(t)" = et 11 suffit donc de poser

Vte[0,1], o(t) := cre¥ ™t
On aura bien (¥ - 4™ = §(1) = ¢k+m. [
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[ Exercice 3.9 Montrer qu’un revétement universel est connexe.

Solution. Soit p: (X, %) — (X, zo) un revétement universel. On considére le revéte-
ment

(X X {07 1}7 ($0,0)) - (X7 xO)'

Soit Y la composante connexe de T et Z son complémentaire. Soient f, g : X — X x
{0, 1} les applications données par f(y) = g(y) = (p(y),0) siy € Y et f(2) = (p(2),0),
g(z) = (p(2),1) si z € Z. Ce sont deux morphismes de revétements pointés si bien
que f =g et Z = . 1l faut tout de méme s’assurer que g est continue. Il suffit
de montrer que si U est ouvert dans X, alors g~ *(U x i) est ouvert pour i = 0, 1.
Puisque Y est fermé, Z est ouvert et donc g~ (U x 1) = p~(U) n Z est ouvert. De
méme si ' = X\U, alors g7} (F x 0) = p~}(F) nY est fermé et g=1 (U x 0) aussi est
ouvert. |

| Exercice 3.10 Quels sont les revétements universels de S™, T" et P ?

Solution. On a R —» S,t — €7 Id : S” = S" pour n = 2, R® — T", (t;) — (e¥™),
R—-»S~PetS"—»P" x+— T pourn > 2. [ |

Exercice 3.11 Soit f: X’ — X” un morphisme de revétements de X.
1. Montrer que si X est localement connexe et f surjective, alors f est un
revétement.
2. Montrer que si X est localement connexe par arcs et X” est connexe, alors
f est un revétement.

Solution. 1. On peut remplacer X par un voisinage suffisamment petit U d’un de
ses points, et conséquemment X’ et X” par p'~1(U) et p" 1 (U) respectivement.
On peut donc supposer que X est connexe et que les revétements X’ et X”
sont triviaux. On suppose ainsi que X' = X x I’ et X" = X x I”. Puisque X
est connexe, pour tout i € I’ il existe a(i) € I” tel que f(X x i) < X x a(i).
Puisque les applications X x i — X et X x (i) — X induites par p’ et p” sont
des homéomorphismes, il en va de méme de Papplication X x i ~ X x «(i)
induite par f. De plus, on a clairement f~1(X x j) = Ua(i)sz x 1. Cela
montre que f est un revétement.

2. On suppose maintenant que X est localement connexe par arcs et X” est
connexe. Cela implique que X et X” sont tous deux connexes par arcs. Soient
e X' a" = f(2!) et x:=p/(af) = p’(2"). Siy’ € X", il existe un chemin
~" 2" ~y” dans X”. On peut relever v = pZy" : x ~ y := p”(y”) en un chemin
~" 2’ ~ 9y dans X'. On considére alors les chemins 7" et f,7'. Ce sont deux
relévements de v qui partent de z”. Puisque X” est un revétement de X, ils
coincident et ont donc méme point final f(y') = y”. Cela montre que f est
surjective et c¢’est donc un revétement grace a la premiére question. |

Exercice 3.12 Soit p: Y — X un revétement.
1. Montrer que I'ensemble Aut(Y/X) des automorphismes g du revétement est
un sous-groupe de S(Y).
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2. Montrer que si Y est connexe et g € Aut(Y/X) a un point fixe, alors g = Idy.

3. Montrer que p se factorise de maniére unique par 'application quotient :
Y — Y/Aut(Y/X) % X. Lorsque 7 est bijectif, on dit que p est galoisien.

4. Montrer que si Y est connexe et p est galoisien, alors Aut(Y/X) agit de
maniére proprement discontinue sur Y.

5. Réciproquement, montrer que si un groupe G agit de maniére proprement
discontinue sur Y connexe, alors Y — Y /G est galoisien.

Solution. 1. Immédiat.

2. Puisque Y est connexe, si y € Y, il existe au plus un morphisme de revétements
g:Y =Y tel que g(y) = y. C’est nécessairement 'identité.

3. Immédiat.

4. Supposons que p est galoisien et posons G := Aut(Y/X). Puisque G est discret
et qu’il agit par homéomorphismes, c¢’est une action continue. De plus, par
hypothése, la projection p: Y — Y /G ~ X est un revétement. Enfin, il résulte
de la question 2 que l'action est libre. On sait alors qu’elle est proprement
discontinue.

5. Puisque 'action est proprement discontinue, elle est libre et donc fidéle si bien
qu’on a une application injective G — S(X). Puisque 'action est continue,
cette application est a valeurs dans Aut(Y /X)) et il faut montrer que c’est une
bijection. Si f : Y — Y est un automorphisme du revétement p : Y — Y /G, et
ye Y, alors f(y) € p~(p(y)) = Gy et il existe donc g € G tel que f(y) =g - v,
c’est-a~dire (g~' o f)(y) = y. Il résulte de la question 2) que (¢! o f) = Idy et
donc que f = ¢ (la multiplication par g). [ |






4.1 Algebre linéaire (Rappels)

Lemme 4.1.1 Soit (M;);e; une famille de groupes abéliens. Il existe alors un groupe
abélien M (leur somme directe) et des morphismes j; : M; — M, tels que si on
se donne des morphismes f; : M; — N avec N abélien, alors il existe un unique
morphisme f : M — N rendant commutatif les diagrammes

) |
&'f
Y

N.

Démonstration. 11 suffit de considérer le sous-groupe M := @, ; M; < [ [,c; M; des
familles & support fini. Les détails sont laissés en exercice. [ |

Remarques 1. En particulier, on a @;_; M; =[], M;.

2.

3.

Si on pose ZU) = @, Z, alors toute application I — J induit un morphisme
de groupes Z) — Z(/) et ¢’est fonctoriel.

Un groupe abélien M est libre s'il est isomorphe a Z(). Cela signifie qu’il
posséde une base (e;)ie; avec e; € M : tout x € M s’écrit de maniére unique
comme somme finie x = ) ._; a;e; avec a; € Z et réciproquement. On écrit alors
aussi M = @, ; Ze; (somme directe interne).

Un groupe abélien est de type fini s’il posséde un nombre fini de générateurs.
C’est équivalent a dire qu’il existe un morphisme surjectif Z" — M. Il est
monogene s’il est engendré par un seul élément. C’est équivalent a dire qu’il
existe un isomorphisme Z/nZ ~ M avec n € N.

)

. Une suite exacte courte 0 — M’ - M £ M" — 0 est dite scindée si p posséde

une section s : M" — M (c’est-a-dire p o s = Idys») ou de maniére équivalente,
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si 7 posséde une rétraction r : M — M’ (c’est-a-dire r o i = Idy). Dans ce cas,
M ~ M'@® M” (voir exercice 4.1).

Théoreme 4.1.2 Tout sous-groupe d’un groupe abélien libre est libre.

Démonstration. Si M < ZU), on applique le lemme de Zorn aux bases B de M, :=
M nZY) pour J < I. Si B est maximale et k ¢ J, alors (en notant ey le vecteur
d’indice k de la base canonique de Z())

{neN,3xe My, x +nex € My i} = dZ

(car c’est un idéal) et B U dey est une base de M . Contradiction. Détails en
exercice. ]

Remarques 1. Comme conséquence, on voit que si M est un groupe abélien, il
existe une suite exacte courte 0 — L; — Lo — M — 0 avec Lg, L, abéliens
libres.

2. Un groupe abélien L est libre si et seulement si tout morphisme surjectif
M — L admet une section (en tant que morphisme de groupe). De maniére
équivalente, toute suite exacte 0 — M’ — M — L — 0 est scindée.

Theoreme 4.1.3 Tout groupe abélien de type fini est somme directe de groupes
monogenes.

Démonstration. On peut écrire M ~ coker A avec A € M,x.,(Z). La méthode
du pivot montre que A est équivalente a une matrice diagonale D. On aura donc
M ~ coker D. Détails laissés en exercice. [ |

Remarques 1. Plus précisément, 'idéal engendré par les mineurs de taille ¢ de
A est de la forme (d; ...d;) avec d; | diyq et D = [dy,...,d,.]| (théoréme des
facteurs invariants).

