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Introduction

Dans sa lettre du 29 juin 1877 à Richard Dedekind, Georg Cantor écrit « je le
vois mais ne le crois pas » car il venait de construire une bijection entre le plan
et la droite. En fait, il n’est pas très difficile de voir qu’il n’existe pas de bijection
continue entre le plan et la droite mais la question est restée ouverte de nombreuses
années en dimension supérieure. C’est seulement en 1912 que Brouwer a montré qu’il
n’existe pas d’homéomorphisme entre (des ouverts non-vides de) Rn et Rm si n ‰ m.
C’est un résultat difficile qui demande de développer des techniques sophistiquées.
Pour faire court, on se ramène à la même question entre les sphères Sn et Sm. On
peut attribuer des invariants algébriques aux espaces topologiques et il suffit alors de
montrer que les invariants ne sont pas les mêmes pour ces deux sphères.

Après quelques rappels de topologie générale, nous introduirons la notion d’ho-
motopie qui est plus fine que celle d’homéomorphisme ainsi que celles de chemins
et de lacets. Ensuite, après quelques rappels sur le groupes, nous introduirons la
notion de groupe fondamental et nous montrerons le théorème de van Kampen qui
permet des les calculer. Après cela, nous verrons la notion de revêtement et comment
le groupe fondamental est relié aux automorphismes d’un revêtement. Enfin, après
quelques rappels d’algèbre linéaire et la présentation de la notion de complexe de
chaînes, nous parlerons un peu de simplexes et d’ensembles semi-simpliciaux afin de
définir l’homologie singulière et nous conclurons avec le théorème de Mayer-Vietoris
qui est l’analogue en homologie du théorème de van Kampen.

Conventions
— Quand on dit espace vectoriel, on sous-entend généralement qu’il s’agit d’un

espace vectoriel réel. Par défaut, tout espace vectoriel de dimension finie est
muni de sa topologie d’espace vectoriel normé. Quand on dit boule (resp. sphére)
sans préciser le centre ou le rayon, on sous-entend généralement qu’il s’agit de
la boule (resp. sphère) unité, c’est-à-dire centrée à l’origine et de rayon un. Par
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défaut, Rn (pour n P N) est muni de la norme euclidienne. On désigne par Bn la
boule unité fermée dans Rn, par B̊n son intérieur (boule unité ouverte si n ‰ 0)
et par Sn´1 :“ BBn (sphère unité) son bord. On désigne aussi par Pn l’espace
projectif réel de dimension n. Lorsque la dimension est 1, nous l’omettrons
dans les notations et écrirons donc R, B, B̊, S et P. On notera aussi T :“ S de
manière à considérer les produit Tn :“ T ˆ ¨ ¨ ¨ ˆ T ‰ Sn. Enfin, on identifiera
C avec R2.

— Nous utiliserons de manière informelle un vocabulaire issu de la théorie des
catégories. Par exemple, lorsque f : E Ñ F , g : F Ñ G et h : E Ñ G satisfont
g ˝ f “ h, on dira que le diagramme

E
f //

h

  

F

g
��
G

est commutatif. Selon le contexte, on dira aussi que h se factorise par f ou
par g, que h se relève en f ou en g, ou encore que f et g sont induits par h.
Lorsqu’on parle de suite de flèches pfnqnPZ, on sous-entend toujours que le but
de fn est identique à la source de fn`1. Une construction sera dite fonctorielle
si elle préserve (ou inverse) les diagrammes commutatifs (et les identités) ; on
notera alors souvent f˚ (ou f˚) l’application correspondant à une flèche f dans
cette construction. Une propriété sera dite universelle si elle est satisfaite par
un unique objet à unique isomorphisme près.

Un grand merci à Tobias Schmidt pour avoir mis ses notes à ma disposition ainsi
qu’aux étudiants pour leurs questions, leurs remarques et leurs commentaires qui
m’ont permis d’améliorer les premières versions du texte.



1. Topologie et homotopie

1.1 Topologie (rappels)

La notion fondamentale pour nous est celle d’espace topologique.
Définition 1.1.1 Une topologie sur un ensemble X est un ensemble U Ă PpXq qui
est stable par union quelconque et intersection finie. Si U P U , on dit que U est
ouverte. Le complémentaire F d’une partie ouverte U est une partie fermée. Un
ensemble muni d’une topologie est un espace topologique.

Automatiquement, X et H sont à la fois ouverts et fermés comme intersection et
union vide, respectivement.

On fera l’abus de dire que X est un espace topologique (alors qu’il s’agit en fait
du couple formé par X et l’ensemble des ouverts).

Exemple 1. Un espace métrique est un ensemble X muni d’une distance. On le
munit de la topologie pour laquelle U est ouvert si et seulement si

@x P U, Dϵ ą 0, @y P X, dpx, yq ď ϵ ñ y P U.

On dit alors que l’espace topologique X est métrisable (existence mais pas
unicité de la distance).

2. Un espace vectoriel normé est un espace métrique pour dpx, yq “ }y ´ x} et
donc un espace topologique.

3. Dans un espace vectoriel réel de dimension finie, toutes les normes induisent
la même topologie. Sauf mention explicite du contraire, on utilisera toujours
cette topologie.

4. On munit N :“ NYt`8u de la topologie suivante : F est fermée si et seulement
F est fini ou `8 P F . C’est un espace métrisable.
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5. L’espace de Sierpiński est l’ensemble ts, ηu muni de U :“ tH, tηu, Xu. Le point
s est fermé mais pas le point η. Ce n’est pas un espace métrisable.

Remarques 1. Si U est une topologie sur X et f : Y Ñ X une application
quelconque, alors f´1pUq est une topologie sur Y appelée topologie induite.

2. Si on se donne une famille de topologies tUi Ă PpXquiPI , alors
Ş

iPI Ui est aussi
une topologie sur X.

3. Si U1 et U2 sont deux topologies sur X telles que U1 Ă U2, on dit que U2 est
plus fine que U1.

4. La topologie la plus (resp. moins) fine de toutes est la topologie discrète (resp.
grossière) avec U “ PpXq (resp. U “ tH, Xu). On dit alors que X est un
espace discret (resp. grossier).

5. Si B est un ensemble de parties de X, alors la topologie engendrée par B est
la topologie la moins fine contenant B. On dit alors que B est une sous-base
de l’espace X. Une partie de X est ouverte si et seulement si c’est une union
d’intersections finies d’éléments de B.

6. Dans un espace topologique X, si on a A Ă U Ă V avec U ouvert dans X, on
dit que V est un voisinage de A dans X

7. Une partie est ouverte si et seulement si c’est un voisinage de tous ses points.
8. Un ensemble tViuiPI de voisinages de A dans X est une base de voisinages de
A si tout voisinage V de A contient l’un des Vi.

9. Un ensemble A de parties de X est une base de voisinages pour X si, pour tout
x P X, tV P A, x P V u est une base de voisinage de x. Un ensemble B d’ouverts
de X est une base (de voisinages) si et seulement si tout ouvert est réunion
d’éléments de B. C’est alors une sous-base (mais ce n’est pas équivalent).

10. Un espace topologique est localement P s’il existe une base de voisinages pour X
qui sont tous P (par exemple “localement connexe” ou “localement compact”).

Certaines parties ne sont ni ouvertes ni fermées mais on peut toujours les encadrer
entre un plus grand ouvert et un plus petit fermé :

Définition 1.1.2 Soit X un espace topologique. L’adhérence A (resp. l’intérieur Å)
d’une partie A de X est le plus petit fermé de X contenant A (resp. plus grand
ouvert contenu dans A) et sa frontière est BA :“ AzÅ. Lorsque A “ X, on dit
que A est dense dans X.

Exemple 1. Dans Rn, l’adhérence (resp. l’intérieur, le bord) d’une boule est la
boule fermée (resp. la boule ouverte, resp. la sphère) correspondante.

2. Dans un espace vectoriel réel de dimension finie, tous les sous-espaces vectoriels
sont fermés.

3. Le point η est dense dans l’espace de Sierpiński.

Remarques 1. On a toujours Å “ Xz

´

XzA
¯

et A “ Xz

´

8
ŐXzA

¯

.

2. Si A Ă B, alors A Ă B et Å Ă B̊.
3. On a toujours A Y B “ A Y B et 8

ŔA X B “ Å X B̊.
4. On dit aussi que A est nulle part dense (ou rare) quand Å “ H (ne pas

confondre avec « non dense »). Par exemple, Z dans R ou R dans R2.
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On rappelle maintenant les notions de limite et de continuité.
Définition 1.1.3 Soient X, Y deux espaces topologiques et A Ă X. Une application
f : A Ñ Y a pour limite y P Y en x P A si, pour tout voisinage W de y, il existe
un voisinage V de x tel que fpV XAq Ă W (ou, si on préfère a, V XA Ă f´1pW q).

a. On rappelle que E Ă u´1pF q ô upEq Ă F .

Remarques 1. Attention, il peut y avoir plusieurs limites en général !
2. On dit qu’une suite txnunPN converge vers x dans X, et on écrit xn Ñ x, si

l’application N Ñ X,n ÞÑ xn a pour limite x en `8 P N.
3. Si une partie F de X est fermée, et F Q xn Ñ x P X, alors x P F (mais la

condition n’est pas suffisante en général).
4. Si f : X Ñ Y est continue (voir ci-dessous) en x, et xn Ñ x dans X, alors
fpxnq Ñ fpxq dans Y (mais la condition n’est pas suffisante en général).

Définition 1.1.4 Une application f : X Ñ Y est continue en x P X si fpxq est une
limite de f en x. Elle est continue si elle est continue en tout x P X. C’est un
homéomorphisme si elle est de plus bijective et que l’appplication réciproque est
continue. On dira alors que X et Y sont homéomorphes et on écrira X » Y .

On désignera l’ensemble de toutes les applications continues f : X Ñ Y par
CpX, Y q. Si A Ă X et B Ă Y , on désignera par CppX,Aq, pY,Bqq l’ensemble des
applications continues telles que fpAq Ă B. Lorsque A “ txu et B “ tyu, on parle
d’espace pointé et d’application continue pointée pX, xq Ñ pY, yq. Cela signifie donc
que f : X Ñ Y est continue et que fpxq “ y.

Exemples 1. Si X est un espace métrique, alors une application f : X Ñ Y
est continue si et seulement si elle préserve les suites convergentes. Aussi, si
A Ă X, alors A est l’ensemble des limites dans X des suites dans A.

2. Une distance est une application continue (lipshitzienne).
3. L’addition ainsi que la multiplication par un scalaire sont continues sur un

espace vectoriel normé.
4. Une application linéaire entre deux espaces vectoriels réels de dimension finie

est toujours continue (pour n’importe quelles normes).
5. Le carré r0, 1s2 et la boule fermée B2 sont homéomorphes.
6. L’application

r0, 2szt1u Ñ r0, 2szt0u, x ÞÑ

"

1 ´ x si 0 ď x ă 1
x si 1 ă x ď 2

est continue bijective mais n’est pas un homéomorphisme.
7. On montrera (théorème 4.4.9) que si n ‰ m, alors Rn n’est pas homéomorphe

à Rm.

Remarques 1. Une application f : X Ñ Y est continue en x P X si, pour tout
voisinage W de fpxq, il existe un voisinage V de x tel que fpV q Ă W .

2. Une application f : X Ñ Y est continue si et seulement si l’image réciproque
d’un ouvert (ou d’un fermé) est ouverte (ou fermée). De manière équivalente,
si on désigne par U et V les topologies sur X et Y respectivement, alors
f´1pVq Ă U .
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3. Soit f : X Ñ Y une application entre deux espaces topologiques 1. Si X “
Ť

iPI Xi est un recouvrement ouvert (resp. fermé et I est fini) et f|Xi
est continue

pour i P I, alors f est continue.
4. Une application (continue) f est dite ouverte (resp. fermée) si l’image d’un

ouvert est ouvert (resp. d’un fermé est fermé). Une application bijective continue
est un homéomorphisme si et seulement si elle est ouverte (resp. fermée).

5. Une topologie U2 est plus fine qu’une topologie U1 sur X si et seulement si
IdX : pX,U2q Ñ pX,U1q est continue.

6. Si f : X Ñ Y est continue en x et g : Y Ñ Z est continue en fpxq, alors
g ˝ f : X Ñ Z est continue en x.

7. Si ψ : Y Ñ Y 1 est une application continue, alors il existe une application

ψ˚ :“ CpX,ψq : CpX, Y q ÝÑ CpX, Y 1
q, f ÞÑ ψ˚f :“ ψ ˝ f.

Si ψ1 : Y 1 Ñ Y 2 est une autre application continue, alors pψ1 ˝ ψq˚ “ ψ1
˚ ˝ ψ˚.

De plus, on a IdX˚ “ IdCpX,Xq. C’est une manifestation de la fonctorialité.
8. Si φ : X 1 Ñ X est une application continue, alors il existe une application

φ˚ :“ Cpϕ, Y q : CpX, Y q ÝÑ CpX 1, Y q, f ÞÑ φ˚f :“ f ˝ φ.

Si φ1 : X2 Ñ X 1 est une autre application, alors pφ ˝ φ1q˚ “ φ1˚ ˝ φ˚. De plus,
on a Id˚

X “ IdCpX,Xq (fonctorialité).
9. Si f : X Ñ Y est continue et B Ă Y , alors f´1pBq Ă f´1pBq et f´1pB̊q Ă

8
Ŕf´1pBq. Aussi, si A Ă X, alors fpAq Ă fpAq.

Il existe des constructions dites universelles et on va décrire les plus utiles :

Proposition 1.1.5 Soit X un espace topologique.
1. Si ι : Y ãÑ X est une application injective, alors il existe une unique topologie

sur Y avec la propriété suivante : si Y 1 est un espace topologique, alors une
application Y 1 Ñ Y est continue si et seulement si l’application composée
Y 1 Ñ Y ãÑ X est continue.

2. Si π : X ↠ Y est une application surjective, alors il existe une unique
topologie sur Y avec la propriété suivante : si Y 1 est un espace topologique,
alors une application Y Ñ Y 1 est continue si et seulement si l’application
composée X ↠ Y Ñ Y 1 est continue.