2. Le théoréeme 4.1.3 implique que M est somme directe d’un groupe abélien libre
et d’un groupe fini.

Proposition 4.1.4 Si M est un groupe abélien, il existe un Q-espace vectoriel Mg
et un morphisme de groupes j : M — Mg tel que si f: M — V est un morphisme
de groupes ou V' est un Q-espace vectoriel, alors il existe une unique application
linéaire f : Mg — V avec foj = f.

J
M —— Mg

N

Vv

Démonstration. 11 suffit de poser Mg := (M x Z\{0})/ ~ avec (z,n) ~ (y,m) <
mx = ny. Les détails sont laissés en exercice. [ |
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Remarques 1. On a
Mioys := ker(M — Mq) = {x € M,3n € Z\{0}, nx = 0}.

Le groupe abélien M est sans torsion (resp. de torsion) si Mios = 0 (resp.
Mtors = M)
2. Le rang de M est rang(M) := dim Mg. Si M ~ Z(I) alors Mg ~ Q) et donc
rang(M) = #1. Le groupe M est de torsion si et seulement si rang(M) = 0.
3. Un groupe abélien de type fini est sans-torsion (resp. de torsion) si et seulement
sl est libre (resp. fini).

lemme4.15 Si0 - M’ — M — M"” — 0 est une suite exacte de groupes abéliens,
alors la suite 0 — Mg — Mq — Mg — 0 est aussi exacte.

Démonstration. Vérification élémentaire. [ |

Remarque Il résulte alors du théoréme du rang usuel que

rang(M) = rang(M') + rang(M").

Définition 4.1.6 Un compleze (de chaines) C est une suite de groupes abéliens et
d’homomorphismes

dn+10 dn
> Uppl —> Uy —> Upg — -

tels que Vn € Z,d,, od, 1 = 0. Le groupe des cycles (resp. bords) est
Zn,(C) :=kerd, (resp. B,(C) :=1im d,;1).
Le n-éme groupe d’homologie de C est H,(C) = Z,(C)/B,(C).

Remarques 1. On dit que C), est le terme de degré n et que d,, est la différentielle

en degré n.

2. La suite est exacte en degré n (c’est a dire en C,) si et seulement B,,(C) = Z,(C)
si et seulement si H,(C) = 0.

3. Un complexe exact partout est dit acyclique. De maniére équivalente : Vn €
N, H,(C) = 0.

4. Un complexe est de rang fini si C, est de rang fini pour tout ne Z et C,, =0
pour |n| >> 0.

5. Si {C®}; est une famille de complexes, leur somme directe C' := @;e; O est le
complexe défini par Cy(f) = @i IC,(f). C’est bien un complexe puisque d,, respecte
des composantes. De plus, on a pour tout n € N, H,(C) ~ @;e;H, (C).

Quand on définit C,, pour seulement certaines valeurs de n, on sous-entend que
C,, = 0 sinon.
Exemples 1. Avec M en degré 0 (et 0 ailleurs), on a Hy = M et H,, = 0 sinon.

2. Avec M 5 N en degrés 0 et 1 (et 0 ailleurs), on a Hy = coker f, H; = ker f et
H,, = 0 sinon.
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Théoreme 4.1.7 — durang. Si C est un complexe de rang fini, alors

D (=1)"rang(C,,) = > (—1)"rang(H,(C)).
Démonstration. 11 suffit d’appliquer le théoréme du rang aux suites exactes

0 Z,(C) = Cp — By1(C) = 0, 0 — B, (C) — Zn(C) — H,(C) — 0.

On aura ainsi

D (=1)"rang(Cy) = > (—1)"rang(Z,(C)) + »_(—1)"rang(B, 1 (C))

et

Z(—l)”rang(zn(C)) =Z( 1)"rang(B —i—Z "(rangH,,(C))

La formule annoncée en résulte. [ |

Définition 4.1.8 Un morphisme de complexes f : C' — C’ est une suite de mor-
phismes f, : C,, — C! rendant commutatif le diagramme

dn

Cnfl

Lfn+l lfn Lfnl
U &

/ n+1 12 n !
o CnJrl Cn Cnfl

dn+1
o > n+1 Cn

Remarques 1. Un morphisme de complexes f : C'— C’ induit des morphismes
(fonctoriels)

fo = Zo(f) 1 Zo(C) = Zu(C"),  fi = Bu(f) : Ba(C) — Ba(C)
et

fe = Ho(f) : Hao(C) — Hu(C).
2. En particulier, si f’ : ¢ — C est un autre morphisme de complexes, alors
H,(f"o f) = Ho(f") o Hn(f) et on a toujours H,(Ide) = Idu, )
3. f est un quasi-isomorphisme si H,(f) est un isomorphisme pour tout n € Z et
on écrit alors C' ~ (C".
4. C est acyclique si et seulement si C' est quasi-isomorphe au complexe nul 0.

Définition 4.1.9 1. Si f,g: C — (' sont des morphismes de complexes, une
homotopie (de chaines) h : f ~ g est une famille de morphismes

dn

dn+l
On-‘r 1 On

hnt1 :L/ hn—1
d’ d

/ n+l / n '
On-i—l On On—l

tels que

VneN, d, 0hy+hy10dy= fo— g
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2. Un morphisme de complexes f : C' — C’ est une équivalence d’homotopie
s’il existe un morphisme g : C" — C tel que go f ~ Id¢ et fog ~ Ide.

3. Un complexe est contractile s’il est homotopiquement équivalent au complexe
nul.

Remarques 1. Si f ~g:C — C’, alors, pour tout n € N, H,(f) = H,(g).
2. Sif:C ~ (' estune équivalence d’homotopie, alors f est un quasi-isomorphisme.
3. Si C' est contractile, alors C' est acyclique.

Exemple 1. On dispose d’une homotopie h : Id ~ 0 :

Ca implique que le complexe Z 14 Z est contractile et pas seulement acyclique.
2. Le complexe

025725222 50—

est acyclique mais pas contractile.

Définition 4.1.10 Une suite exacte courte de complexes est une suite de morphismes
de complexes 0 —» C' — C — C” — 0 telle que 0 — C;, — C,, — C} — 0 soit une
suite exacte courte pour tout n € N.

Remarques 1. Soient C' un complexe et pour tout n € Z, C! < C, tel que
d(C}) < C_,. On dit alors que C' < C' est un sous-complexe.

2. Si C" < C est un sous-complexe, on pose pour tout n € Z, (C/C"),, = C,/C! et
on désigne par d,, : (C/C"), — (C/C"),—1 application quotient. Alors, C'/C’
le compleze quotient.

3. SiC" < C,alors 0 > C" — C' — C/C" — 0 est une suite exacte courte.

On démontre maintenant le fondamental théoréme du serpent :

)

Théoreme 4.1.11 — du serpent. Si 0 — ¢’ = C % C” — 0 est une suite exacte
courte de complexes, alors il existe pour tout n € N, un morphisme 4,, : H,(C”) —
H,_1(C) tel que la suite

- > H,(C") = H,(C) = Hy(C") 38 Hyy 1 (C') — Hp1(C) = Hyy (C7) — -+ -

soit exacte (partout).

Démonstration. Afin d’alléger 1’écriture, on écrira simplement d,, pour les différen-
tielles des différents complexes (et pas d, et d).

On construit d’abord 6,, comme suit. Si o” € H,,(C"), on peut écrire o := ¢’ avec
" € 7Z,(C"). Puisque p, est surjective, on peut écrire ¢’ = p,(c) avec ¢ € C,,. On
considére alors d,,(c) € C,—1. On a p,—1(d,(c)) = dn(pn(c))) = dn(c”) = 0 puisque
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" € Z,(C"). Puisque la suite 0 — C!_; — C,,-1 — C/_, — 0 est exacte, il existe

donc un unique ¢ € C,,_; tel que i,,_1(¢') = d,(c). On a

in—2(dn-1(c')) = dp-1(in-1(c)) = dn-1(dn((c)) = 0

et puisque i,_» est injective, d,,_1(¢’) = 0. Autrement, dit ¢ € Z,_1(C") et on pose
() :=p' =7 e H,_1(C").