Démonstration. Dans le premier cas, la topologie induite répond à la question (une
partie V de Y est ouverte si et seulement si V “ ι´1pUq avec U ouvert dans X).
Dans le second cas, on munit Y de la topologie quotient : une partie V de Y est
ouverte si et seulement si U “: π´1pV q est ouvert dans X. Les détails sont laissés en
exercice. ■

Remarques 1. On munira systématiquement une partie A d’un espace topolo-
gique X de la topologie induite (relativement à l’inclusion A ãÑ X).

1. On munit ici les parties de X de la topologie induite.
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2. Si R est une relation quelconque sur un ensemble X, on notera X{R le quotient
pour la relation d’équivalence engendrée par R. Si X est un espace topologique,
on munit systématiquement X{R de la topologie quotient (relativement à
l’application quotient π : X ↠ X{R).

3. Soit R une relation quelconque sur un ensembleX et f : X Ñ Y une application.
Alors f se factorise (automatiquement de manière unique) par X{R et fournit
f : X{R Ñ Y si et seulement si

@x1, x2 P X, x1Rx2 ñ fpx1q “ fpx2q.

Si X et Y sont des espaces topologiques, alors f est continue si et seulement si
f est continue.

4. Si f : X Ñ Y est une application quelconque, alors la relation

x1Rx2 ô fpx1q “ fpx2q

est une relation d’équivalence sur X et f induit une bijection X{R » impfq.
C’est la version ensembliste du premier théorème d’isomorphisme de Noether.
Attention : si f est une application continue, alors cette bijection est continue
mais ce n’est pas nécessairement un homéomorphisme lorsque X{R a la topo-
logie quotient et impfq a la topologie induite. Lorsque c’est le cas, on dit que
f est stricte.

5. Si A est une partie de X, on pose 2 X{A :“ X{R avec xRy ô x, y P A
(on contracte tous les points de A en un seul point a : on a une bijection
pXzAq Y tau » X{A). Une application X Ñ Y se factorise par X{A si et
seulement si elle est constante sur A.

6. Si une application π : X ↠ Y est continue surjective et ouverte (resp. fermée),
alors la topologie sur Y est automatiquement la topologie quotient.

7. Si f : Y ãÑ X et g : X ↠ Y sont continues et g ˝ f “ Id, on dit que f est une
section (continue) de g et que g est une rétraction (continue) de f . Dans ce
cas, la topologie de Y est à la fois la topologie induite par f et la topologie
quotient par g. Lorsque f est l’inclusion d’une partie Y de X, on dit que Y est
un rétract de X.

Exemples 1. Si Y ãÑ X est l’inclusion d’une partie d’un espace métrique, alors
la topologie induite sur Y est identique à la topologie définie par la distance
induite.

2. Un quotient d’un espace métrique n’est pas toujours un espace métrique (par
exemple R{Rˆ qui est – homéomorphe à – l’espace de Sierpiński).

3. On a r0, 1s{t0, 1u » S :“ tz P C, |z| “ 1u, t ÞÑ e2iπt. Plus généralement, on
verra que Bn{Sn´1 » Sn.

4. Si E est un espace vectoriel sur un corps K, alors l’espace projectif associé
à E est l’ensemble PpEq des droites de E. L’application x ÞÑ Vectpxq induit
une bijection pEz0q{R » PpEq avec xRy ô Dλ P Rˆ, y “ λx. Si E est un
espace vectoriel normé sur R, on munit PpEq de la topologie quotient. On écrira
Pn :“ PpRn`1q.

2. Attention, cette convention n’est pas compatible avec la notation X{G pour les actions de
groupe.
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5. La sphère Sn est un rétract de Rn`1zt0u via x ÞÑ x{}x}.

Proposition 1.1.6 Soit pXiqiPI une famille d’espaces topologiques.
1. Il existe une unique topologie sur le produit X :“

ś

iPI Xi avec la propriété
suivante : si X 1 est un espace topologique, alors une application X 1 Ñ X
est continue si et seulement si toutes ses composantes X 1 Ñ X ↠ Xi sont
continues.

2. Il existe une unique topologie sur l’union disjointe X :“
š

iPI Xi avec la
propriété suivante : si X 1 est un espace topologique, alors une application
X Ñ X 1 est continue si et seulement si toutes les restrictions Xi ãÑ X Ñ X 1

sont continues.

Démonstration. Dans le premier cas, on munit X de la topologie produit engendrée
par les ouverts de la forme p´1

i pUiq avec Ui ouvert dans Xi (attention, c’est seulement
une sous-base) et pi : X Ñ Xi la projection.

Dans le second cas, on munit X de la topologie pour laquelle les ouverts sont les
unions d’ouverts des Xi.

Les détails sont de nouveau laissés en exercice. ■

Exemples 1. Supposons que les Xi sont des espaces métriques et que I est fini.
On pose

dppxiq, pyiqq “ max
iPI

dpxi, yiq.

C’est une distance qui définit la topologie de X :“
ś

iPI Xi.
2. Supposons que les Xi sont des espaces métriques. On pose

rdpx, yq “

"

minp1, dpx, yqq si x, y P Xi

2 si x P Xi, y P Xj et i ‰ j.

C’est une distance qui définit la topologie de X :“
š

iPI Xi.
3. On a Rn “ R ˆ ¨ ¨ ¨ ˆ R et Bn » B ˆ ¨ ¨ ¨ ˆ B (homéomorphe) mais Sn fi

S ˆ ¨ ¨ ¨ ˆ S “: Tn.
4. Si X est un espace topologique et I un espace topologique discret, on a un

homéomorphisme X ˆ I »
š

I X (par exemple, R ˆ t0, 1u » R
š

R).

Corollaire 1.1.7 Si f : Z Ñ X, g : Z Ñ Y sont deux applications continues, alors
il existe une unique topologie sur la somme amalgamée

X
ž

f,g

Y »

´

X
ž

Y
¯

{R où xRy ô Dz P Z, fpzq “ x, gpzq “ y

avec la propriété suivante : une application X
š

f,g Y Ñ T est continue si et
seulement si les applications induites X Ñ T et Y Ñ T sont continues.

Démonstration. Résulte formellement des propriétés universelles déjà vues. Les dé-
tails sont de nouveau laissés en exercice. ■
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Remarques 1. Lorsque 3 g : Z ãÑ Y est l’inclusion d’une partie, la relation se
simplifie en xRz ô x “ fpzq et on écrira X

š

f Y . On dit qu’on recolle X avec
Y le long de f . On a une bijection continue X

š

Y zZ et X
š

f Y (qui n’est
pas un homéomorphisme).

2. Lorsque f : Z ãÑ X est aussi l’inclusion d’une partie Z de X, on écrit X
š

Z Y .
On peut alors identifier X, Y et Z avec des parties de T :“ X

š

Z Y si bien
que T “ X Y Y et Z “ X X Y (et réciproquement).

3. Dans le cas où Z “ tzu est réduit à un point, on dit que X _ Y :“ X
š

z Y
est un bouquet (d’espaces pointés).

4. Si A est une partie de X, on a X{A » tau
š

pX avec p : A Ñ tau.
5. La notion de somme amalgamée est duale de celle de produit fibré que nous ne

considérerons pas ici.

Exemples On verra que :
1. Sn{pSn´1 ˆ 0q » Sn _ Sn et Bn{pBn´1 ˆ 0q » Bn _ Bn.
2. Sn » Bn

š

Sn´1 Bn (Sn “ Bn` Y Bn´ et Bn` X Bn´ “ Sn´1).
3. P2 » S

š

f B2 avec f : S Ñ S : z ÞÑ z2.
4. Pn » Pn´1

š

p Bn avec p : Sn´1 ↠ Pn´1.

1.2 Connexité et compacité (rappels)

Les notions suivantes ne sont pas de nature topologique (elles ne sont pas stables
par homéomorphisme) mais cependant bien utiles.

Définition 1.2.1 Soit E un espace vectoriel réel.
1. Si x, y P E, on désigne par pxyq l’ensemble des p1 ´ tqx ` ty avec t P R. On

remplace « p » par « r » ou « s » pour indiquer que t ě 0 ou t ą 0. On
remplace « q » par « s » ou « r » pour indiquer que t ď 1 ou t ă 1. Si x ‰ y,
on dit alors que pxyq est une droite, que pxys, pxyr, rxyq et sxyq sont des
demi-droites et que rxys, sxys, rxyr et sxyr sont des segments.

2. On dit que A Ă E est affine a (resp. convexe) si @x, y P A, pxyq Ă A (resp.
rxys Ă A).

3. Une application entre deux parties A et B d’espaces vectoriels est affine si elle
est induite par la composée d’une application linéaire et d’une translation.

a. Ou linéaire.

Exemple 1. Rn est convexe mais pas Rnz0 (pour n ą 0).
2. Bn est convexe mais pas Sn.
3. Plus généralement, une boule est convexe pour n’importe quelle norme.

Remarque 1. Une partie affine est soit vide, soit le translaté d’un sous-espace
vectoriel (on dit alors que c’est un sous-espace affine) appelé espace vectoriel
directeur. C’est une partie convexe.

2. Une intersection de parties affines (resp. convexes) est affine (resp. convexe).

3. C’est le seul cas que nous considérerons.
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3. L’envelope affine (resp. convexe) d’une partie S est la plus petite partie affine
(resp. convexe) A qui contient S. On aura

A “

#

ÿ

sPS

tss {
ÿ

ts “ 1 : ts P R presp. Rě0q

+

.

4. La dimension d’un espace affine est la dimension de son espace directeur. La
dimension d’un convexe est la dimension de son enveloppe affine.

5. Un produit fini de parties affines (resp. convexes) est affine (resp. convexe).
6. L’image et l’image réciproque d’une partie affine (resp. convexe) par une

application affine sont affines (resp. convexes).
7. L’adhérence ainsi que l’intérieur d’une partie affine (resp. convexe) sont affines

(resp. convexes) (pour n’importe quelle norme).
8. On rappelle aussi qu’une partie A est étoilée si Dx P A, @y P A, rxys Ă A. Une

partie convexe non vide est étoilée (mais pas réciproquement).

On introduit maintenant la notion de connexité :
Définition 1.2.2 Un espace topologique X est connexe si les seuls ouverts fermés
(ouvermés a) de X sont H et X.

a. Clopen en anglais.

Exemples 1. Une partie convexe est connexe (pour n’importe quelle norme).
2. Sn est connexe pour n ‰ 0 mais pas S0 “ t´1, 1u.
3. Rnz0 est connexe pour n ‰ 1 mais pas Rz0 “ Ră0 Y Rą0.
4. Les parties connexes de R sont les intervalles (ce sont aussi les parties convexes).
5. Une variété topologique de dimension n, c’est-à-dire un espace topologique

séparé (voir ci-dessous) localement homéomorphe à Rn, est localement connexe
(exemples : Rn, Sn, B̊n, Pn, Tn).

6. L’adhérence du graphe de sinp1{xq est connexe mais pas localement connexe.
7. Q (avec sa topologie réelle) n’est ni connexe ni localement connexe.

Remarques 1. Un espace topologique est connexe si et seulement si on ne peut
pas l’écrire comme union de deux ouverts (resp. fermés) disjoints non vides.

2. Un espace topologique est connexe si et seulement si toute application continue
dans un espace discret est constante (et il suffit de considérer t0, 1u).

3. Un produit d’espaces topologiques non-vides est connexe si et seulement si ses
facteurs le sont.

4. Une union de parties connexes d’intersection deux à deux non vide est connexe.
5. L’image d’une partie connexe par une application continue est connexe (théo-

rème des valeurs intermédiaires).
6. L’adhérence d’une partie connexe est connexe.
7. Un espace topologique est localement connexe si et seulement s’il possède une

base d’ouverts connexes.
8. Tout ouvert et tout quotient d’un espace localement connexe est localement

connexe.
9. Tout produit fini d’espaces localement connexes est localement connexe et

tout produit d’espaces connexes localement connexes est connexe localement
connexe.
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Définition 1.2.3 Une composante connexe dans un espace topologique X est une
partie connexe non-vide maximale.

On désigne par π0pXq l’ensemble des composantes connexes dans X.

Exemples 1. Les composantes connexes dans Rˆ sont Rą0 et Ră0.
2. Les composantes connexes dans un espace discret sont les points. Mais ce n’est

pas équivalent, les composantes connexes dans Q (ou dans N) sont aussi les
points.

Remarques 1. On considère aussi la notion de composante connexe Cpxq d’un
point x P X. De manière équivalente, c’est
(a) la plus grande partie connexe de X contenant x,
(b) la réunion des parties connexes de X qui contiennent x,
(c) l’unique composante connexe qui contient x.

2. Un espace topologique est réunion de ses composantes connexes, qui sont
fermées (mais pas toujours ouvertes) et disjointes (mais a topologie n’est pas
en général celle de l’union disjointe).

3. Les composantes connexes dans
ś

iPI Xi sont les produits des composantes
connexes dans les Xi.

4. Les composantes connexes dans
š

iPI Xi sont les composantes connexes dans
chacun des Xi.

5. Toute application continue f : X Ñ Y induit une application

f˚ “ π0pfq : π0pXq Ñ π0pY q, C ÞÑ f˚C

qui envoie une composante connexe C dans X sur la composante connexe
dans Y contenant fpCq. C’est fonctoriel : on a toujours pg ˝ fq˚ “ g˚ ˝ f˚ et
IdX˚ “ Id.

6. Un espace topologique est localement connexe si et seulement si les composantes
connexes des ouverts de X sont ouvertes.

Il existe de nombreuses conditions qui permettent de s’assurer qu’une topologie
est suffisamment riche pour séparer les points mais nous ne considérerons que la plus
courante :

Définition 1.2.4 Un espace topologique X est séparé a si pour tout x ‰ y P X, il
existe des voisinages disjoints de x et y (condition T2).

a. Hausdorff en anglais.

Exemples 1. Un espace métrique est séparé.
2. L’espace de Sierpiński n’est pas séparé.
3. La droite avec deux origines R

š

Rˆ R n’est pas séparée.
4. Un groupe topologique est un espace topologique muni d’une loi de groupe conti-

nue avec inversion continue. Un groupe topologique est séparé si et seulement
si 1 est fermé.