On montre maintenant que d,, est bien défini. On peut perturber ¢ en ¢ + i,(c})
avec ¢; € C). On aura alors

dn(c +in(c1)) = dn(c) + dn(in(c)))) = in-1(c) +in-1(dn(c)) = in_1(c' + dn(c}))

et ¢ +d,(c)) =7 = [ puisque d,(c}) € B,(C"). On peut aussi perturber ¢’ en
" +b" avec 0" € B,,(C"). On peut alors écrire 0" = d,,;1(c]) puis ¢] = p,(c1) avec
c1 € Cpyq. On aura alors

pn(c + dnJrl(Cl)) =" + dn+1(pn<01)> =+

et

dp(c + dpi1(c1)) = dn(c) + dp(dnia1(cr)) = dn(c).

Montrons maintenant que la suite est exacte en H,,_1(C"). On montre d’abord
que H,,_1(7) 0d,, = 0. Avec les notations ci-dessus, i,,_1(c’) = d,(c) € B,,_1(C) et donc
H,,1(7)(d,(”)) = 0. Supposons réciproquement, que pour un certain 5’ € H,_1(C),
on ait H,,_1(2)(8’) = 0. On écrit alors 5" = @ si bien que i,_;(¢') € B,,_1(C). On peut
alors écrire i,,_1(c') = d,(c) avec a € C, et il suffit de poser ¢’ = p,(c) et o” ="
pour que 6, (a") = f.

On montre ensuite qu’elle est exacte en H,(C”). On montre d’abord que 4,, o
H,.(p) = 0. Avec les notations ci-dessus, on suppose donc que o' = H,,(p)(«) avec
a € H,(C). On peut alors choisir ¢ € C,, de telle sorte que o = ¢ avec ¢ € Z,(C). On
aura alors d,,(c) = 0 si bien que 7,,_1(c¢’) = 0 et donc ¢ = 0 puisque ,_; est injective
et finalement § = 0. Réciproquement, on suppose que 6, (a”) = 0. Avec les notations
ci-dessus, on aura donc ¢ € B,,_1(C") et on peut donc écrire ¢ = d,,(c}) avec ¢} € C!,.

dn(c = in(c))) = dn(c) = dn(in(c))) = in_1(c') = in-1(dn(c}))
=i, 1(d —d,(c})) =0

Cela montre que ¢ —i,(c}) € Z,(C) et on peut poser a = ¢ —i,(c}) € H,(C). On a

pulc = tn(ch)) = pulc) = palin(cy)) = pa(c) = ¢ et donc Hy(p)(a) = o
11 ne reste plus qu’a montrer 'exactitude en H, (C'). On a bien str

H,.(p) o H,(¢) = Hy(pn 0 in) = H,(0) = 0.

Réciproquement, supposons qu’on ait H,(p)(a) = 0 avec a € H,(C'). On a donc
a = ¢ avec ¢ € Z,(C) et p,(c) € B,(C"). On peut donc écrire p,(c) = d,+1(") avec
" e CV, . Puisque p,41 est surjective, on a ¢’ = p,41(c1) avec ¢ € Cpiq. On aura
donc

pn(c = dnyi(c1)) = pu(c) — dns1(puri(cr)) = palc) — dn+1(C”) = 0.
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Puisque la suite 0 — C!, — C,, - C" — 0 est exacte, il existe un unique ¢ € C,, tel
que i,() = ¢ —dyt1(c1). On a

in-1(dn () = dp(in(c)) = dn(c — dpi1(c1)) = dn(c) = dp(dnsi(c1)) =0

puisque ¢ € Z,(C'). Puisque 4, est injective, on en déduit que d, () = 0, c’est-a-dire
que ¢ € Z,(C"). On pose alors o = @. Par construction, H, (i)(¢/) = «a. |

Remarques 1. Le morphisme J, est caractérisé pour ¢’ € Z,(C") par

(@) =7 < 3deceC, " =puc)etd,(c) =1i,1()
< VeeC,,d" =pulc) = du(c) =i,1().

2. Si

0 '’ c c” 0

F

0 D’ D D" 0

est un morphisme de suites exactes courtes, alors le diagramme

> H,(C) —=H,(C") —2>H, {(C") —=H, 4(C) — -

L | |

.. —=H,(D) —=H,(D") —2+H, (D) —=H,_4(D) — - --

est aussi commutatif (voir exercice 4.5).

4.2 Ensemble semi-simplicial
Définition 4.2.1 1. Sin e N, alors le simplexe standard de dimension n est

n

|A"| = {ﬁ = (to, ..., tn) / Zti =1, > O} c Rt

1=0

2. Un n-simpleze (régulier) est une application affine injective o : |[A"| — X
ou X est une partie d’un espace vectoriel E.

Remarques 1. Si on désigne par (eg,...,e,) la base canonique de R"*!, alors
|A"| est I’enveloppe convexe de {eq, ..., e}
2. Un n-simplexe o est uniquement déterminé par les images ay, . . . , a,, des vecteurs
€o, - - -, €, de la base canonique. On écrit alors o = [ay, ..., a,]| et on dit que
ag, . . ., a, sont les sommets de o. On pose A" := [ey, ..., e,].
3. Des points ay, . ..,a, de E sont affinement indépendants (i.e. apay, . .., agl,
sont linéairement indépendants) si et seulement si [ay, . . . , a,,] est un n-simplexe.
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4. L’image de o = |aq, . .., a,] est 'enveloppe convexe
n n
lo| := {Ztiai/ Zti =1,t; > 0}
i=0 i=0
de {ag,...,a,}. En pratique, on ne fait pas de différence entre un n-simplexe

et son image.

Exemples 1. Un O-simplexe [a] est un point.
2. Un 1 simplexe [a, b] est un segment fermé orienté a extrémités distinctes.
3. Un 2-simplexe [a, b, ¢] est un triangle plein orienté a sommets distincts.

Définition 4.2.2 1. Si0< iy < ... <1, < n, alors le n-simplexe régulier
[€igy -y €i, ] o |AT| — |A"
est une face de dimension m de A™.

2. En particulier @, 67 := [eg, ..., &, ..., en] o |A" | < |A"| est la i-ieme face
de dimension n — 1 de A™.

a. On écrira eqg,...,¢;,...,e, aulieu de eg,...,€_1,€i41,...,€n.
Remarques 1. Explicitement, on a

e si k<1

Vk=0,...,n, 5?(ek)={ek+1 G k>

ou encore
5?(150, ce 7tn—1) = (to, N 7t7l—17 O,ti, c 7tn—1)-
2. On dira aussi que |[e;, ..., €;, ]| est une face de |A"|.
3. On dira aussi que [a;,,. .., a;, | est une face de [ao,...,a,] (c’est le composé
avec la face correspondante de |A"|) et on considérera en particulier la i-iéme
face [ag,...,a; ... a,].

Exemples 1. Les faces de dimension 0 du simplexe sont les sommets. Les faces
de dimension 1 sont les arétes du simplexe.

2. Les faces de [a, b, ¢] sont [a, b, c], [a,b], [a,c], [b,c], [a], [0] et [c].

3. La frontiére d’un simplexe (vu comme sous-espace de 'espace affine qu’il
engendre) est I'union des faces de codimension 1 (et l'intérieur est leur complé-
mentaire).

4. On dispose d’homéomorphismes

IA? = {1} ~ {0} et |A'={(t,s)t+s=1,t,5s=0}~[0,1], (t,5)— s

Les applications 8, d; : |A°| — |Al| correspondent respectivement & 0 — 1 et
0—0:

|AY] - {0} (4.1)

o)

A —[0,1].
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lemme 423 V0<i<j<s<n+1, 5?“ 0dp =it o 07 1-

Démonstration. En effet, dans les deux cas, I'image de (tg,...,t,_1) est

(to, . ,ti,l,O,ti, ce ,tj,l,O,tj, . ,tnfl). |

Définition 4.2.4 Un ensemble semi-simplicial S est une suite d’ensembles et d’ap-
plications

d%+1 ds, d?
Sn-i—l . Sn . Sn—l . T Z Sl — SO
o 0 g

n+1
tels que
VneN,VO<i<j<n+l1, d;odﬁbﬂ :d%—lodfm'
Il est fine si S, est fini pour tout n € N et S,, = ¢ pour n >> 0.