Remarques 1. Un espace X est séparé si et seulement si la diagonale est fermée
dans X ˆ X.
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2. Toute partie d’un espace séparé est séparée (pour la topologie induite).
3. Un produit d’espaces non-vides est séparé si et seulement si les facteurs le sont.
4. Dans un espace séparé, les limites sont uniques.
5. Dans un espace séparé, les points sont fermés 4.
6. Dans un espace séparé, les rétracts sont fermés.

Enfin, on termine avec la condition de finitude la plus naturelle, celle de compacité :
Définition 1.2.5 Un espace topologique X est compact a s’il est séparé et si tout
recouvrement ouvert X “

Ť

iPI Ui admet un raffinement X “
Ť

iPJ Ui avec J fini.

a. Compact Hausdorff en anglais.

Exemples 1. Un espace métrique est compact si et seulement si toute suite
possède une sous-suite convergente (théorème de Bolzano-Weirstrass).

2. Une application continue f : X Ñ Y avec X métrique compact et Y métrique
est uniformément continue.

3. Une partie d’un espace vectoriel réel de dimension finie est compacte si et
seulement si elle est fermée et bornée.

4. Sn, Tn, Bn et Pn sont compacts mais pas Rn (si n ‰ 0) ou B̊n.
5. Le quotient r0, 1s{s0, 1s n’est pas compact (car il n’est pas séparé) bien que

r0, 1s est compact.
6. Une variété topologique est localement compacte.
7. Q n’est pas localement compact.

Remarques 1. Un compact est toujours fermé dans un espace séparé et un fermé
est toujours compact dans un espace compact.

2. Tout produit de compacts est compact (théorème de Tykhonov 5).
3. Toute réunion finie dans un espace séparé et toute intersection (non triviale)

de compacts est compacte.
4. L’image d’un compact par une application continue à valeur dans un espace

séparé est toujours compacte.
5. Une application continue f : X Ñ Y avec X compact et Y séparé est toujours

fermée et c’est donc un homéomorphisme si et seulement si elle est bijective.
6. Un espace topologique est localement compact si et seulement si tout point

possède un voisinage compact.
7. Tout ouvert et tout fermé d’un espace localement compact est localement

compact.

On devrait définir la compacité par cette jolie caractéristique :

Théoreme 1.2.6 — Kurakovski. Un espace séparé X est compact si et seulement
s’il est universellement fermé : toute projection X ˆ Y Ñ Y est fermée.

Démonstration. Hors programme. ■

4. Condition T1. Il existe de nombreuses conditions de séparations notées Tn.
5. Équivalent à l’axiome du choix.
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Remarques 1. Plus généralement, on dit qu’une application continue f : X Ñ Y
est propre si elle est universellement fermée : pour tout espace topologique
Z, l’application f ˆ IdZ : X ˆ Z Ñ Y ˆ Z est fermée. Si X est séparé et Y
localement compact, c’est équivalent à dire que l’image inverse d’un compact
est compact.

2. On voit donc que X est compact si et seulement s’il est séparé et l’application
X Ñ t0u est propre.

1.3 Homotopie
Nous allons avoir besoin de déformer continûment des espaces topologiques et

des applications continues :
Définition 1.3.1 Une homotopie est une application continue h : X ˆ r0, 1s Ñ Y
(où X et Y sont deux espaces topologiques). Si on pose ht : X Ñ Y, x ÞÑ hpx, tq,
on dit alors que h0 et h1 sont homotopes et on écrit h : h0 „ h1.

Exemples 1. Si f, g : X Ñ Y sont deux applications continues avec Y convexe,
alors f „ g. Il suffit de poser hpx, tq “ p1 ´ tqfpxq ` tgpxq.

2. Les fonctions R Ñ Rˆ, x ÞÑ 1, x ÞÑ ´1 ne sont pas homotopes.

Définition 1.3.2 1. Une homotopie h : X ˆ r0, 1s Ñ Y est triviale ou constante
si

@x P X, @t, t1 P r0, 1s hpx, tq “ hpx, t1q.

2. L’inverse d’une homotopie h : X ˆ r0, 1s Ñ Y est l’homotopie

h1 : X ˆ r0, 1s Ñ Y

définie par

@x P X, @t P r0, 1s, h1
px, tq “ hpx, 1 ´ tq.

3. Deux homotopies h : X ˆ r0, 1s Ñ Y et h1 : X ˆ r0, 1s Ñ Y sont composables
si h1 “ h1

0 et leur composée a est alors l’homotopie

h2 : X ˆ r0, 1s Ñ Y

définie par

@x P X, @t P r0, 1s, h2
px, tq “

"

hpx, 2tq si t ď 1{2
h1px, 2t ´ 1q si t ą 1{2.

a. Certains auteurs font la composition dans l’autres sens.

Remarques 1. Une homotopie triviale est une homotopie f „ f . L’inverse d’une
homotopie f „ g est une homotopie g „ f . La composée de deux homotopies
f „ g et g „ k est une homotopie f „ k.
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2. Pour que la composée soit bien définie, il faut bien sûr s’assurer que h2 est
continue et on utilise l’argument des fermésX “ X 1YX2 avecX 1 :“ Xˆr0, 1{2s

et X2 :“ X ˆ r1{2, 1s.

Proposition 1.3.3 Si X et Y sont deux espaces topologiques, alors la relation
d’homotopie „ est une relation d’équivalence sur CpX, Y q.

Démonstration. L’homotopie triviale fournit la réflexivité. L’inverse fournit la symé-
trie. Enfin, la composition fournit la transitivité. ■

On désigne par rX, Y s :“ CpX, Y q{ „ l’ensemble des classes d’homotopie et par
rf s la classe de f .

Remarques 1. Si on se donne ψ : Y Ñ Y 1 continue et h : f „ g : X Ñ Y ,
alors ψ ˝ h : pψ ˝ fq „ pψ ˝ gq : X Ñ Y 1 est une homotopie. On en déduit une
application (fonctorielle)

ψ˚ “ rX,ψs : rX, Y s ÝÑ rX, Y 1
s, rf s ÞÑ ψ˚rf s :“ rψ ˝ f s.

2. Si on se donne φ : X 1 Ñ X continue et h : f „ g : X Ñ Y , alors

ph ˝ pφ ˆ Idr0,1sqq : pf ˝ φq „ pg ˝ φq : X 1
Ñ Y

est une homotopie et on en déduit une application (fonctorielle)

φ˚
“ rφ, Y s : rX, Y s ÝÑ rX 1, Y s, rf s ÞÑ φ˚

rf s :“ rf ˝ φs.

3. Si f „ f 1 : X Ñ Y et g „ g1 : Y Ñ Z, alors pg ˝ fq „ pg1 ˝ f 1q : X Ñ Z.
Autrement dit, la composition des applications induit une composition

rX, Y s ˆ rY, Zs Ñ rX,Zs, prf s, rgsq Ñ rgs ˝ rf s :“ rg ˝ f s.

4. On a

@i P I, fi „ gi : Xi Ñ Yi ñ
ź

iPI

fi „
ź

iPI

gi :
ź

iPI

Xi Ñ
ź

iPI

Yi

(et idem pour les union disjointes).
5. On a aussi

@i P I, fi „ gi : X Ñ Yi ô f „ g : X Ñ
ź

iPI

Yi

(et l’analogue - dans l’autres sens - pour les unions disjointes).
6. Une homotopie h relativement à A Ă X est une homotopie dont la restriction

à A est triviale :

@x P A, @t, t1 P r0, 1s, hpx, tq “ hpx, t1q.

On écrit alors h0 „A h1. Pour que f „A g, il est nécessaire que f|A “ g|A.
Toutes les propriétés ci-dessus (et à venir) ont un analogue relatif qu’on utilisera
librement.
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7. Si A Ă X et B Ă Y , on peut aussi définir une homotopie f „ g : pX,Aq Ñ

pY,Bq en demandant que hpA ˆ r0, 1sq Ă B. Ici encore, toutes les propriétés
ci-dessus (et à venir) ont un analogue qu’on utilisera librement.

On veut maintenant assouplir la notion d’homéomorphisme :
Définition 1.3.4 Une application continue f : X Ñ Y est une équivalence d’homo-
topie s’il existe une autre application continue g : Y Ñ X telle que IdX „ g ˝ f
et f ˝ g „ IdY . On dit alors que X et Y ont même type d’homotopie et on écrit
X „ Y .

Exemples Bn „ t0u, Cˆ „ S, Rˆ ȷ R.

Remarques 1. L’équivalence d’homotopie est une relation d’équivalence 6 sur les
espaces topologiques et une classe d’équivalence de X est un type d’homotopie
(c’est similaire à la notion de cardinal d’un ensemble).

2. Deux espaces homéomorphes ont même type d’homotopie.
3. Si, pour tout i P I, Xi „ Yi, alors

ś

I Xi „
ś

I Yi.
4. Si X „ X 1 et Y „ Y 1, on a une bijection rX, Y s » rX 1, Y 1s.

Proposition 1.3.5 Si f : X „ Y est une équivalence d’homotopie, alors f˚ : π0pXq »

π0pY q est une bijection.

Démonstration. Par définition, il existe une application continue g : Y Ñ X et
une homotopie h : IdX „ g ˝ f . Si C P π0pXq, alors hpC ˆ r0, 1sq est connexe et
contient hpC ˆ t0uq “ C maximal, si bien que hpC ˆ r0, 1sq “ C. Mais hpC ˆ r0, 1sq

contient aussi hpC ˆ t1uq “ pg ˝ fqpCq et on a donc pg ˝ fqpCq Ă C. On a donc
g˚f˚C “ pg ˝ fq˚C “ C, c’est-à-dire g˚ ˝ f˚ “ Idπ0pXq. On conclut par symétrie. ■

Corollaire 1.3.6 Si X est connexe et X „ Y , alors Y est connexe.

On va souvent pouvoir remplacer un espace topologique par un espace plus petit
qui a même type d’homotopie :

Définition 1.3.7 Une rétraction (continue) r : X Ñ A d’une inclusion ι : A ãÑ X
est une rétraction par déformation si IdX „ ι ˝ r. On dit alors que A est un rétract
par déformation de X.

Remarques 1. Concrètement, A est un rétract par déformation de X si et
seulement s’il existe une application continue h : X ˆ r0, 1s Ñ X telle que

@x P X, hpx, 0q “ x et hpx, 1q P A

(en posant rpxq “ hpx, 1q).
2. Si on demande que IdX „A ι ˝ r, on dit rétraction forte par déformation. Cela

revient à ajouter la condition

@a P A, @t P r0, 1s, hpa, tq “ a.

6. On ne s’embarrase pas de considérations ensemblistes.
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3. Si A est un rétract par déformation de X, alors X „ A car r ˝ ι “ IdA par
définition d’une rétraction, et donc en particulier r ˝ ι „ IdA.

4. Inversement, on peut montrer qu’à homéomorphisme près, deux espaces homo-
topiquement équivalents sont toujours des rétracts forts par déformation d’un
même espace (difficile).

Exemples 1. Sn est un rétract fort par déformation de Rn`1zt0u.
2. t1u n’est pas un rétract par déformation de Cˆ.

Définition 1.3.8 Un espace topologique X est contractile si X „ t0u.

Exemples 1. Une partie étoilée (par exemple convexe non vide) est contractile.
2. Sn n’est pas contractile (très difficile : voir remarque après le corollaire 4.4.8

plus bas).
3. Plus généralement, une variété topologique compacte de dimension ą 0 (comme

Pn ou Tn) n’est jamais contractile.

Remarques 1. Un espace topologique X est contractile si et seulement s’il existe
une rétraction par déformation sur un point.

2. Un espace contractile est connexe.
3. Si X est contractile, alors deux applications continues f, g : Y Ñ X sont

toujours homotopes.
4. Si X est contractile, alors toute application continue f : X Ñ Y est homotope

à une application constante.
5. Si X est contractile et Y quelconque, alors X ˆ Y „ Y .

1.4 Chemins et lacets
On fixe un espace topologique X. On veut relier explicitement les points de X :

Définition 1.4.1 Un chemin dans X est une application continue γ : r0, 1s Ñ X.
On dit alors que x :“ γp0q et y :“ γp1q sont les extrémités (point initial ou origine
et point final ou extrémité) de γ. On dit aussi que x et y sont reliés par γ ou que
γ part de x pour arriver à y et on écrit (encore) γ : x „ y. Lorsque x “ y, on dit
que γ est un lacet (basé) en x.

Attention à la représentation simplifiée des chemins : ne pas oublier que la courbe
de Péano par exemple est un chemin dans r0, 1s2 qui recouvre tout le pavé.

Remarques 1. On dispose d’une bijection

X » Cpt0u, Xq, x ÞÑ p0 ÞÑ xq

et un chemin γ : x „ y correspond à une homotopie (ce qui justifie a posteriori
la notation x „ y).

2. L’ensemble des chemins dans X est Cpr0, 1s, Xq.
3. On peut identifier l’ensemble des lacets de X avec CpS, Xq en posant pγpe2iπtq “

γptq pour t P r0, 1s.
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4. Si φ : X Ñ Y est continue et γ : x1 „ x2, alors

φ˚γ :“ φ ˝ γ : y1 “ fpx1q „ y2 “ fpx2q.

5. Si f : 0 „ 1 est un chemin dans r0, 1s et γ : x „ y dans X, alors

f˚
pγq :“ γ ˝ f : x „ y

est une reparamétrisation de γ.
6. Il revient au même de se donner une homotopie h : X ˆ r0, 1s Ñ Y ou une

application continue de X dans l’espace 7 Cpr0, 1s, Y q des chemins dans Y . En
effet, on a une bijection (curryfication)

CpX ˆ r0, 1s, Y q » CpX, Cpr0, 1s, Y qq, h ÞÑ px ÞÑ pγx : t ÞÑ hpx, tqqq.

7. De même, toute homotopie h : X ˆ r0, 1s Ñ Y fournit un chemin

r0, 1s Ñ CpX, Y q, h ÞÑ pt ÞÑ htq.

dans l’espace des applications continues de X vers Y . Et réciproquement lorsque
X est localement compact.

On va progressivement construire des groupes en utilisant les chemins (ces
définitions sont des « cas particuliers » de ce qu’on a vu pour les homotopies) :

Définition 1.4.2 1. Si x P X, le lacet constant ou trivial en x est donné par

@t P r0, 1s, 1xptq “ x.

2. Si γ est un chemin dans X, son inverse est le chemin donné par

@t P r0, 1s, γ´1
ptq “ γp1 ´ tq.

3. Deux chemins γ et γ1 dans X sont composables si γp1q “ γ1p0q. Leur
composé a est alors le chemin donné par

@t P r0, 1s, pγ ¨ γ1
qptq “

"

γp2tq si t ď 1{2
γ1p2t ´ 1q si t ą 1{2.

a. On rappelle que certains auteurs font la composition dans l’autres sens.

Proposition 1.4.3 Soit f : X Ñ Y une application continue.
1. Si x P X, alors f˚1x “ 1fpxq.
2. Si γ est un chemin dans X, alors f˚γ

´1 “ pf˚γq´1.
3. Si γ et γ1 sont deux chemins composables dans X, alors f˚pγ ¨γ1q “ f˚γ ¨f˚γ

1.

Démonstration. Immédiat. ■

7. On munit toujours CpX,Y q de la topologie compacte-ouverte (c’est-à-dire la topologie de la
convergence uniforme lorsque X est compact et Y métrique).
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Proposition 1.4.4 La relation Dγ : x „ y dans un espace topologique X est une
relation d’équivalence.

Démonstration. En effet, il existe un chemin x „ y si et seulement si les applications
correspondantes x, y : t0u Ñ X sont homotopes et on peut donc appliquer la
proposition 1.3.3. ■

La notion de connexité est plutôt abstraite mais on peut souvent la remplacer en
pratique par une propriété plus concrète :

Définition 1.4.5 Un espace X est connexe par arcs si @x, y P X, Dγ : x „ y. Une
composante connexe par arcs une partie connexe par arcs non-vide maximale.

On désignera par πarc
0 pXq :“ X{ „ l’ensemble des composantes connexes par arc

de X.

Remarques 1. Un espace X connexe par arcs est toujours connexe. Et récipro-
quement si X est localement connexe par arcs.

2. Un produit d’espaces connexes par arcs est connexe par arcs. Une union d’in-
tersection non-vide d’espaces connexes par arcs est connexe par arcs. L’image
d’un espace connexe par arcs par une application continue est connexe par
arcs.

3. Un espace topologique est localement connexe par arcs si et seulement s’il
possède une base d’ouverts connexes par arcs.

4. Si X „ Y , alors X est connexe par arcs si et seulement si Y est connexe par
arcs.

5. Si X est contractile, il est connexe par arcs. Si X est contractile et Y est
connexe par arcs, alors deux applications X Ñ Y sont toujours homotopes.

6. Si X est localement connexe par arcs, alors ses composantes connexes sont
ouvertes (et fermées) et localement connexes par arcs. En particulier, π0pXq “

πarc
0 pXq.

7. Toute application continue f : X Ñ Y induit une application

f˚ “ πarc
0 pfq : πarc

0 pXq Ñ πarc
0 pY q

Et c’est fonctoriel. De plus, si f „ g, alors f˚ “ g˚. Enfin, f˚ est une bijection
lorsque f est une équivalence d’homotopie.

Exemples 1. Rn, Bn, Sn, Tn et Pn sont connexes par arcs – à part S0 et T0.
2. Une variété topologique est localement connexe par arcs.
3. L’adhérence Γ du graphe de sinp1{xq dans R2 est connexe mais pas connexe

par arcs ni localement connexe. L’union Γ Y R ˆ 1 est connexe par arcs mais
pas localement connexe.

4. L’exemple précédent montre que l’adhérence d’un connexe par arcs (la partie
droite de Γ) n’est pas nécessairement connexe par arcs (la partie droite de Γ).

Afin d’obtenir une véritable loi de composition, il va falloir s’autoriser à remplacer
un chemin par un autre. On rappelle pour cela que nous avons introduit dans la
section 1.3 la notion d’homotopie relative à une partie.
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Définition 1.4.6 Deux chemins γ et γ1 dans X sont homotopes (à extrémités fixées)
si γ „t0,1u γ

1.

Remarques 1. On aura donc γ „t0,1u γ
1 si et seulement si γ et γ1 ont mêmes

extrémités x et y et s’il existe une application continue h : r0, 1s2 Ñ X telle
que pour tout s, t P r0, 1s, on ait

hpt, 0q “ γptq, hpt, 1q “ γ1
ptq, hp0, sq “ x et hp1, sq “ y. (1.1)

On peut se représenter ces conditions sur le diagramme suivant

1 x
γ1

// y

0

s

OO

x
γ // y

0 t // 1

2. On dit qu’un chemin γ est trivial s’il existe x P X tel que γ „t0,1u 1x. On dit
de même qu’un chemin γ1 est un inverse pour γ si γ1 „t0,1u γ

´1. On dira aussi
qu’un chemin γ2 est un composé de γ et γ1 si γ2 „t0,1u γ ¨ γ1.

3. Un chemin γ est trivial si et seulement si c’est un lacet en x et qu’il existe une
application continue h : r0, 1s2 Ñ X telle que pour tout s, t P r0, 1s, on ait

hpt, 0q “ γptq et hpt, 1q “ hp0, sq “ hp1, sq “ x

ce qu’on peut représenter par

x x

x
γ // x.

4. Un lacet γ est trivial si et seulement si l’application correspondante pγ : S Ñ X
se prolonge (à l’intérieur) en une application continue rγ : B2 Ñ X (voir exercice
1.18).

5. L’espace ambiant est important : si X Ă X 1, on peut avoir γ ȷ 1x lorsque γ
est vu comme un chemin dans X bien que γ „ 1x vu comme chemin dans X 1

(prendre X “ Cˆ, X 1 “ C et γptq “ e2iπt).

Proposition 1.4.7 La relation d’homotopie (à extrémités fixées) sur les chemins
entre x et y dans X est une relation d’équivalence.

Démonstration. On applique à nouveau le lemme 1.3.3 (variante relative). ■

On désigne par

πpXq :“ Cpr0, 1s, Xq{ „t0,1u
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l’ensemble des chemins à homotopie près et par rγs la classe de γ. On aura donc par
définition

γ „t0,1u γ
1

ô rγs “ rγ1
s

et ça implique qu’ils ont mêmes extrémités. Si f : X Ñ Y est continue et γ „t0,1u γ
1

dans X, alors f˚γ „t0,1u f˚γ
1. Il suit que f induit une application

f˚ “ πpfq : πpXq Ñ πpY q, rγs ÞÑ f˚rγs :“ rf˚γs.

C’est fonctoriel : pg ˝ fq˚ “ g˚ ˝ f˚ et IdX,˚ “ IdπpXq.
On peut maintenant définir une notion de connexité bien plus fine :

Définition 1.4.8 L’espace X est simplement connexe si @x, y P X, D!rγs : x „ y.

Cela signifie qu’il existe toujours un chemin entre deux points x et y et que deux
tels chemins sont toujours homotopes.

Exemples 1. Rn et Bn sont simplement connexes.
2. Sn et Rn`1z0 sont simplement connexes pour n ě 2 (voir exercice 1.19).
3. S et Cˆ ne sont pas simplement connexes (voir théorème 2.2.13).
4. S0 et Rˆ ne sont pas simplement connexes car ils ne sont pas connexes !
5. Une variété topologique est localement simplement connexe.
6. La boucle d’oreille hawaïenne X “

Ť

nPN Spp1{n, 0q, 1{nq Ă R2 n’est pas locale-
ment simplement connexe.

Remarques 1. Un espace X est connexe par arcs (resp. simplement connexe) si
et seulement si l’application

πpXq Ñ X ˆ X, rγs ÞÑ pγp0q, γp1qq (1.2)

est surjective (resp. bijective).
2. Un espace simplement connexe est connexe par arcs.
3. Un espace convexe (ou étoilé) est simplement connexe.
4. On montrera qu’un espace contractile est simplement connexe (corollaire 2.2.9).
5. On montrera plus généralement que, si X „ Y , alors X est simplement connexe

si et seulement si Y est simplement connexe (corollaire 2.2.9 encore).

Proposition 1.4.9 Si γ1 est une reparamétrisation d’un chemin γ dans X, alors
γ „t0,1u γ

1.

Démonstration. Si on désigne par f : r0, 1s Ñ r0, 1s la reparamétrisation, alors
Id „t0,1u f car r0, 1s est simplement connexe et donc γ “ Id˚γ „t0,1u f

˚γ “ γ1. ■

Lemme 1.4.10 Si γ1 et γ1
1 sont deux chemins composables dans X et si γ1 „t0,1u γ2

et γ1
1 „t0,1u γ

1
2, alors γ2 et γ1

2 sont composables et γ1 ¨ γ1
1 „t0,1u γ2 ¨ γ1

2.

Démonstration. Si on désigne par h et h1 les homotopies, il suffit de poser

@t P r0, 1s, h2
pt, sq “

"

hp2t, sq si t ď 1{2
h1p2t ´ 1, sq si t ą 1{2.

■
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Remarques 1. On peut décomposer un chemin γ dans X. Si τ P r0, 1s et qu’on
pose γ1ptq “ γpτtq et γ2ptq “ γpτ ` p1 ´ τqtq, alors γ „t0,1u γ1 ¨ γ2. En effet,

@t P r0, 1s, pγ1 ¨ γ2qptq “

"

γp2τtq si t ď 1{2
γpτ ` 2p1 ´ τqtq si t ą 1{2

est une reparamétrisation de γ.
2. Comme conséquence du lemme, on voit que la composition des chemins passe au

quotient pour fournir une composition sur πpXq : on peut poser rγsrγ1s :“ rγ ¨γ1s

lorsque les chemins sont composables.
3. Si f : X Ñ Y est une application continue, on aura f˚prγsrγ1sq “ pf˚rγsqpf˚rγ1sq.

Les chemins (à homotopie près) forment ce qu’on appelle un groupoïde :

Théoreme 1.4.11 1. Si γ : x „ y, γ1 : y „ z et γ2 : z „ w, alors

pγ ¨ γ1
q ¨ γ2

„t0,1u γ ¨ pγ1
¨ γ2

q

2. Si γ : x „ y, alors

1x ¨ γ „t0,1u γ et γ ¨ 1y „t0,1u γ.

3. Si γ : x „ y, alors

γ ¨ γ´1
„t0,1u 1x et γ´1 ¨ γ „t0,1u 1y.

Démonstration. Par définition, on a pour tout t P r0, 1s,

ppγ ¨ γ1
q ¨ γ2

qptq “

$

&

%

γp4tq si t ď 1{4
γ1p4t ´ 1q si 1{4 ă t ď 1{2
γ2p2t ´ 1q si t ą 1{2

et

pγ ¨ pγ1
¨ γ2

qqptq “

$

&

%

γp2tq si t ď 1{2
γ1p4t ´ 2q si 1{2 ă t ď 3{4
γ2p4t ´ 3q si t ą 3{4.

Il suffit donc de composer γ ¨ pγ1 ¨ γ2q avec la reparamétrisation

f : t ÞÑ

$

&

%

2t si t ď 1{4
t ` 1{4 si 1{4 ă t ď 1{2
t{2 ` 1{2 si t ą 1{2

pour tomber sur pγ ¨ γ1q ¨ γ2.
On fonctionne de même pour la seconde assertion. Pour t P r0, 1s, on a

p1x ¨ γqptq “

"

x si t ď 1{2
γp2t ´ 1q si t ą 1{2

et pγ ¨ 1yqptq “

"

γp2tq si t ď 1{2
y si t ą 1{2.
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Il suffit alors de prendre les reparamétrisations de γ :

f : t ÞÑ

"

0 si t ď 1{2
2t ´ 1 si t ą 1{2

et g : t ÞÑ

"

2t si t ď 1{2
1 si t ą 1{2

respectivement.
Enfin, pour la dernière assertion, on aura pour t P r0, 1s,

pγ ¨ γ´1
qptq “

"

γp2tq si t ď 1{2
γp2p1 ´ tqq si t ą 1{2

Il suffit alors de poser

hpt, sq “

"

γp2p1 ´ sqtq si t ď 1{2
γp2p1 ´ sqp1 ´ tqq si t ą 1{2

(et de remarquer que pγ´1q´1 “ γ). ■

Corollaire 1.4.12 Un espace topologique X est simplement connexe si et seulement
s’il est connexe par arcs et tout lacet est homotope au lacet constant.

Démonstration. Les conditions sont clairement nécessaires. Pour la réciproque, il
suffit de montrer que l’application (1.2) est injective. Or, si on se donne γ, γ1 : x „ y,
on aura

γ1
„t0,1u γ

1
¨ 1x „t0,1u γ

1
¨ pγ´1

¨ γq „t0,1u pγ1
¨ γ´1

q ¨ γ „t0,1u 1x ¨ γ „t0,1u γ. ■

Il est parfois nécessaire de considérer des homotopies qui ne fixent pas les extré-
mités :

Lemme 1.4.13 Soit h : γ „ γ1 une homotopie quelconque (ne fixant pas nécessaire-
ment les extrémités). On pose

@t P r0, 1s, δptq “ hp0, tq et δ1
ptq “ hp1, tq.

On a alors

γ ¨ δ1
„t0,1u δ ¨ γ1.

Démonstration. On a

@t P r0, 1s, pγ ¨ δ1
qptq “

"

γp2tq “ hp2t, 0q si t ď 1{2
δ1p2t ´ 1q “ hp1, 2t ´ 1q si t ą 1{2

et

@t P r0, 1s, pδ ¨ γ1
qptq “

"

δp2tq “ hp0, 2tq si t ď 1{2
γ1p2t ´ 1q “ hp2t ´ 1, 1q si t ą 1{2.

Il suffit donc d’utiliser l’homotopie suivante :

@t P r0, 1s, gpt, sq “

$

’

’

’

’

&

’

’

’

’

%

δp2tq “ hp0, 2tq si t ď s{2

hp2t ´ s, sq si s{2 ă t ď ps ` 1q{2

δ1p2t ´ 1q “ hp1, 2t ´ 1q si t ą ps ` 1q{2.

■
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Proposition 1.4.14 Soit h : f „ g : X Ñ Y et γ : x1 „ x2 dans X. On pose

@t P r0, 1s, δ1ptq “ hpx1, tq et δ2ptq “ hpx2, tq.