Exemples 1. Si [ao,...,a,] est un simplexe et S, désigne I’ensemble des faces
de dimension m, on peut considérer les applications face

d{n([aio, Ce ,aim]) = [aio, e ,@, N ,CLim].

On obtient ainsi un ensemble semi-simplicial grace au lemme 4.2.3.

2. Plus généralement, on définit un « complexe simplicial » en « recollant » des
simplexes.

3. On peut considérer I’ensemble semi-simplicial (correspondant au cercle) Sy =
{v},S1 = {e} (et S,, = & pour n = 2). On a alors pas le choix pour les d’,.

4. On peut aussi considérer ’ensemble semi-simplicial Sy = {v}, S; = {a,b, ¢},
Sy = {0, 7} (correspondant au tore) avec

dy(0) = b,dy(0) = ¢, d3(0) =a et dy(7) = a,dy(7) = c,d3(7) =b.
Définition 4.2.5 Soient S et S’ deux ensembles semi-simpliciaux. Un morphisme

d’ensembles semi-simpliciaux f : S — S’ est famille d’applications f,, : S, — S,
telle que

YneN,Vi=0,...,n, foiod =d. of,.

Lemme 4.2.6 Soit S un ensemble semi-simplicial. On désigne pour n > 0, par
Cp(9) := Z05) ~ @,es, Zo le groupe abélien libre de base S, et, pour n > 1,

d, = Zn](—w‘d; L C(S) = Cor(S)

ou d, : C,,(S) — C,_1(S) désigne I'unique morphisme de groupes qui prolonge
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di S, — S,_1. On pose aussi C,,(S) = 0 pour n < 0 et d,, = 0 pour n < 0. Alors
C(S) est un complexe de chaines.

Démonstration. On a

o= (§ra) (£

i=0 j=0
n n+l

-5 S o,
i=0 j=0

_ Z ( )z+]d1 Od]_H + Z z+]dz Odﬁz-&-l
o<i<j<n+1 o<y<isn

= Z (1) d o dy .y + Z 1)™d) o dy s
o<i<j<n+1 0<is<y<n

_ Z ( 1)z+]+1d] o dz L + Z Z+]dj o d;-&-l
o<is<y<n o<is<y<n

= 0. [ |

Remarques 1. Tout morphisme de complexes simpliciaux f : S — S’ se prolonge
de maniére unique en un morphisme de complexes de chaines f, = C(f) :
C(S) — C(Y) et c’est fonctoriel.

2. Si{S (i)}lE ; est une famille d’ensemble semi-simpliciaux, leur union disjointe

S i=]1,c; S est I'ensemble semi-simplicial défini par Sy, 0 = =L S ) (union
disjointe). C’est bien un ensemble semi-simplicial puisque d7 respecte des
composantes. De plus C(S) = ®;c;C(S9).

3. Si S est un complexe semi-simplicial, le complexe de chaines augmenté est
C(S) i= = Cn(S) B Cpi(S) = -+ = C1(S) B Cy(S) 5 Z
avec € (ZUESQ aga) = ZGGSO a,. On notera qu’on a bien € o d; = 0.
4. On désigne par H,(S) (resp. H,(S)) le n-éme groupe d’homologie de C(S)
(resp. C(5)). Si S # &, alors

Ho(S) ~ Ho(S) @ Z
H,(S) = H,(S) sin #0.

Les formules avec H sont souvent plus facile & mémoriser que les formules avec

H.

Exemples 1. Si [ao,...,a,] est un n-simplexe, alors
m
d([aigy - -5 as,]) Z YNai, .- - a,, ... ai,)

(on peut y penser comme étant la frontiére — signée — du simplexe).



4.3 Homologie singuliere 103

2. Dans le cas du cercle (exemple (3) ci-dessus), on a
C(S) : [Ze > zv].

On aura donc Ho(C(S)) ~ H{(C(S)) ~ Z et H,(C(S)) = 0 sinon.
3. Dans le cas du tore (exemple (4) ci-dessus), on a

C(S) : [ZU@ZTiZ(I@ZbC—DZCgZU]
avec d(o) = d(7) = a — ¢+ b. On en déduit que Ho(C(5)) ~ Ho(C(S)) ~ Z et
H,(C(S)) ~ Z?% (et 0 sinon).

Définition 4.2.7 Si S est un ensemble semi-simplicial fini, sa caractéristique d’Euler-
Poincaré est

X(S) = D (=1)"#5,.

n

Son n-éme nombre de Betti est 5,(S) = rang(H"(C(5)).

Proposition 4.2.8 Si S est un ensemble semi-simplicial fini, alors

X(8) = D (=1)"Ba(S).

n

Démonstration. En effet, il résulte de la proposition 4.1.7 que

X(S) = Z( 1)"#S, = ) (~1)"rang(Cu(9))

n

S rans(H(8)) = (~178(S). .

n n

4.3 Homologie singuliére

On pourrait développer maintenant I’homologie simpliciale mais on va se concen-
trer sur ’homologie singuliére qui est bien plus puissante (mais moins intuitive).

Définition 4.3.1 Soit X un espace topologique. Si n € N, alors un n-simplexe sin-
gulier est une application continue o : |[A"| — X et on pose S, (X) := C(|A"|, X).
Sin>0et 0<1...<n, alors la i-iéme face de o est I'application composée
006! : |A" | — X et on pose d(c) := 6*(0) = o 0 7.

Lemme 4.3.2 Si X est un espace topologique, alors S(X) est un ensemble semi-
simplicial.

Démonstration. On sait que si n € N, i € {0,...,n} et 7 € {1,...n + 1}, alors
67 o 0p = 67 o 67, Par fonctorialité, on aura donc
dyod) =87 o8t = (67 o op)"
_ (5n+1 05n 1)* _ 5;Lil<1 05?4-1*
=dtod

n+1-
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Remarques 1. Une application continue f : X — Y fournit un morphisme

d’ensembles semi-simpliciaux f, = S(f) : S(X) — S(Y) et c’est fonctoriel.

2. On peut identifier Sy(X) avec X (et on le fera) puisque |A°| est réduit & un
point.

3. On peut identifier S;(X) avec 'ensemble C([0, 1], X') des chemins (et on le fera)
puisqu’on a un homéomorphisme |Al| ~ [0, 1], (£, s) — s.

4. Avec cette identification, si v : xg ~ 7 est un chemin dans X, on aura donc
di(y) = 21 et di(7) = zo.

5. Avec cette identification, si o est un 2-simplexe, on peut considérer les chemins
Yo i=dS(0), 71 = di(o) et v, := d3(o). Ceux-ci sont explicitement définis pour
t €0, 1], par

Y(t) =0(0,1 —1t,t), 7(t) =0c(1—1,0,t), ~(t)=0c(l—t1t0).

Autrement dit, on a le diagramme commutatif suivant :

L1
72 Yo
Jo
i " xT9.
Exemple Si ao,...,a, € X c E espace vectoriel (pas nécessairement affinement

indépendants), on peut considérer le n-simplexe singulier
n
[ao, ... an] A" > X, t— > ta;.
i=0

Lorsque ay, ..., a, sont affinement indépendant, c’est un n-simplexe régulier, mais
sinon, il peut aussi étre dégénéré.

Définition 4.3.3 Si X est un espace topologique, alors C(X) := C(S(X)) est le
complexe des n-chaines singulieres de X et H,(X) := H,(C(X)) est le n-éme
groupe d’homologie singuliere de X.

On notera aussi Z,(X) et B, (X) les groupes des cycles et des bords.

Remarques 1. Le groupe des n-chaines singuliéres est
Cn(X) := C(X)p 1= @oes, (x)Z0.

et la différentielle associée est donnée par

4y CulX) = Cua(X), o Y (1) (o0 7).
i=0
2. Toute application continue f : X — Y induit fonctoriellement un morphisme
de complexes de chaines f, = C(f) : C(X) — C(Y), et pour tout n € N, un
morphisme de groupes

fo = Ho(f) : Ho(X) — Hp(Y).
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3. On écrira aussi H,(X) := H,(C(X)) = H,(C(X)).

Exemples 1. Si on identifie les O-simplexes singuliers avec les points de X, une
0-chaine singuliére est donc une somme finie > | a;x; avec x; € X et a; € Z.
2. Si on identifie les 1-simplexes singuliers avec les chemins dans X, une 1-chaine
singuliére est donc une somme finie Zyzl ¢;7y; ou 7y; est un chemin dans X et
¢; € Z et on aura donc

dy (Z Ci%’) = Z ci(7i(1) —7:(0)).