On a alors

pf˚γq ¨ δ2 „t0,1u δ1 ¨ pg˚γq

Démonstration. On considère l’homotopie composée

h1 : r0, 1s ˆ r0, 1s
γˆIdr0,1s

ÝÑ X ˆ r0, 1s
h

ÝÑ Y

entre f˚γ et g˚γ. On peut alors appliquer le lemme 1.4.13. ■
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1.5 Exercices
1.5.1 Topologie

Exercice 1.1 1. Soient I et J deux intervalles infinis de R. Montrer qu’il existe
une bijection entre I et J . Montrer qu’il existe une bijection continue si
et seulement si I et J sont tous les deux ouverts, ou fermés bornés ou
semi-ouverts. Montrer qu’alors c’est un homéomorphisme.

2. Montrer que si m,n ą 0, il existe une bijection entre Rn et Rm.
3. Montrer qu’il existe une bijection continue r0, 1rÑ S mais pas d’homéomor-

phisme.
4. Montrer qu’il n’existe pas de surjection continue R Ñ Rz0 (et donc pas

d’homéomorphisme).
5. Montrer qu’il n’existe pas de bijection continue R2 Ñ R (et donc pas

d’homéomorphisme).
6. Montrer a qu’il existe une surjection continue r0, 1s Ñ r0, 1s2 (courbe de

Péano par exemple) mais pas de bijection continue (et donc pas d’homéo-
morphisme).

a. Le résultat reste valide si on remplace r0, 1s2 par n’importe quel espace compact connexe
localement connexe à base dénombrable (théorème de Hahn–Mazurkiewicz).

Solution. 1. On procède à l’envers. On remarque d’abord que deux intervalles
bornés qui sont ouverts, ou fermés ou semi-ouverts sont homéomorphes (par
une application affine). On rappelle ensuite que les applications

R Ñs ´ 1, 1r ou Rě0 Ñ r0, 1r, x ÞÑ
x

1 ` |x|

sont des homéomorphismes. On en déduit que deux intervalles ouverts ou
semi-ouverts sont automatiquement homéomorphes. La réciproque résulte du
théorème de la bijection : une application continue sur un intervalle est injective
si et seulement si elle est strictement monotone. Or, si f :sa, brÑ R est continue
et strictement croissante alors fpsa, brq “sinffpxq, sup fpxqr. Les autres cas se
traitent de la même manière.
On considère maintenant la notion de cardinal d’un ensemble. On rappelle
que, par définition, #X “ #Y (resp. #X ď #Y ) si et seulement s’il existe
une bijection (resp. injection) X Ñ Y et le théorème de Cantor-Bernstein dit
que ď est une relation d’ordre sur les cardinaux. Pour terminer, il suffit donc
de montrer que si I est un intervalle infini, il existe une application injective
R ãÑ I. Quitte à remplacer R par un intervalle ouvert borné, c’est immédiat.

2. Il suffit de traiter le cas de R et R2, car on aura alors des bijections Rn »

Rn´1 ˆ R » Rn´1 ˆ R2 » Rn`1, et il suffit en fait de montrer que #R2 ď #R.
On utilise alors le fait que, si X ‰ H, alors #X ď #Y si et seulement s’il
existe une surjection Y Ñ X. Il suffit alors d’envoyer, en écriture décimale,
ř

ai10
i sur p

ř

a2i10
i,

ř

a2i`110
iq.

3. Il s’agit bien sûr de t ÞÑ e2iπt. Pour la seconde assertion, il suffit de remarquer
que S est compact mais pas r0, 1r.

4. Il suffit de remarquer que R est connexe mais pas Rz0.
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5. S’il existait une bijection continue f : R2 Ñ R, alors il existerait une bijection
continue f : R2z0 Ñ Rzfp0q mais la source est connexe et pas le but.

6. On rappelle que la courbe de Péano est donnée par t ÞÑ px, yq où, si on pose

t “
ÿ

ką0

tk3
´k, x “

ÿ

ką0

xk3
´k et y “

ÿ

ką0

yk3
´k

avec tn, xn, yn P t0, 1, 2u, alors on a

xn “

"

t2n´1 si
řn´1
k“1 t2k ” 0 mod 2

2 ´ t2n´1 mod 3 sinon

et

yn “

"

t2n si
řn
k“1 t2k´1 ” 0 mod 2

2 ´ t2n mod 3 sinon.

Par contre, il n’existe pas de bijection continue. Sinon, ce serait un homéomor-
phisme car r0, 1s est compact et r0, 1s2 est séparé. Mais r0, 1szt1{2u n’est pas
connexe, alors que, si a désigne l’image de 1{2, alors r0, 1s2ztau est toujours
connexe. ■

Exercice 1.2 1. On désigne par Bn, Un et ∆n les groupes des matrices réelles
inversibles d’ordre n qui sont respectivement triangulaires supérieures, tri-
angulaires supérieures unipotentes (des 1 sur la diagonale) et diagonales.
Montrer que la multiplication induit un homéomorphisme ∆n ˆ Un » Bn.

2. On désigne maintenant par On le groupe orthogonal et par B`
n Ă Bn le

sous-groupe des matrices à coefficients diagonaux ą 0. Montrer a que la
multiplication induit un homéomorphisme On ˆ B`

n » GLn.

a. C’est la décomposition d’Iwasawa (ou de Gram-Schmidt).

Solution. 1. Dans l’espace vectoriel Mn des matrices carrées, on a c “ ab si et
seulement si cij “

ř

k aikbkj. En particulier, les composantes sont polynomiales
et la multiplication est donc continue. Si a est diagonale, on aura cii “ aiibij , et
si de plus b est triangulaire unipotente, alors aii “ cii et bij “ cij{cii. On a donc
bien une bijection et c’est un homéomorphisme car toutes les composantes de
l’application réciproque sont continues (car rationnelles).

2. On a On X B`
n “ tInu. Il en résulte que la multiplication On ˆ B`

n Ñ GLn
est injective. Si on écrit a “ ra1, . . . , ans et c “ rc1, . . . , cns comme suite de
vecteurs colonnes, on aura

j
ÿ

i“1

bijai “ cj.

Puisque pa1, . . . , anq est une base orthonormale, on voit que bij “ cj
tai est

uniquement déterminé par a et c. De plus, on aura

bjjaj “ a1
j :“ cj ´

j´1
ÿ

i“1

bijai
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et donc bjj “ |bjj| “ }a1
j}. C’est le procédé d’orthogonalisation de Gram-

Schmidt : on définit par récurrence

bij :“ cj
tai pi ă jq, a1

j :“ cj ´

j´1
ÿ

i“1

bijai, bjj :“ }a1
j} et aj :“

a1
j

bjj
.

On a donc bien un homéomorphisme. ■

1.5.2 Connexité, compacité

Exercice 1.3 1. Soit C (resp. C 1) une partie convexe compacte de Rn telle que
0 P C̊ (resp. 0 P C̊ 1).
(a) Montrer que si x ‰ 0, alors r0xq rencontre BC en un unique point a

y “: BCpxq et que r0xq X C “ r0ys.
(b) Montrer que l’application f : BC Ñ BC 1, x ÞÑ BC1pxq est bijective.
(c) Montrer que f se prolonge en une application bijective

F : C Ñ C 1, x ÞÑ

#

}x}

}BCpxq}
BC1pxq si x ‰ 0

0 si x “ 0.

(d) Montrer que f et F sont des homéomorphismes (on se ramènera au cas
C 1 “ Bn).

2. En déduire que si C et C 1 sont des convexes compacts de même dimension
finie, alors il existe un homéomorphisme C » C 1 qui induit un homéomor-
phisme BC » BC 1.

a. C’est la projection radiale issue de 0.

Solution. 1. (a) Si x ‰ 0, alors r0xq XC est une partie convexe fermée bornée de
la demi-droite qui contient 0 et c’est donc un intervalle de la forme r0ys.
De plus, r0xq X C̊ Ă r0yr (image inverse de l’intérieur) et donc y P BC.
Pour l’unicité, il suffit de montrer que r0yrĂ C̊. On peut remplacer
C par l’enveloppe convexe de y et de Bp0, rq Ă C. Si z P r0yr, alors
B̊pz, r}y ´ z}{}y}q Ă C̊. En effet, si b P B̊pz, r}y ´ z}{}y}q et qu’on pose
a :“ y `

}y}

}y´z}
pb ´ yq, on aura a P Bp0, rq et b P rays.

(b) Il résulte de la première question que l’application f´1 : BC 1 Ñ BC, x1 ÞÑ

BCpx1q est la réciproque de f .
(c) L’application

F´1 : C 1
Ñ C, x1

ÞÑ

#

}x1}

}BC1 px1q}
BCpx1q si x1 ‰ 0

0 si x1 “ 0

est la réciproque de F .
(d) On peut supposer par transitivité que C 1 “ Bn. On a alors fpxq “

x{}x} qui est continue. Puisque BC et Sn´1 sont compacts, f est un
homéomorphisme. De même, on a

F´1
px1

q “

#

}x1}f´1
´

x1

}x1}

¯

si x1 ‰ 0

0 si x1 “ 0.
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L’application F´1 est donc continue, y compris en 0, puisque f´1 est
continue sur un compact et donc bornée. C’est un homéomorphisme car
C et Bn sont compacts.

2. Si C est un convexe de dimension n, on peut supposer que C Ă Rn. Après une
translation, on peut supposer que 0 P C̊. ■

Exercice 1.4 1. Montrer que l’application x ÞÑ x
1`}x}

induit un homéomor-
phisme Rn » B̊n.

2. On désigne par a :“ p0, . . . , 0, 1q P Rn`1 et on identifie Rn avec l’hyperplan
d’équation xn`1 “ 0 dans Rn`1.
(a) Soit x P Sn. Montrer que si x ‰ a, la droite paxq rencontre Rn en un

unique point fpxq que l’on déterminera.
(b) Montrer que l’application f : Snza Ñ Rn est bijective et déterminer

son inverse.
(c) En déduire que f est un homéomorphisme a.

a. C’est la projection stéréographique (sur l’hyperplan équatorial).

Solution. 1. On vérifie aisément que

@x, y P Rn, y “
x

1 ` }x}
ô

"

x “
y

1´}y}

}y} ă 1.

En effet, puisque }x} ă 1` }x}, si y :“ x
1`}x}

, on aura toujours }y} “
}x}

1`}x}
ă 1.

On suppose dorénavant que }y} ă 1. On a alors

y “
x

1 ` }x}
ô y “

x

1 ` }x}
et }y} “

}x}

1 ` }x}

ô x “ p1 ` }x}qy et 1 ` }x} “
1

1 ´ }y}

ô x “
y

1 ´ }y}
et }x} “

}y}

1 ´ }y}

ô x “
y

1 ´ }y}
.

2. (a) Si x “ px1, . . . , xn`1q, alors la droite paxq est paramètrée par

t ÞÑ ptx1, . . . , txn, 1 ` tpxn`1 ´ 1qq

et fpxq est donc caractérisé par 1 ` tpxn`1 ´ 1q “ 0 ou encore t “ 1
1´xn`1

.
On a donc

fpxq “

ˆ

x1
1 ´ xn`1

, . . . ,
xn

1 ´ xn`1

˙

.

(b) On va donner deux démonstrations.
i. Pour déterminer l’inverse de f , on doit résoudre

@i “ 1, . . . , n, yi “
xi

1 ´ xn`1

et }x} “ 1.
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On aura donc obligatoirement

}y}
2

“

n
ÿ

i“1

y2i “

řn
i“1 x

2
i

p1 ´ xn`1q
2

“
}x}2 ´ x2n`1

p1 ´ xn`1q2
“

1 ´ x2n`1

p1 ´ xn`1q2
“

1 ` xn`1

1 ´ xn`1

si bien que 1 ` xn`1 “ }y}2p1 ´ xn`1q. On en déduit que

xn`1 “
}y}2 ´ 1

}y}2 ` 1
et xi “ yip1´xn`1q “ yi

ˆ

1 ´
}y}2 ´ 1

}y}2 ` 1

˙

“
2yi

}y}2 ` 1

pour i “ 1, . . . , n. On voit donc que f est bijective et que

f´1
pyq “

ˆ

2y1
}y}2 ` 1

, . . . ,
2yn

}y}2 ` 1
,

}y}2 ´ 1

}y}2 ` 1

˙

.

ii. On procède comme dans la question précédente mais dans l’autres sens.
On se donne un point y P Rn et on considère l’intersection de la droite
payq avec la sphère Snza, ce qui conduit à poser x “ pty1, . . . , tyn, 1´tq
avec t ‰ 0 et à résoudre

n
ÿ

i“1

t2y2i ` p1 ´ tq2 “ 1 ô t2}y}
2

´ 2t ` t2 “ 0 ô t “
2

}y}2 ` 1
.

On retrouve bien sûr la même formule.
(c) C’est un homémorphisme car les composantes de f et f´1 sont continues.

■

Exercice 1.5 1. Montrer que si X est un espace topologique séparé et que
K,K 1 Ă X sont compacts disjoints, alors il existe des voisinages ouverts
disjoints U et U 1 de K et K 1 dans X.

2. Soit p : X ↠ X 1 une application surjective continue fermée à fibres compactes
(p´1px1q compact si x1 P X 1). Montrer que si X est séparé, alors X 1 aussi.

3. Soit p : X ↠ X 1 une application surjective continue fermée. Montrer que si
X est compact, alors X 1 aussi.

4. Montrer que si X est séparé (resp. compact) et A Ă X est compact, alors
X{A est séparé (resp. compact).

Solution. 1. On traite d’abord le cas où K “ txu est réduit à un point. Si x1 P K 1,
il existe des voisinages ouverts disjoints Ux1 et U 1

x1 de x et x1 respectivement.
Puisque K 1 est compact, il existe x1

1, . . . , x
1
n P K 1 tels que K 1 Ă U 1 :“

Ťn
i“1 U

1
x1
i
.