=1

3. En particulier, si v est un chemin dans X entre xq et 1, on aura d;(y) = 1 — o
(est le bord orienté de 7). De méme, avec les notations ci-dessus, si o est un
2-simplexe, alors dy(0) = o — 71 + 72 (est le bord orienté de o).

Izéfiniiion 4.3.4 Un espace topologique X est acyclique si le complexe augmenté
C(X) est acyclique.

De maniére équivalente, Ho(X) ~ Z et H,,(X) = 0 pour n > 0.

Exemples 1. Un point est acyclique (voir exercice 4.8).
2. Plus généralement, un espace contractile est acyclique (voir corollaire 4.4).
3. Par contre, un espace simplement connexe n’est pas toujours acyclique (par
exemple S" pour n > 2).
4. Un espace acyclique n’est pas non plus nécessairement simplement connexe

(difficile).

Proposition 4.3.5 Si {X;},; désigne I'ensemble des composantes connexes (par
arcs) de X, alors

Vn € N7 Hn(X) = ®ZEIHH(XZ)

Démonstration. Puisque |A™| est connexe (par arcs), on a

c(lar, x) = [ Je(ar, x,)

iel

(union disjointe) et S(X) est donc 'union disjointe des ensembles semi-simpliciaux
S(X;). L’assertion en résulte formellement. |

Remarques 1. De méme, si X = [[,.; X; est une union disjointe, alors pour

tout n € N, on a H,(X) = ®;c/H, (X)).
2. Attention, ces résultats sont faux pour H.
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arc

Proposition 4.3.6 Hy(X) ~ Z8“ () & Py ey Z - X

Démonstration. 1l suffit de considérer le cas ou X est non-vide et connexe par arcs
et de montrer que Ho(X) = 0. En d’autres termes, il faut s’assurer que la suite

CH(X) S Co(X) S5 Z—0

est exacte en Cp(X). On sait déja que € o d = 0. Réciproquement, on se donne
Do aix € Co(X) tel que > ja; = 0. Soit pour tout ¢ = 0,...,n un chemin ;
entre zy et z;. On a alors

d1 <i CLZ’YZ> = i ai(xi - JIQ) = i a;T; — (i CLZ'> o = i a;T;. [ |
=0 1=0 1=0 =0 1=0

On va avoir besoin de résultats préliminaires pour comparer le groupe fondamental
a I’homologie.

Proposition 4.3.7 Soient g : 1 ~ X2,,71 : Tg ~ Ta,Y2 : Tg ~ x1 dans X. Alors, les
conditions suivantes sont équivalentes :
1. II existe alors un 2-simplexe singulier o dont les faces sont v, 71, Vo,

2. 71 ~0,1} 72 Yo

Démonstration. On sait qu’'un lacet v dans X est trivial si et seulement si 7 :
S — X se prolonge en un morphisme 5 : B2 — X. On sait aussi qu'il existe un
homéomorphisme B? ~ A? induisant un homéomorphisme sur les frontiéres S ~ 0AZ.
On considére alors I'application continue dA; — X donnée respectivement par
Y0, Y1, 2 sur les faces Ag, Ay, Ay de A2 On voit alors que le lacet 7 - ;' - 72 est
trivial si et seulement s’il existe une application continue o : A2 — X telle que

Tla = V05 Oja, = —1 et oja, = 7e. c’est-a-dire un 2-simplexe singulier dont les
faces sont Yo, 71, 2. Enfin, dire que o - v, - 72 est trivial est équivalent a dire que
71 ~{0,13 V2 " Yo u

Lemme 4.3.8 Soit X un espace topologique et v,~" des chemins dans X. Alors,
1. si~y et 4/ sont composables, alors v+ =~ + v mod B;(X),
2. 81y~ 7, alors vy =" mod B, (X).

Démonstration. On désigne par ¢ € C;(X)/B1(X) la classe de ¢ € C;(X). La premiére
condition de la proposition 4.3.7 s’écrit do € Co(X), 70 — 71 + 72 = d20, ce qui est
équivalent & 7, = 7, + 7,. Les deux assertions en résultent. Tout d’abord, si v et 7/
sont composables, on aura trivialement v-7' ~o.1} 7-7 et donc -7/ = 7++'. Ensuite,
siy ~o,13 7' et siy désigne le point final, on remarque d’abord que 1, ~¢ 1y 1, - 1,,
et on aura donc 1, = 1, + 1, si bien que 1, = 0. Puisque vy ~o 1 v - 1,, on aura
doncy =% +1,=%. [

Théoreme 4.3.9 — Hurewicz. Si X est connexe par arcs et z € X, alors 7, (X, 2)*> ~
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‘Hl(X)- ‘

Démonstration. Si«y est un lacet en x, alors di(vy) = x —x = 0 et donc v € Z;(X).
En utilisant le lemme (4.3.8), on obtient un morphisme de groupes

O:m(X,x) > H(X), [v] —7 (4.2)
Puisque H; (X) est abélien, ® se factorise par un morphisme de groupes abéliens
¢:m(X,2)" > Hi(X), [] —7
Réciproquement, on choisit pour tout y € X, un chemin d, : x ~y. Siy:y ~ 2

dans X, on pose (uniquement dans cette démonstration) 3 = 4,740, *. Ceci définit
une application

Sl(X)_’ﬂ-l(X7x)v 7'—’[3]
L’application composée
S1(X) - m(X,x) - m (X, 2)™

se prolonge alors de maniére unique en un morphisme de groupes

U Ci(X) - m(X,2)®, e~ [A]
Soit o un 2-simplexe et o, 71, V2 ses faces. Il résulte du lemme 4.3.7 que o7, ' 7» est

trivial. Si on désigne par xp, x1, x2 les sommets du 2-simplexe et qu’on écrit 9; := 0,
on voit donc que

Yo A A2 =010 05" 0oy 0g G20 =01 (Y0 ) - 6y

est aussi trivial. Il suit que (¥ o dy)(0) = [1,] et ¥ induit donc un morphisme

¥ Hy(X) = m(X, )™, Zaz’% = Hm]“’

Par construction, si «y est un lacet en z, on a (0 ®)([y]) = [7]. Pour la réciproque,
on rapelle d’abord que l'application x — ¢, se prolonge de maniére unique en un
morphisme de groupes

n

Co(X) » C1(X), s= iaimi > 0 1= Zaiéxi.
i=1

i=1
Si v est un chemin dans X, on a
(@0 W)(7) = dy0) +7 = dy1)-

On en déduit que si ¢ = Y. a;y; € Z1(X), on aura

1

(¢o)(e) = Z i (5’%(0) 7 — 5%‘(1)) =c+ (5d1(0) =C. |

i=1
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1. On a Hy(B") = 0 pour tout n € N.
S™) =0 pour n # 1 et Hy(S) ~ Z.

P") = Z/2Z pour n > 2 et H;(P) ~ Z.
~ Z" pour tout n € N.

S) ~ Z2.

Exemples

3
— — —

o
@)
=
&
=
»
<

Remarques 1. On a toujours Hy (X x V) ~ Hy(X) @ Hy(Y).
2. Si X est simplement connexe, alors H; (X) = 0.
3. Si G est un groupe topologique connexe par arcs, alors Hy(G) = m;(G,1). En
particulier, G est simplement connexe si et seulement si H;(G) = 0.
4. Soient X un espace topologique et X, Xo € X tels que X = X; U X,. Si
X, X1, X1 n X5 sont connexe par arcs, on a une suite exacte

H1<X1 N Xg) i Hl(Xl) ®H1<X2) - Hl(X) — 0.

On généralisera ¢a dans le theoréme 4.4.7.
5. Soient, pour i = 1,2, (X, z;) un espace pointé connexe par arcs tel que x; soit
un rétract par déformation d'un ouvert de X;. Alors,

H1<X1 V XQ) X~ Hl(X1> @Hl(XQ)

On généralisera ¢a dans 'exercice 4.11
6. Si un groupe G agit de maniére proprement discontinue sur un espace topolo-
gique X connexe par arcs, on a une suite exacte (& droite)

H(X) - Hi(X/G) — G*™ — 0.