On pose alors U :“
Şn
i“1 Ux1

i
. On traite maintenant le cas général. Par ce qui

précède, il existe pour tout x P K, des voisinages ouverts disjoints Ux et U 1
x de

x et K 1 respectivement. Puisque K est compact, il existe x1, . . . , xn P K tels
que K Ă U :“

Ťn
i“1 Uxi . On pose alors U 1 :“

Şn
i“1 U

1
xi

.
2. On se donne x1 ‰ y1 P X 1. Par hypothèse, p´1px1q et p´1py1q sont des compacts

nécessairement disjoints dans un espace séparé. Il existe donc des voisinages
ouverts disjoints U Ą p´1px1q et V Ą p´1py1q. Puisque p est une application
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fermée, ppXzUq et ppXzV q sont fermés dans X 1 et leurs complémentaires U 1

et V 1 sont donc ouverts. D’autre part, si z1 P X 1, on aura

z1
P U 1

ô z1
R ppXzUq ô p´1

pz1
q X pXzUq “ H ô p´1

pz1
q Ă U

et le résultat analogue pour V . On en déduit que immédiatement que x1 P U 1 et
y1 P V 1. Enfin, si z1 P U 1 XV 1, alors p´1pz1q Ă U XV “ H, ce qui est impossible
car f est surjective.

3. Il suffit de montrer que X 1 est séparé car l’image d’un compact par une
application continue dans un espace séparé est toujours compact. Puisque X
est séparé, ses points sont fermé. Puisque p est surjective et fermée, les points
de X 1 aussi sont fermés. Puisque f est continue, les fibres sont fermées, donc
compactes car tout fermé d’un compact est compact. On peut donc appliquer
le résultat précédent.

4. Il suffit de vérifier les hypothèses mais si F est un fermé de X et p : X ↠ X{A
désigne l’application quotient, on aura p´1pppF qq “ F si F X A “ H et
p´1pppF qq “ F Y A sinon. Puisque A est compact dans X séparé, c’est un
fermé et p est donc fermée. De plus, si x1 P X{A et x1 “ ppxq, alors p´1px1q “ txu

si x R A et p´1px1q “ A sinon et les fibres sont donc compactes. ■

Exercice 1.6 Montrer que la bouteille de Klein, c’est-à-dire, le quotient K2 de T2

par la relation

pz, wq R pz1, w1
q ô

"

zz1 “ 1
w ` w1 “ 0,

est un espace compact (on rappelle que T “ S “ tz P C, |z| “ 1u).

Solution. Puisque T2 est compact, il suffit de montrer que l’application canonique
p : T2 Ñ K2 est fermée. L’automorphisme σ : pz, wq ÞÑ pz´1,´wq de T2 est continu.
Or si F Ă T2, on a p´1pppF qq “ F Y σ´1pF q. Donc, si F est fermé dans T2, alors
p´1pppF qq aussi et il suit que ppF q est fermé dans K2 par définition de la topologie
quotient. ■

Exercice 1.7 Soit Z une partie de Y , f : Z Ñ X une application continue et

p : X
ž

Y ↠ X
ž

f

Y

la projection.
1. Montrer que

@A Ă X, p´1
pppAqq “ A

ž

f´1
pAq

et que

@B Ă Y, p´1
pppBqq “ fpB X Zq

ž

f´1
pfpB X Zqq Y B.

2. Montrer que p induit une bijection continue entre X
š

Y zZ et X
š

f Y .
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3. Supposons que Z est fermé dans Y . Montrer que alors p induit un homéo-
morphisme entre X (resp. Y zZ) et un fermé (resp. un ouvert) de X

š

f Y .
4. Supposons que Z est compact. Montrer que si X et Y sont séparés (resp.

compacts), alors X
š

f Y est séparé (resp. compact).

Solution. 1. Par définition, X
š

f Y est le quotient de X
š

Y par la relation
engendrée par fpzqRz pour z P Z. En d’autres termes, les seules relations non
triviales sont

— x „ z (et z „ x) lorsque x P X, z P Z et fpzq “ x,
— z „ z1 lorsque z, z1 P Z et fpzq “ fpz1q.

On voit donc que la classe de x P X est p´1pppxqq “ x Y f´1pxq, la classe de
z P Z est p´1pppzqq “ fpzqYf´1pfpzqq et la classe de y P Y zZ est p´1pppyqq “ y.
On en déduit immédiatement les formules annoncées.

2. Considérons l’application induite φ : X
š

Y zZ Ñ X
š

f Y . Si x P X, on a
φ´1pppxqq “ x, si y P Y zZ, alors φ´1pppyqq “ y et si z P Z, alors φ´1pppzqq “

fpzq. Cela implique que l’application est bijective (l’image inverse d’un singleton
est un singleton).

3. On a une application injective continue i : X ãÑ X
š

f Y et il suffit donc
de montrer qu’elle est fermée. Si F est un fermé de X alors F est fermé
dans X

š

Y . De plus, puisque f est continue, f´1pF q est fermé dans Z qui
est fermé dans Y qui est lui-même fermé dans X

š

Y . Il en résulte que
p´1pipF qq “ p´1pppF qq “ F Y f´1pF q est fermé dans X

š

Y et donc que ipF q

est fermé dans X
š

f Y . On a de même une application injective continue
j : Y zZ ãÑ X

š

f Y et il suffit donc de montrer qu’elle est ouverte. Si U est
un ouvert de Y zZ, alors p´1pjpUqq “ p´1pppUqq “ U est ouvert dans Y zZ, et
donc aussi dans Y (puisqu’on a supposé Z fermé), et donc aussi finalement
dans X

š

Y . Il suit que jpUq est ouvert dans X
š

f Y .
4. Grâce à l’exercice 1.5, il suffit de montrer que p est fermée à fibres compactes.

Tout fermé de X
š

Y s’écrit A Y B avec A fermé dans X et B fermé dans Y .
Puisque p est une application quotient, pour montrer que c’est une application
fermée, il suffit de montrer que p´1pppAqq et p´1pppBqq sont fermés. Puisque
f est continue, f´1pAq est fermé dans Z. Puisque Z est compact dans Y
séparé, Z est fermé dans Y . Il suit que f´1pAq est fermé dans Y et donc
p´1pppAqq “ A Y f´1pAq est fermé dans X

š

Y . Maintenant, puisque B X Z
est fermé dans Z qui est compact, B X Z est aussi compact. Puisque X est
séparé et f continue, fpB X Zq est compact et donc fermé dans X séparé. Il
suit que f´1pfpB X Zqq est fermé dans Z et donc aussi dans Y . On en déduit
que p´1pppBqq “ fpB X Zq Y f´1pfpB X Zqq Y B est fermé dans X

š

Y . Il
faut encore s’assurer que p est à fibres compactes. Cela résulte des formules
ci-dessus et du fait que f est à fibres compactes puisque Z est compact et Y
séparé. ■

Exercice 1.8 1. Montrer que Rn, B̊n et Sn sont des variétés topologiques.
2. Montrer que Bn{Sn´1 » Sn. En déduire que r0, 1s{t0, 1u » S.
3. Montrer que Sn » Bn

š

Sn´1 Bn

4. Montrer que Sn{pSn´1 ˆ 0q » Sn _ Sn.
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5. Montrer que Bn{pBn´1 ˆ 0q » Bn _ Bn.

Solution. 1. Pour Rn, c’est clair et on a vu dans l’exercice 1.4 que B̊n » Rn.
D’autre part, si x P Sn et a ‰ x, il résulte de l’exercice 1.4 que Snza est un
voisinage ouvert de x qui est homéomorphe à Rn.

2. On a une suite d’homéomorphismes B̊n » Rn » Snza. On complète avec la
projection Sn´1 ↠ a pour obtenir une application surjective p : Bn ↠ Sn qui
induit une bijection Bn{Sn´1 » Sn. Puisque la source (grâce à l’exercice 1.5) et
le but sont compacts, il suffit de montrer que p est continue. On propose deux
solutions :
(a) On se donne un ouvert U Ă Sn et on veut montrer que p´1pUq est ouvert.

Si a R U , alors U est un ouvert de Snza et donc p´1pUq est un ouvert de
B̊n qui est lui même ouvert dans Bn. Sinon, on considère le complémentaire
F de U . C’est un fermé de Sn qui ne contient pas a et donc un fermé
de Snza. Il suit que p´1pF q est un fermé de Bn et p´1pUq est donc bien
ouvert.

(b) Par défintion, on a p “ ψ ˝ φ avec

B̊n
φ // Rn

x � // x
1´}x}

et Rn
ψ // Sn

y � //
´

2y
}y}2`1

, }y}2´1
}y}2`1

¯

.

On se donne une suite convergente xn Ñ x dans Bn et on veut montrer que
ppxnq Ñ ppxq. On se ramène rapidement au cas ou xn P B̊n et x P Sn´1 et
on veut donc montrer que ppxnq Ñ a “ p0, 0, . . . , 0, 1q. Puisque }xn} Ñ 1,
on voit que }φpxnq} Ñ `8 et ensuite que ψpφpxnqq Ñ a.

Enfin, puisque l’application r0, 1s Ñ B, t ÞÑ 2t ´ 1 est un homéomorphisme
qui induit une bijection entre t0, 1u et S0, on a une suite d’homéomorphismes
r0, 1s{t0, 1u » B{S0 » S.

3. On désigne par E˘ le demi-espace ˘xn`1 ě 0 et on pose Bn˘ :“ Sn X E˘. On
considère la projection p : Rn`1 ↠ Rn (sur les n premiers facteurs). Montrons
que si x P Rn`1, alors

}x} “ 1 ô

"

}ppxq} ď 1

xn`1 “ ˘
a

1 ´ }ppxq}2.

En effet, on a }x}2 “ }ppxq}2 ` x2n`1 si bien que }x} “ 1 si et seulement si
x2n`1 “ 1 ´ }ppxq}2, c’est-à-dire 1 ´ }ppxq}2 ě 0 et xn`1 “ ˘

a

1 ´ }ppxq}2. On
en déduit que p induit un homéomorphisme Bn˘ » Bn et un homéomorphisme
Bn` X Bn´ » Sn´1. En considérant les applications inverses Bn » Bn˘ ãÑ Sn

qui coincident sur Sn´1, on obtient par définition une application continue
Bn

š

Sn´1 Bn Ñ Sn. C’est une bijection continue entre deux compacts (grace à
l’exercice 1.7) et donc un homéomorphisme.

4. On va donner deux démonstrations.
(a) On reprend les notations de la question précédente. La projection stéréo-

graphique f : Snza Ñ Rn induit un homéomorphisme Bn´ » Bn. En effet,
on sait que

}fpxq}
2

“
1 ` xn`1

1 ´ xn`1
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et on aura donc

}fpxq} ď 1 ô 1 ` xn`1 ď 1 ´ xn`1 ô xn`1 ď 0.

Le même calcul montre que }fpxq} “ 1 ô xn`1 “ 0. Autrement dit,

fpxq P Sn´1
ô x P Sn X pRn ˆ 0q “ Sn´1

ˆ 0.

On en déduit donc un homémorphisme Bn´{pSn´1 ˆ 0q » Bn{Sn´1 » Sn.
Par projection stéréographique à partir de ´a, on a aussi un homéomor-
phisme analogue Bn`{pSn´1 ˆ 0q » Sn et on recolle. Plus précisément, on
a un diagramme commutatif

Bn´{pSn´1 ˆ 0q
š

Bn`{pSn´1 ˆ 0q
» //

����

Sn
š

Sn

����
Sn{pSn´1 ˆ 0q

» // Sn _ Sn.

(b) Soit X :“ Bn`1pc, 1{2q Y Bn`1p´c, 1{2q avec c “ p0, . . . , 0, 1{2q si bien
que BX “ Snpc, 1{2q Y Snp´c, 1{2q. On a un homéomorphisme évident
Bn`1 _ Bn`1 » X qui induit un homéomorphisme Sn _ Sn » BX. On va
maintenant construire la projection radiale 8 f : Sn ↠ BX issue de 0. On
a

@y P Rn`1, }y ˘ c}2 “ }y}
2

˘ 2y ¨ c ` }c}2 “ }y}
2

˘ yn`1 ` 1{4.

On en déduit que

y P BX ô }y ˘ c}2 “ 1{4 ô |yn`1| “ }y}
2.

En particulier, si y “ tx avec x P Sn et t ą 0, on voit que

y P BX ô t|xn`1| “ t2}x}
2

ô t “ |xn`1| ô y “ |xn`1|x.

On peut donc poser

f : Sn Ñ BX, x ÞÑ |xn`1|x.

On a

fpxq “ 0 ô xn`1 “ 0 ô x P Sn´1
ˆ 0.

Par propriété universelle du quotient, on en déduit une application continue
f : Sn{pSn´1 ˆ 0q Ñ BX. Puisque la source est compacte, il reste à
montrer que f est bijective et il suffit de montrer que f induit une
bijection SnzpSn´1 ˆ 0q Ñ BXz0. Si y “ fpxq, alors |yn`1| “ x2n`1 et donc
|xn`1| “

a

|yn`1|. On voit donc que pour y ‰ 0, on a

y “ fpxq ô x “
1

a

|yn`1|
y.

8. On pourrait aussi considérer la projection horizontale.
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5. On va copier presque mot pour mot la seconde démonstration de la question
précédente (et on va en fait montrer que Bn`1{pBn ˆ 0q » Bn`1 _ Bn`1). Déjà,
il suffit de montrer que Bn`1{pBn ˆ 0q » X. Les calculs ci-dessus montrent que

@y P Rn`1, y P X ô }y}
2

ď |yn`1|.

Si y P Rn`1 et y :“ |xn`1|x, on aura |yn`1| “ x2n`1. Donc, si }x} ď 1, on aura

}y}
2

“ x2n`1}x}
2

ď x2n`1 “ |yn`1|

si bien que y P X. On peut donc définir

F : Bn`1
Ñ X, x ÞÑ |xn`1|x

exactement comme avant. Bien sûr, F pxq “ 0 ô x P Bn ˆ 0 si bien que F
induit F : {pBn ˆ 0q Ñ X. On montre que c’est une bijection (et donc un
homéomorphisme) par le même argument que précédemment. ■

Exercice 1.9 1. Montrer que Pn » Sn{R avec x Ry ô x ` y “ 0.
2. Montrer que Pn est compact.
3. Montrer que Pn » Bn{R1 avec xR1y ô x, y P Sn´1 et x ` y “ 0.
4. Montrer que a

Pn » Pn´1
ž

p

Bn

où p : Sn´1 Ñ Pn´1 est l’application canonique.
5. Montrer que Pn est une variété topologique.
6. Montrer que l’application f : z Ñ z2 induit un homéomorphime P » S et

que

P2
» S

ž

f

B2.

a. En particulier, on peut identifier B̊n (ou Rn si on préfère) avec un ouvert de Pn et Pn´1

avec le fermé complémentaire.