7.51 > G — G - G" — 1 est une suite exacte courte stricte de groupes
topologiques avec GG’ discret et (G connexe par arcs, on a une suite exacte
courte :

0 — Hi(G) = Hi(G") — Ho(G) — 0.
Et méme une suite exacte longue

Hl(G/) - Hl(G) - Hl(G”) - Ho(G/) - H()(G) - Ho(G”) — 0.

4.4 Homologie singuliére (suite)

Avant de construire la suite de Mayer-Vietoris, on va d’abord montrer que
I’homotopie topologique entraine 'homotopie algébrique. Nous aurons besoin du
résultat technique suivant sur les prismes :

Lemme 4.4.1 On pose pour 0 < i < n, v; = (€;,0),w; := (e;,1) € |A"| x [0,1] et
pour n € N,

Pn = D (=1)[vo, . ., v, Wi, . .., wp] € Cyr (JAT] x [0,1])
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Alors, pour tout n € N,

n

n+1 pn Z ]+1 IdOl ) (pn—l) = [w07'-~awn] - ['UOw--

Démonstration. On a d’une part

dnJrl(pn) = Z(_l)idn+1([007 cey Uiy Wiy ee 7wn])
=0
n 'n+1 o

= Z(_l)l Z(_l)]dfw-i-l([voa ey Uy Wy, s 7wn])
i=0 j=0

= (_1)Z+] [007 -y Uy Vi, Wy, 7wn]
0<j<isn

- Z ( 1)i+j[v(]7 Vi, Wi, @7 7wn]
0<i<j<n

:2( 1)J+1(§ Id[()l]) (Z(—l)i[vo,...,Ui,wi,...,wn1])

n ne
:ZZ 1)it1(g (67 x Idjo,11) © [vo, -+, Vi Wiy« + o, W]

= (—1>Z+]+1[1}0,...,@,...Ui+1,wi+1,...7wn]
+ Z (=) vg, .o v, Wy oo Wy - W]

= Z (=) [vgy ., Dy e v Vs Wy - Wy

osy<isn

— Z (=1)" v+« vy Vi Wiy o, W5y - Wy

osi<y<sn

On a donc

n+1 pn 2 J+1 x Id [0,1] ) (pn—l)

7=0
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Théoreme 442 Si f ~g: X > Y, alors f, ~ g, : C(X) — C(Y).

Démonstration. Soit h: X x [0,1] — Y une homotopie entre f et g. Si o € S,(X),
on consideére 'application composée

ho + |A"] % [0,1] 728 X« [0,1] - Y.

Avec les notations du lemme 4.4.1, il existe un unique morphisme de groupes
P, :C(X) = Cri1(Y), 0 how(pn)

et nous allons montrer que ¢a définit une homotopie entre f, et g.. On aura h,(v;) =
f(o(e;)) et hy(w;) = g(o(e;)) si bien que

hos([Vo, -y vn]) = fulo) et hes([wo, ..., w,]) = g«(0).

On calcule ensuite

P 1(dn(0)) = (ho (dn(o) x Id[O,l]))*<pn—1)

i, (Z(—wf(dzm . Id[o,m*(pn—l))

(-
Il
o

= h, (Z(—l)j((d o 5;) x Id[o,l])*(pn—1)>

[
Il
o

= (ho (o x1dj))s <Z(—1)j(5? X Id[OJ])*(Z?m))

j=0
= hox (Z(—l)j@? x Id[O,l])*(pn—1)> :
j=0
On déduit alors du lemme 4.4.1 que
(dpi10P,— P,_10d,)(0) =
= dp+1(hox(pn)) — Pa-1(dn(0))

= how(dni1(Pn)) = how (2(—1)j (05 x Id[o,l])*(pnl)) :

7=0

= ha* <dn+1(pn) + Z(—l)ﬂl(é? x Id[ovl])*<pn—1)>

=0
= hes([wo, ..., wn] — [vo, .., Un])

= (Gns — fas)(0). u

Corollaire 4.4.3 1. Sif~g:X —Y, alors
Hn(f) = Hn(g) : Hn(X) - Hn(Y>

pour tout n € N.
2. Si X ~Y, alors C(X) ~C(Y) et H,(X) ~ H,(Y) pour tout n € N.
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3. Un espace contractile est acyclique. | ‘

Remarques 1. Si f ~ g, onaaussi fu ~ g : C(X) — C(Y) et Hy(f) = H,(g).
2. De méme, si X ~ Y, alors C(X) ~ C(Y) et H,(X) ~ H,(Y).

Pour la suite, nous aurons besoin de la notion de subdivision barycentrique. Si
s € S,41 est une permutation, alors le n-simplexe singulier Bar, de A,, est défini par

Bar,(eg) = Bar(s(0),. .., s(k))

(barycentre). On pourra faire un dessin pour n = 2.

Lemme 4.4.4 Si X est un espace topologique, alors 'application

Sub,, : Cp,(X) = Cp(X), o— Z (—1)*(Bars o o)

s€Snp+1

définit un endomorphisme du complexe de chaines C'(X) et Idg(x) ~ Sub.

Démonstration. On vérifie aisément que c¢’est bien un endomorphisme de C(X).
On construit ensuite par récurrence sur n, pour tout espace topologique X, des
morphismes h,, : C,,(X) — C,11(X) tels que d,,41 0 by, + hyy—q 0d,, = Id — Sub,, en
partant de Ay = 0. On aura alors

dpy10(hyodyyy —Id+Sub,yq) = (hpodyer + by 0d, —Id+Sub,)od, 41 = 0.
En appliquant ¢a a la n + 1-chaine [eg, ..., e,41] de A" on aura
dn+1<(hn o) dn+1 —Id + SUbn+1)([60, N ;€n+1])) =0.

Puisque A™"! est contractile, il est acyclique, et il existe donc ¢, 9 € Cpyo(A™ ) tel
que

(hn o dn—i—l —Id + Subn+1)([€0, Ce ,€n+1]) = dn+2(cn+2).

11 suffit alors de poser h,1(0) = 04(cpy2) pour o € S,41(X) et de vérifier que

dnt2© hpy1 + hyodyr = 1d — Subg . u

I Définition 4.4.5 Si X = | J,.; )O(i, alors X = {X,}ic; est un recouvrement de X.

On pose alors S, (X) = J,c; Sn(Xi) € S (X) et C(&X) := C(S(X)).

Théoreme 4.4.6 — des petites chaines. Si X’ est un recouvrement de X, alors
I'inclusion est un quasi-isomorphisme C(X) ~ C(X).

Démonstration. 1l résulte de la compacité de |A™| que

Vee C,(X),3IreN, Sub;(c)e C,(X).
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En particulier, si ¢ € Z,(X), alors il existe 7 € N tel que ¢ := Sub! (¢) € C,(X).
On a alors ¢ € Z,(X) et aussi ¢ = ¢ mod B,(X) grace au lemme 4.4.4. Cela
implique que H,(X) — H,(X) est surjective. De méme si ¢ € Z,(X) et ¢ = 0
mod B, (X), alors il existe ¢’ € C,(X) tel que ¢ = d,,41(¢). Il existe alors r € N tel
que ¢’ := Sub; (') € C,11(X) et on a

dnt1(c") = dpy1(Subl (') = Sub) ., (dps1(c')) = Sub),(¢) = ¢ mod B, (X).
Cela montre que H,(X) — H,(X) est injective. |

On construit maintenant la suite de Mayer-Vietoris :

Théoreme 4.4.7 Soit X un espace topologique et X7, Xy < X tels que X = X1uX,.
On a alors une suite exacte longue

> Hn(Xl M XQ) — Hn(X1> @Hn(XQ) — Hn(X) — Hn,1<X1 M XQ) —> -

Démonstration. On a
Sn(X1 0 Xo) =5,(X1) nSn(Xa) et S,({X1, Xo}) = Sn(X1) U Sp(Xs).
On en déduit une suite exacte de complexes
0 — C(X1 n Xyp) = C(Xy) ® C(X3z) — C({ Xy, Xa}) — 0.
On applique le theoréme du serpent 4.1.11 et le théoréme des petites chaines 4.4.6. W
Remarques 1. le théoréme des petites chaines est aussi valide pour les complexes

augmentés : C(X) ~ C(X).
2. De méme, la suite de Mayer-Vietoris est toujours valide pour H.

Corollaire 4.4.8 Sin, k > 0, alors Hy(S™) ~ { Z sik=n

0  sinon.

Démonstration. Soit a € S™ et X4 := S"\{#a}. Ona X4 ~R"et X, nX_ ~R™"\0 ~
S»~L. Par récurrence, la suite de Mayer-Vietoris nous fournit un isomorphisme

ﬁk(Sn) >~ ﬁk_l(S"_l)
et tout le reste est nul. [ |

Remarques 1. On voit en particulier que S™ n’est pas acyclique et donc pas
contractile.
2. On voit aussi que, pour n # m, S™ x S™.
3. On obtient ainsi une nouvelle démonstration du théoréme 2.2.13 : puisque S
est un groupe topologique, on a 7 (S, 1) = Hy(S) = Z.

Enfin, on répond a la question de Cantor :
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Théoreme 4.4.9 — Brouwer. Soient m,n € R. Alors R™ est homéomorphe a R™ si
et seulement si n = m.

Démonstration. Sinon, on aurait un homéomorphisme entre R™\{0} et R"™\{c} qui
ont respectivement méme type d’homotopie que S™ et S™. Contradiction. [ |
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4.5 Exercices
4.5.1 Algébre linéaire

Exercice 4.1 1. Soit 0 — M’ 5 M & M” — 0 une suite exacte courte de

W

groupes abéliens. Montrer que les conditions suivantes sont équivalentes :
(a) il existe une section (un morphisme s : M"” — M telle que pos = Idy»),
(b) il existe une rétraction (un morphisme r : M — M’ telle que roi =

IdM’ )7

et qu’alors Idy; =207 + sop.

On dit alors que la suite est scindée. Montrer que, dans ce cas, M ~ M'@M”.

Montrer que si M” est libre alors la suite est toujours scindée.

Montrer que si M’ est un Q-espace vectoriel, alors la suite est toujours

scindée.

Montrer que la suite 0 — Z 2%z Z/2Z — ( est une suite exacte courte

qui n’est pas scindée.

Solution. 1. Supposons pour commencer qu’il existe une section s. Alors, si

w

x € M, on a p(x — s(p(x))) = 0 et il existe donc un unique 2’ € M’ tel que
i(r(z)) = z — s(p(z)) et on pose r(x) = z’. On peut remarquer d’ores et déja
que Idy; = ior+ sop. Montrons que r est un morphisme de groupes. Si y € M,
on aura

i(r(z) +r(y)) =i(r(z)) +i(r(y)) = 2 — s(p(z)) +y — s(p(y))
=z +y—spr+y) =ilr(z+y)).

Puisque i est injective, cela montre que r(z + y) = r(x) + r(y). De plus, si
¥ e M'; on a p(i(z’)) = 0 et donc i(z') — s(p(i(2’))) = i(z’) si bien que
r(i(x’)) = 2’ et r est bien une rétraction.

Supposons maintenant qu’il existe une rétraction r. Si x € M”, alors il existe x €
M tel que p(x) = z”. On pose alors s(x”) = z—i(r(x)). Il faut montrer que ¢a ne
dépend pas du choix de z. Mais si p(y) = 2", alors p((y—ir(y))—(z—ir(z))) = 0.
Il existe donc 2’ € M’ tel que (y —ir(y)) — (x —ir(xz)) = i(2’). On aura alors
2 =r(i()) =r(y—ir(y)) —r(x—ir(xz)) = 0 si bien que y —ir(y) = x —ir(x).
Il faut ensuite montrer que c’est un morphisme de groupes. On se donne donc
z,y € M tels que p(x) = 2" et p(y) = y”. On aura alors p(x + y) = 2" + 3 et

s(@”) +5(y") = v —i(r(x)) +y—i(r(y) = (@ +y) +ir(z+y) = s(z" +y").

Enfin, si p(z) = 2” € M”, on aura bien p(s(z”)) = p(z —i(r(z))) = p(z) = =
et s est bien une section.

. On en déduit des isomorphismes réciproques M — M'® M" x — (r(z),p(z))

et M@ M" — M, (2',2") —i(a') + s(2”). Vérifier.

. Si B = (&)ies est une base de M”, il suffit de poser s(e;) = x; avec p(x;) = e;.

On a alors M" = M et 'application linéaire injective iq : Mg < Mq posséde
une rétraction linéaire f que I'on peut composer avec le morphisme M — Ma.

. L’unique morphisme s : Z/2Z — Z est le morphisme nul. |
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Exercice 4.2 Calculer dans chaque cas I’homologie du complexe et vérifier le
théoréme du rang :

1. Ze > Zv (concentré en degrés 0 et 1),
2. Zo@®Zr 5 Za®Zb®DZc > Zv avec d(o) = d(7) = a — ¢ + b (concentré en
degrés 0 et 1 et 2).

Solution. 1. OnaHy~H;~ZetH,, =0sinon. Onabienl—-1=0=1-1.
2. OnaHy~Hy, ~Z, H; ~Z? et 0 sinon. Pour le H;, on pourra remarquer que

By est facteur direct (avec section a — a — ¢ + b,b — 0, ¢ — 0 par exemple).
Onabienl1 -34+2=0=1-2+1. |

Exercice 4.3 1. Montrer que si f ~ g : C — (', alors, pour tout n € N,

H,(f) = Ha(g)-
2. En déduire que si f : C ~ (" est une équivalence d’homotopie, alors f est
un quasi-isomorphisme.

Solution. 1. Il suffit de remarquer que si c € Z,(C), alors
gn(c) = fu(c) = (dns1 0 hn)(€) = (hp-1 0 dn)(c) = dpy1(hn(c)) € Bu(C').
2. Cela résulte de la fonctorialité de I’homologie. |

Exercice 4.4 Montrer le lemme du serpent : Si

0 M —s M2 M7 0
jf, Lf lf”
0 N Lo N9 N 0

est un diagramme commutatif & lignes exactes, alors il existe une suite exacte
0 — ker f' — ker f — ker f” — coker f’ — coker f — coker f” — 0.
Solution. 11 suffit de considérer le complexe
Ci=i 50> MBNS0--

avec d; = f et les complexes analogues C’" et C”. On a alors Ho(C) = coker f,
Hy(C) = ker f et H,(C) = 0 sinon. De méme pour C’ et C”. On applique alors
le théoréme du serpent. On peut aussi le refaire a la main, ce qui est un trés bon
exercice. [

Exercice 4.5 Montrer que si

0 o0t 0

L

0 D-2-p-_2.p 0
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est un morphisme de suites exactes courtes de complexes, alors le diagramme

= H,(C) —=H,(C") —-H,_,(C") —=H,_(C) — -

L | |

.- —=H,(D) — H,(D") =2+ H, (D) —=H, (D) — - --

est commutatif.

Solution. Les carrés extérieurs sont commutatifs par fonctorialité et il reste a traiter
celui du milieu. On rappelle que, pour ¢’ € Z,(C"),

6,(@) =7 < 3dceC,, " =pulc) et dy(c) = in_1(c)
< VeeC,,d" =puc) et dy(c) = i,1(),

et on a

Hoo1 () (0n (")) = 1,1 (€).

Mais on aura aussi

fald") = [ (pal€) = qn(falc))
et

du(falc)) = fa-1(dn(c)) = fa-1(in-1(c)) = Jn-1(fr-1(c)).

Cela montre qu’on a
On (ot (f1-1)(@)) = 0u(fra (") = fra(€). u

4.5.2 Ensemble semi-simplicial

Exercice 4.6 1. Représenter |[A"| pour n =0, 1,2, 3.
2. Quel est le nombre de faces de dimensions k dans |A"|?
3. Montrer que |A"| ~ B" et que 0]A"| ~ S"~1.

Solution. 1. On trouve respectivement un point, un segment, un triangle (plein),
un tétracdre (plein).
2. On a (Zﬁ) faces de dimensions k& dans |A"|.
3. On peut utiliser I'exercice 1.3 puisque |A"| est un convexe compact de dimension

n. [ |

Exercice 4.7 1. Montrer qu’il existe une unique structure d’ensemble semi-
simplicial telle que Sy = {v}, 51 = {e} et S, = & pour n > 2. Calculer
H,(S). Vérifier la formule d’Euler-Poincaré.