Solution. 1. Par définition, Pn » pRn`1z0q{S avec x Sy ô Dλ P Rˆ, y “ λx. Si
x, y P Sn et x`y “ 0, alors y “ λx avec λ “ ´1. L’application d’inclusion Sn ãÑ

Rn`1z0 induit donc une application continue Sn{R Ñ Pn. Réciproquement,
on considère la rétraction r : Rn`1z0 Ñ Sn, x ÞÑ x{}x}. Si y “ λx, alors
rpyq “ ˘rpxq et donc, soit rpxq “ rpyq (réflexivité) ou alors rpxq ` rpyq “ 0.
On dispose donc bien d’une application réciproque continue.

2. Il suffit de montrer que l’application quotient p : Sn ↠ Sn{R est fermée. Or si
F Ă Sn est fermé et qu’on pose σpxq “ ´x, alors p´1pppF qq “ F Y σ´1pF q est
bien fermé.

3. On rappelle que Bn` :“ tx P Sn, xn`1 ě 0u et que la projection sur les premiers
facteurs induit un homéomorphisme Bn` » Bn. On considère l’application
composée Bn » Bn` ãÑ Sn ↠ Pn. Celle-ci est fermée (continue) comme
composée d’application fermées (continues). Elle est surjective, car si x P Sn,
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soit x P Bn`, ou alors ´x P Bn` et on a ´xRx. De plus, l’image de x P Bn

est la classe de px,
a

1 ´ }x}2q modulo R. Deux éléments x et y ont même
image si et seulement si px,

a

1 ´ }x}2q ` py,
a

1 ´ }y}2q “ 0, ce qui signifie
que x` y “ 0 et }x} “ }y} “ 1, c’est-à-dire xR1y. L’homéomorphisme annoncé
en résulte formellement.

4. L’application Rn Ñ Rn`1, x ÞÑ px, 0q induit une application injective continue
Pn´1 ãÑ Pn. On dispose aussi de l’application continue surjective Bn ↠ Pn in-
duite par y ÞÑ py,

a

1 ´ }y}2q. On en déduit une application continue surjective
Pn´1

š

Bn ↠ Pn. De plus, on a l’équivalence suivante

Dλ P Rˆ, py,
a

1 ´ }y}2q “ λpx, 0q ô

"

Dλ P Rˆ, y “ λx
y P Sn´1.

Par propriété universelle de la somme amalgamée (faire un dessin), on en
déduit une application bijective continue entre deux compacts, et donc un
homéomorphisme,

Pn´1
ž

p

Bn » Pn.

5. Pour montrer que Pn est une variété topologique, il suffit de montrer qu’il existe
un point qui a un voisinage homémorphe à un ouvert de Rn. En effet, on peut
toujours échanger deux points quelconques par changement de base dans Rn`1.
Or il résulte de la description précédente qu’il existe un ouvert homéomorphe
à B̊n.

6. Puisqu’un nombre complexe (de module 1) a deux racines opposées (de module
1), l’application f : z ÞÑ z2 induit une bijection continue entre deux compacts
P » S{R Ñ S et donc un homéomorphisme. On dispose donc d’un homéomor-
phisme P

š

B2 » S
š

B2 donné sur le premier terme par ppzq ÞÑ fpzq pour
z P S. On en déduit que

P2
» P

ž

p

B2
» S

ž

f

B2. ■

Exercice 1.10 Si X et Y deux espaces topologiques avec X séparé, alors la
topologie a de CpX, Y q est la topologie engendrée par les ouverts

UK,V :“ CppX,Kq, pY, Uqq

où K est compact dans X et V est ouvert dans Y .
1. Montrer que si φ : X ˆ Y Ñ Z est une application continue avec Y séparé,

alors l’application

rφ : X Ñ CpY, Zq, x ÞÑ pφx : y ÞÑ φpx, yqq

est bien définie et continue.
2. Montrer que si X est localement compact, alors l’application

CpX, Y q ˆ X Ñ Y, pf, xq Ñ fpxq
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est continue.
3. En déduire que si Y est localement compact, on a une bijection (appelée

curryfication)

CpX ˆ Y, Zq » CpX, CpY, Zqq, φ ÞÑ rφ.

a. Lorsque Y est un espace métrique, c’est la topologie de la convergence uniforme sur tout
compact.

Solution. 1. Pour tout x P X, puisque φx est l’application composée de l’inclusion
Y ãÑ X ˆ Y, y ÞÑ px, yq et de φ qui sont toutes les deux continues, on voit
que φx est continue. Ensuite, il suffit de montrer que si K est compact dans
Y et W est ouvert dans Z, alors rφ´1pUK,W q est ouvert. Soit x P rφ´1pUK,W q.
On a donc rφpxq “ φx P UK,W , c’est-à-dire φxpKq Ă W . Si y P K, alors
φpx, yq “ φxpyq P W . Comme φ est continue, il existe un voisinage ouvert Uy
de x dans X et un voisinage ouvert Vy de y dans Y tels que φpUy ˆ Vyq Ă W .
Comme K est compact, il existe y1, . . . , yn tels que K Ă

Ťr
i“1 Vyi . On pose

U “
Şr
i“1 Uyi . Si y P K, alors il existe i P t1, . . . , ru tel que y P Vyi . Donc, si

x1 P U , on a px1, yq P Uyi ˆ Vyi et donc φx1pyq “ φpx1, yq P W . Cela montre que
φx1pKq Ă W ou encore que rφpx1q “ φx1 P UK,W . On a donc montré que pour
tout x P rφ´1pUK,W q, il existe un ouvert U Q x tel que rφpUq Ă UK,W , ou encore,
que U Ă rφ´1pUK,W q. Cela montre que ce dernier est ouvert.

2. On se donne un point pf, xq de l’ensemble de départ et un voisinage ouvert U
de fpxq. Puisque f est continue et X localement compact, il existe un voisinage
compact K de x tel que fpKq Ă U . Il suit que UK,U ˆU est un voisinage ouvert
de pf, xq dont l’image est contenue dans U .

3. Il résulte de la première question que l’on a bien une telle application et c’est
clairement une bijection si on néglige les hypothèses de continuité. Il suffit
donc pour conclure de montrer qu’une application φ : X ˆ Y Ñ Z qui a la
propriété que φx : y ÞÑ φpx, yq est continue pour tout x P X et que l’application
rφ : x ÞÑ φx est aussi continue, est nécessairement aussi continue. Les hypothèses
impliquent que l’application

X ˆ Y Ñ CpY, Zq ˆ Y, px, yq ÞÑ pφx, yq

est bien définie et continue. Or on sait que l’application

CpY, Zq ˆ Y Ñ Z, pf, yq Ñ fpyq

est continue. Si on compose ces deux applications, on retombe sur φ. ■

1.5.3 Homotopies
Exercice 1.11 Soient f, g : X Ñ Sn deux applications continues.

1. Montrer que si fpXq Y gpXq Ĺ Sn, alors f „ g.
2. Montrer que la condition @x P X, fpxq ` gpxq ‰ 0 implique que f „ g.

Solution. 1. Il suffit de remarquer qu’il existe par hypothèse a P Sn tel que f et g
sont à valeurs dans Snza qui est homéomorphe à un convexe par projection
stéréographique et donc contractile.
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2. Il suffit de poser

@x P X, @t P r0, 1s, hpx, tq “
p1 ´ tqfpxq ` tgpxq

}p1 ´ tqfpxq ` tgpxq}
.

Il faut juste s’assurer que c’est bien défini. Mais si le dénominateur s’annule,
alors p1 ´ tqfpxq “ ´tgpxq et donc

p1 ´ tq2 “ }p1 ´ tqfpxq}
2

“ } ´ tgpxq}
2

“ t2.

On en déduit que t “ 1{2 et donc fpxq ` gpxq “ 0. Or ce cas est exclus. ■

Exercice 1.12 Montrer qu’une application continue f : Sn´1 Ñ X est homotope à
une application constante si et seulement si elle se prolonge en une application
continue F : Bn Ñ X.

Solution. On propose plusieurs solutions.
1. Se donner une homotopie h : Sn´1 ˆ r0, 1s Ñ X avec une application constante

est équivalent à se donner l’application continue

h : C :“ pSn´1
ˆ r0, 1sq{pSn´1

ˆ 1q Ñ X.

D’autre part, l’homotopie k : Sn´1 ˆ r0, 1s Ñ Bn, pz, tq ÞÑ p1 ´ tqz induit
une application continue k : C Ñ Bn qui est clairement bijective et donc un
homéomorphisme (puisque la source et le but sont compacts). Se donner h
revient donc à se donner l’application continue F “ h ˝ k

´1
: Bn Ñ X. De plus,

par construction, hpz, 0q “ F pzq si z P Sn´1.
2. On considère directement l’application k : Sn´1 ˆ r0, 1s Ñ Bn, pz, tq ÞÑ p1 ´ tqz.

C’est une application continue surjective. Plus précisément, si z ‰ 0, alors
k´1pzq est réduit au point pz{||z}, 1´ }z}q et k´1p0q “ Sn´1 ˆ 1. On peut aussi
montrer que k est fermée (à faire) si bien que Bn est muni de la topologie
quotient. Se donner F : Bn Ñ X continue est donc équivalent à se donner une
homotopie h : Sn´1 ˆ r0, 1s Ñ X constante sur Sn´1 ˆ 1.

3. On se donne x P X et une application continue h : Sn´1 ˆ r0, 1s Ñ X telle que

@z P Sn´1, hpz, 0q “ fpzq et hpz, 1q “ x.

On pose alors

@z P Bn, F pzq “

#

x si z “ 0

h
´

z
}z}
, 1 ´ }z}

¯

sinon.

Il faut montrer que l’application est bien continue en 0 (à faire). Réciproquement,
toute application continue F : Bn Ñ X est homotope à une application
constante puisque Bn est contractile. Il en ira alors de même de sa restriction à
Sn´1.

4. Alternativement, on pose

@z P Bn, F pzq “

#

x si }z} ď 1{2

h
´

z
}z}
, 2p1 ´ }z}q

¯

si }z} ě 1{2.

C’est une application continue par l’argument des fermés. ■
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Exercice 1.13 1. Montrer que Sn est un rétract (fort) par déformation de
Rn`1z0.

2. En déduire que si E est un espace vectoriel de dimension finie et H un sous-
espace vectoriel de codimension k ` 1, alors le complémentaire EzH „ Sk.

Solution. 1. Il suffit de poser

@x P Rn`1
z0, rpxq “

x

}x}

et

@x P Rn`1
z0, @t P r0, 1s, hpx, tq “ p1 ´ tqx ` trpxq.

On aura bien toujours

hpx, 0q “ x, hpx, 1q “ rpxq et hpx, tq “ x si x P Sn.

Il faut aussi s’assurer que hpx, tq ‰ 0 mais on aurait sinon

p1 ´ tq ` t
1

}x}
“ 0.

Puisque t, 1 ´ t ě 0, on aurait alors t “ 1 ´ t “ 0. Contradiction.
2. On peut supposer que E “ Rn et H “ 0 ˆ Rn´k´1 et on a donc

EzH » Rk`1
z0 ˆ Rn´k´1

„ Sk ˆ 0 » Sk. ■

Exercice 1.14 1. Montrer que le bouquet Y “ Spp1, 0q, 1q Y Spp´1, 0q, 1q est
un rétract (fort) par déformation de X :“ R2ztp1, 0q, p´1, 0qu.

2. Montrer que Y :“ Sn Y p0 ˆ Bq est un rétract (fort) par déformation de
X :“ Bn`1zpSn´1p0, 1{2q ˆ 0q.

Solution. 1. Soient a` :“ p1, 0q,

X` :“ tx P X, x1 ě 1 ou }x ´ a`} ď 1u,

et a´, X´ leurs symétriques horizontaux. On désigne aussi par p la projection
verticale. On pose alors

@x P X, rpxq :“

$

&

%

ra`xq X Y si x P X`

ra´xq X Y si x P X´

rppxqxq X Y sinon.

Afin de s’assurer que c’est bien défini (et continu), on considère l’expression
analytique

@x P X, rpxq :“

$

&

%

a` `
x´a`

}x´a`}
si x P X`

a´ `
x´a´

}x´a´}
si x P X´

px1, y2q sinon
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avec y2 “
a

x1p2 ´ x1q si x1, x2 ě 0 (et symétriquement dans les autres cas).
C’est bien une rétraction continue (utiliser l’argument des fermés). On pose
alors comme d’habitude hpx, tq “ p1 ´ tqx ` trpxq.
Alternativement, on peut conserver les projections radiales issues des centres
à l’intérieur des disques et compléter avec la projection radicale issue de
0 à l’extérieur. Une autre solution, toujours avec les projections radiales à
l’intérieur, est de considérer la projection verticale pour ´2 ď x1 ď 2 en
complétant bêtement avec la rétraction sur le point p2, 0q (resp. p´2, 0q) pour
x1 ě 2 (resp. x1 ď ´2).

2. Soit x P X. Si x R Y , on considère le demi-plan Hpxq contenant x de frontière
0 ˆ R. On désigne par spxq le point d’intersection de Hpxq avec Sn´1p1{2q ˆ 0.
Alternativement, si p : Rn`1 Ñ Rn désigne la projection sur les premiers
facteurs, alors spxq est l’intersection de la demi-droite r0, ppxqq avec Snp1{2qˆ0.
On considère alors la projection radiale r : X Ñ Y dans Hpxq de x issue de
spxq :

r : x ÞÑ

"

x si x P Y
rspxq, xq X Hpxq X Y sinon.

On aura bien une rétraction (forte) par déformation en posant comme d’habi-
tude

hpx, tq “ p1 ´ tqx ` trpxq.

Il faut tout de même s’assurer que r est bien continue. Notons tout d’abord
que, si x R Y , alors

spxq “
ppxq

2}ppxq}
.

Supposons pour l’instant que que rpxq P 0 ˆ B. On peut alors appliquer le
théorème de Thalès dans Hpxq. Si on désigne par q : Rn`1 Ñ R la projection sur
le dernier facteur, on aura nécessairement rpxq “ tqpxq avec t “

1{2
1{2´}ppxq}

ą 0,
c’est-à-dire

rpxq “
qpxq

1 ´ 2}ppxq}
.