2. On pose Sy = {v},S1 = {a,b,c}, Sy = {0, 7} et

dy(0) = b,di(0) = ¢, d3(0) =a et dy(r) = a,di(r) = c,d3(7) = b.

Calculer H, (.S). Vérifier la formule d’Euler-Poincaré.
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Solution. 1. Il existe une unique application dy = d; : S — Sp, e — v et seulement
I’application & : .S,, — S,_1 pour n > 2. On a donc d = dy — d; = 0 et donc

C(S) : [Ze > Zuv].

On a donc Hy(S) ~ Hy(S) ~ Z et H,(S) = 0sinon. La formule d’Euler-Poincaré,
c’est le théoréme du rang.
2. On a

C(S): [Zo®ZT > Za®Zb® Zc > Zv]

avec d(0) = d(1) = a — ¢+ b. On a donc Hy(S) ~ Hy(S) ~ Z et Hy(S) ~ Z2
(et 0 sinon). La formule d’Euler-Poincaré, c’est le théoréme du rang. |

4.5.3 Homologie singuliére
| Exercice 4.8 Montrer (par un calcul) qu'un point est acyclique.

Solution. Il s’agit de montrer que ﬁ”(x) =0Opourtoutn >0.0Onad =1dz:Z—>Z
et, pour n > 0,

0 si m impair
Idz sin pair.

dy = X112 = |
On doit donc calculer 'homologie du complexe
Oz 7 0 77 0 7 1dg
Et on trouve Z/Z ou 0/0 selon les cas, c¢’est-a-dire 0. |

Exercice 4.9 Soient X un espace topologique et f, f' € Si(X) avec dj(f) =
di(f) =y et di(f) = d}(f’') = x. On dit que o € S5(X) est une homotopie entre
fet fsidi(o) =y, di(o) = f et d3(0) = f :

Y

f Y
o
T

On considére les applications

1 [0,1] = At — (1—t,1), 7 :[0,1]* — Ay, (t,5) — (1—t,(1—s)t,ts).

Montrer que o est une homotopie entres f et f’ si et seulement si h := o o my est
une homotopie a extrémités fixées entre v := fom et v := f' omy.

Solution. Les conditions pour que ¢ soit une homotopie s’écrivent

0-(07t07t1) =Y, O-(t()a Oatl) = f/(t()atl)’ O-(t())tly 0) = f(th tl)
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lorsque tg, t; € R satisfont ¢ty + ¢; = 1. D’autre part, les conditions pour que h soit
une homotopie a extrémité fixées sont

h(t,0) = ~(t), h(t,1) =4'(t), h(0,s)=x et h(l,s)=y.
On a
mo(t,0) = (1 —¢,¢,0), mo(t,1) = (1—1¢,0,¢t)
m2(0,8) = (1,0,0) et mo(l,s) = (0,1—s,s).
Les conditions sur i s’écrivent donc
o(1—1t,t0)=f(1-tt), o(1—1t01t) = f(1-1t1),
0(1,0,0) =2 et o(0,1—s,5)=y

pour t € [0, 1]. C’est bien la méme chose que ci-dessus. [ |

Exercice 4.10 Soit X = C\R.
1. Calculer H,(X) pour tout n € N.
2. On pose Y = X\{#i}. Calculer H,(Y) pour tout n < 1.
3. On pose Z = X\{+i, +2i}. Calculer H,(Z) pour tout n < 1.

Solution. 1. Puisque X a deux composantes connexes par arcs X4 (partie imagi-
naire > 0 ou < 0), on a

Ho(X) ~Ho(X,)OH (X )=Z®Z = Z°
Puisque X+ est contractile, on a pour n > 0,
H,(X)~H,(X,)®H,(X_)=0®0=0.

2. On regarde maintenant Y, := X, nY. C’est un encore un espace connexe par
arcs et on a (pour un y quelconque) (Y, ,y) ~ Z qui est abélien. On aura
donc

Hy(Yy) =~ m(Yy,y)™ ~Z.

Donc, finalement Ho(Y) ~ H;(Y) ~ Z%

3. On traite le dernier cas de la méme maniére en posant Z, = X, n Z. On sait
que (pour z quelconque) m1(Z,,2) ~ Z* Z et donc (74, 2)*® ~ Z% On aura
donc Hy(Z) ~ Z% et Hy(Z) ~ Z*. |

4.5.4 Homologie singuliére (suite)

Exercice 4.11 1. Montrer que si, pour i = 1,2, (X, ;) est un espace pointé
tel que z; est un rétract par déformation d’un ouvert de X;, alors, pour tout
n € N,

~

H,(X; v Xo) ~ Hy (X)) @ H,(Xs).

2. En déduire H, (S v S).
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Solution. 1. On choisit un ouvert U; de X; qui se rétracte sur x; et on applique
la suite de Mayer-Vietoris a {X; u Uy, U; U X»}.
2. On aura donc Hy ~ Z, H; ~ Z? et Hy = 0 sinon. [

Exercice 4.12 1. Calculer H,(S\{1} xS), H,(S\{—1} xS) et H,,(S\{1, —1} x S).
2. En déduire H, (T?).

Solution. 1. On a S\{1} x S ~ S si bien que H,(S\{1} x S) ~ Z lorsque n = 0
oun = 1 et est réduit a 0 sinon. Méme chose pour H, (S\{—1} x S). Enfin,
puisque S\{1, —1} ~ {7, —i}, le méme argument donne H,,(S\{1, -1} x S) ~ Z2
pour n = 0,1 et 0 sinon.

2. On sait déja que Ho(X) = Z puisque X est connexe par arcs et que Hy (X)) ~
71 (X) ~ Z2. La suite de Mayer-Vietoris s’écrit donc

0oHy(T) 52222 222227225720

Puisque Hy(T?) est un sous-groupe d’un groupe abélien libre, c’est aussi un
groupe abélien libre. Il résulte alors du théoréme du rang que Hy(T?) ~ Z. Bien
str, H,(T?) = 0 pour n > 3. ]

Exercice 4.13 Calculer Hi(P™) pour tout k € N et n < 3. On admettra (ou on
montrera) que P" = X; u Xy avec X, Xy ouverts dans P, X; ~ B", X, ~ P"\{0}
et que l'inclusion X; n Xy < X, s’identifie & homotopie prés avec la projection
Sn—l N Pn—l_

Solution. Puisque P™ est connexe par arcs, on aura toujours Hy(P") ~ Z. Puisque PY
est un point, on a Hi(PY) = 0 pour k& > 0. Puisque P est un cercle, on a H;(P) ~ Z

et Hi(P) = 0 pour k£ # 0, 1. On peut donc dorénavant supposer que n = 2 et on peut

déja remarquer que Hy(P?) = m;(P?,2)* = Z/2Z. On dispose en général de la suite

de Mayer-Vietoris
- — Hi(S"") — Hp(B") @ Hy(P™ 1) — Hy(P") — Hy_1(S™1) — - -
Dans le cas n = 2, on aura alors une suite exacte
0— Hy(P?) »Z—>Z—>2Z/2Z -0

qui implique que Hy(P?) ~ 0 (groupe abélien libre de rang 0) ainsi que des égalités
H(P?) = 0 pour k > 3. Pour n > 2, on aura une suite exacte longue

0— H,(P*') - H,(P") > Z—H, ;(P"") - H,_;(P") -0

et, pour k # 0,n — 1,n, des isomorphismes Hy(P"™!) ~ Hy(P"). On en déduit alors
que H,(P?) = 0 pour k > 4, Hy(P?) = Z, Hy(P?) = 0, H(P?) ~ Z/2Z et Hy(P?) ~ Z.

Pour traiter le cas n > 4, il faudrait étudier I'application H,(S™) — H, (P")
(Iidentifier & Z — 0 si n pair et Z 2 Z si n impair). |
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Exercice 4.14 Montrer que pour deux espaces vectoriels normés de dimension
finie, les conditions suivantes sont équivalentes :

1. étre isomorphes,

2. étre homéomorphes,

3. avoir méme type d’homotopie,

4. avoir méme dimension.
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