De plus, la condition }rpxq} ď 1 se traduit par }qpxq} ď 1´ 2}ppxq}. Supposons
maintenant que cette dernière condition n’est pas satisfaite si bien que que
rpxq P Sn. On peut écrire rpxq “ spxq ` tx avec t ą 0. La condition }rpxq} “ 1
se traduit alors par

›

›

›

›

ppxq

2}ppxq}
` tpppxq ` qpxqq

›

›

›

›

2

“ 1,

ou encore
ˆ

1

2
` t}ppxq}

˙2

` t2}qpxqq}
2

“ 1,
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et après simplification,

t2}x}
2

` t}ppxq} ´
3

4
“ 0.

Si tpxq désigne l’unique racine positive ce ce polynôme du second degré, on
aura donc

rpxq “

#

qpxq

1´2}ppxq}
si }qpxq} ď 1 ´ 2}ppxq}

spxq ` tpxqx sinon.
■

Exercice 1.15 1. Montrer que le groupe Un est contractile et en déduire que
Bn „ ∆n.

2. Montrer que le groupe B`
n est contractile et en déduire que GLn „ On.

Solution. 1. L’espace Un, qui est translaté par In de l’espace vectoriel des matrices
triangulaires supérieures nilpotentes (avec des 0 sur la diagonale), est affine
donc convexe donc contractile. On en déduit que Bn » ∆n ˆ Un „ ∆n.

2. On a B`
n » Rną0 ˆ Un qui est convexe (comme produits de convexes) et donc

contractile. On en déduit que GLn » On ˆ B`
n „ On. ■

1.5.4 Chemins et lacets
Exercice 1.16 1. Montrer que Sn est connexe (par arcs) pour n ą 0.

2. Montrer que SOn est connexe a (par arcs).
3. En déduire que, si n ą 0, On a deux composantes connexes (par arcs).
4. Même chose pour GLn.

a. On rappelle que tout élément de SOn est conjugué à une matrice diagonale par blocs de
taille ď 2.

Solution. 1. On donne quatre solutions.
(a) Si x, y P Sn avec x ` y ‰ 0, on pose

γptq “
p1 ´ tqx ` ty

}p1 ´ tqx ` ty}
.

Lorsque x` y “ 0, il suffit de composer un chemin allant de x à un point
z ‰ x, y avec un chemin allant de z à y.

(b) Si x, y P Sn, il suffit de construire un chemin dans le plan H des x, y. Or
Sn X H » S et on dispose d’une application continue surjective R ↠ S.

(c) Si a ‰ b P Sn, alors Snza et Snzb sont deux parties connexes par arcs (car
homémorphes à Rn) et qui se rencontrent.

(d) On a Sn » Bn{Sn´1. Or Bn est convexe et donc connexe (par arcs) et son
image par la projection qui est continue est donc aussi connexe (par arcs).

2. Il s’agit de montrer que si A P SOn, il existe un chemin de In vers A. Cette
propriété étant stable par conjuguaison, on peut supposer que A est diagonale
par blocs de taille ď 2. Puisqu’un produit de chemins est un chemin, on peut
supposer que n ď 2. Or on a SO1 “ t1u et SO2 » S qui est connexe par arcs.
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3. Si n ą 0, il existe A P On telle que A R SOn et la multiplication par A induit un
homéomorphisme avec le complémentaire SOn » OnzSOn, ce qui montre que
ce dernier est aussi connexe. On dispose d’une application continue surjective
det : On Ñ t˘1u. On en déduit que SOn et OnzSOn sont des complémentaires
ouverts et fermés non vides dans On. Puisqu’ils sont connexes, ce sont les
composantes connexes de On.

4. On sait que On „ GLn si bien que GLn a deux composantes connexes. ■

Exercice 1.17 1. Montrer que l’application r0, 1s Ñ S, t ÞÑ e2iπt induit une
bijection entre l’ensemble des applications continues pγ : S Ñ X et l’ensemble
des lacets γ dans X.

2. Montrer de même que si γ, γ1 sont deux lacets en x dans X, on a une bijection
entre l’ensemble des homotopies ph : pγ „t1u pγ1 et l’ensemble des homotopies
h : γ „t0,1u γ

1.
3. Montrer que si h1 : pγ „ pγ1 est une homotopie (quelconque) et qu’on pose

pour t P r0, 1s, δptq “ h1p1, tq, alors γ ¨ δ „t0,1u δ ¨ γ1.

Solution. 1. Puisque r0, 1s{t0, 1u » S, il revient au même de se donner pγ : S Ñ X
ou γ : r0, 1s Ñ X avec la condition γp0q “ γp1q.

2. Il revient au même de se donner ph : S ˆ r0, 1s Ñ X tel que php1, tq “ x pour
tout t P r0, 1s ou bien h : r0, 1s ˆ r0, 1s Ñ X telle que hp0, tq “ hp1, tq “ x pour
tout t P r0, 1s.

3. Pour la dernière question, il suffit d’appliquer le lemme 1.4.13 à l’homotopie
h : γ „ γ1 correspondante. ■

Exercice 1.18 Soit γ un lacet dans X et pγ : S Ñ X l’application correspon-
dante (donnée par pγpe2iπtq “ γptq). Montrer que les propositions suivantes sont
équivalentes :

1. γ est un lacet trivial.
2. pγ est homotope relativement à 1 à une application constante.
3. pγ est homotope à une application constante.
4. pγ se prolonge en une application continue rγ : B2 Ñ X.

Solution. Il résulte de l’exercice 1.17 que les deux premières assertions sont équi-
valentes. On a montré dans l’exercice 1.12 que les deux dernières assertions sont
équivalentes. Bien sûr, la seconde assertion implique la troisième. Supposons pour
conclure que pγ „ p1y. Grâce à l’exercice 1.17 encore, il existe un chemin δ entre x (si
γ est basé en x) et y tel que γ ¨ δ „t0,1u δ ¨ 1y et donc γ „t0,1u δ ¨ 1y ¨ δ´1 „t0,1u 1x. ■

Exercice 1.19 1. Montrer que si γ est un chemin dans une variété topologique
X, alors il existe une suite 0 “ t0 ď t2 ď ¨ ¨ ¨ ď tr “ 1 et, pour i “ 0, . . . , r´1,
un ouvert Ui Ă X homéomorphe à Rn tel que γprti, ti`1sq Ă Ui.

2. En déduire que si dimpXq ě 2, alors γ est homotope (à extrémités fixées) à
un chemin γ1 dont le support est rare : 8

Ŕim pγ1q “ H.
3. En déduire que Sn est simplement connexe pour n ě 2.
4. En déduire que si E est un espace vectoriel de dimension finie et H un
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sous-espace vectoriel de codimension ě 3, alors EzH est simplement connexe.

Solution. 1. Si τ P r0, 1s, il existe un ouvert Uτ Ă X homéomorphe à Rn tel
que γpτq P Uτ . Comme γ´1pUτ q est un ouvert non vide de r0, 1s, il contient
un voisinage connexe compact (un intervalle fermé) Iτ de τ . Comme r0, 1s

est compact, il existe τ0, . . . , τr´1 P r0, 1s tels que r0, 1s “
Ťr´1
i“0 Iτi . On a

Iτi “ rti, sis et on peut supposer que 0 “ t0 ď t2 ď . . . ď tr´1. On pose tr “ 1
et Ui “ Uτi pour i “ 0, . . . r ´ 1.

2. Pour la seconde question, on peut supposer que 0 “ t0 ă . . . ă tr “ 1 et poser

@i “ 0, . . . r ´ 1, @t P r0, 1s γiptq “ γ pti ` tpti`1 ´ tiqq

si bien que γ „t0,1u γ1 ¨ ¨ ¨ γr. Quitte à remplacer γ par l’un des γi, on est
donc ramené au cas ou X “ Rn. On peut alors poser, si x et y désignent les
extrémités de γ, pour t P r0, 1s, γ1ptq “ x` tpy´xq. Puisque Rn est simplement
connexe, on a γ „t0,1u γ

1. Puisque im pγ1q “ rxys est un segment de Rn et n ě 2,
c’est un fermé rare (d’intérieur vide).

3. On sait déjà que Sn est connexe (par arcs). Si γ est un lacet dans Sn, on peut
supposer que son support est rare. En particulier, im pγq ‰ Sn et il existe a P Sn

tel que γ soit à valeur dans Snza qui est simplement connexe.
4. Pour la dernière assertion, il suffit de rappeler qu’on a vu dans l’exercice 1.13

que EzH „ Sn avec n ě 2. ■





2. Le groupe fondamental

2.1 Groupes (rappels)
On rappelle les définitions de base.

Définition 2.1.1 Un groupe est un ensemble G muni d’une loi interne qui satisfait
1. @x, y, z P G, pxyqz “ xpyzq,
2. D1 P G, @x P G, 1x “ x,
3. @x P G, Dx´1 P G, x´1x “ 1.

On fera l’abus de dire que G est un groupe (alors qu’il s’agit en fait du couple
formé par G et par sa loi).

Remarque 1. L’élément x´1 est unique et satisfait xx´1 “ 1 (en effet, xx´1 “

1xx´1 “ px´1q´1x´1xx´1 “ px´1q´11x´1 “ px´1q´1x´1 “ 1).
2. L’élément 1 est unique et satisfait @x P G, x1 “ x (en effet, x1 “ xx´1x “

1x “ x).
3. Le groupe est dit abélien si @x, y P G, xy “ yx.
4. Le groupe opposé Gop est le même ensemble avec la loi px, yq ÞÑ yx.

Définition 2.1.2 Un (homo) morphisme de groupes f : G Ñ G1 est une application
qui satsifait @x, y P G, fpxyq “ fpxqfpyq. C’est un isomorphisme si f est bijective.

Remarque 1. Le composé de deux morphismes de groupes est un morphisme de
groupes. Si f est un isomorphisme de groupes, alors f´1 aussi.

2. L’application G Ñ Gop, x ÞÑ x´1 est un isomorphisme de groupes.
3. Un sous-groupe d’un groupe G est un groupe H contenu dans G tel que

l’inclusion soit un morphisme de groupes (on écrit H ă G).
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4. Si f : G Ñ G1 est un morphisme de groupes, alors

ker f :“ tx P G, fpxq “ 1u ă G et im f :“ tfpxq, x P Gu ă G1.

5. Un sous-groupe N de G est distingué s’il existe un morphisme de groupes
f : G Ñ G1 tel que N “ ker f (on écrit H ◁G).

6. Si N ◁ G, alors tout morphisme f : G Ñ G1 avec ker f Ă N se factorise
uniquement par (la projection sur) G{N :“ txN, x P Gu. De plus, f induit un
isomorphisme G{ ker f » im f .

7. Une intersection de sous-groupes (resp. distingués) est un sous-groupe (resp.
distingué). Il existe donc une plus petit xSy ă G (resp. xxSyy ◁G) contenant
une partie S de G.

8. Si f : G Ñ G1 est un morphisme de groupes, alors f et f´1 induisent des
bijections réciproques entre les sous-groupes (distingués) de G contenant ker f
et les sous-groupes (distingués) de im f .

Définition 2.1.3 Une suite de morphismes ¨ ¨ ¨ Ñ G1 f
Ñ G

g
Ñ G2 Ñ ¨ ¨ ¨ est exacte

en G si im f “ ker g.

Exemples 1. La suite 1 Ñ G
f

Ñ G1 est exacte (en G) si et seulement f est
injective.

2. La suite G f
Ñ G1 Ñ 1 est exacte (en G1) si et seulement si f est surjective.

3. La suite 1 Ñ G
f

Ñ G1 Ñ 1 est exacte (en G et G1) si et seulement si f est
bijective.

4. La suite 1 Ñ G Ñ 1 est exacte (en G) si et seulement si G “ 1.

On regarde maintenant les propriétés universelles.

Proposition 2.1.4 Soit f : G Ñ G1 un morphisme de groupes.
1. Il existe un morphisme injectif de groupes ι : K ãÑ G tel que f ˝ ι “ 1 et

tout morphisme φ : H Ñ G avec f ˝ φ “ 1 se factorise de manière unique
par ι (un noyau).

2. Il existe un morphisme surjectif de groupes π : G1 ↠ C tel que π ˝ f “ 1 et
tout morphisme ψ : G1 Ñ H avec ψ ˝ f “ 1 se factorise de manière unique
par π (un conoyau).

Démonstration. Dans le premier cas, il suffit de prendre K :“ ker f . Dans le second
cas, il suffit de poser

C :“ coker f :“ G1
{xxim pfqyy.

Les détails sont laissés en exercice. ■

On fera l’abus de dire que K (resp. C) est un noyau (resp. conoyau) – alors qu’il
s’agit en fait du couple formé par K (resp. C) et du morphisme d’inclusion (resp. de
projection).
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Remarques 1. La suite 1 Ñ K Ñ G
f

Ñ G1 (resp. G f
Ñ G1 Ñ C Ñ 1) est exacte

(partout) si et seulement si K (resp. C) est un noyau de f (resp. conoyau de f
et impfq ◁G1).

2. Une suite exacte courte est une suite

1 Ñ G1 i
Ñ G

p
Ñ G2

Ñ 1

qui est exacte partout : i est injective, im i “ ker p et p est surjective. De
manière équivalente, G1 (c’est-à-dire i) est un noyau de p et G1 (c’est-à-dire p)
est un conoyau de i.

3. Si f : G ↠ G2 est surjectif, alors 1 Ñ ker f Ñ G Ñ G2 Ñ 1 est une suite
exacte courte. Si G1 ◁G, alors 1 Ñ G1 Ñ G Ñ G{G1 Ñ 1 est une suite exacte
courte.

Proposition 2.1.5 Soit pGiqiPI une famille de groupes.
1. Il existe un groupe G (leur produit) et des morphismes pi : G Ñ Gi tels

que si on se donne des morphismes fi : H Ñ Gi, alors il existe un unique
morphisme f : H Ñ G satisfaisant fi “ pi ˝ f pour tout i P I.

2. Il existe un groupe G (leur produit libre) et des morphismes ji : Gi Ñ G,
tels que si on se donne des morphismes fi : Gi Ñ H, alors il existe un unique
morphisme f : G Ñ H satisfaisant fi “ f ˝ ji pour tout i P I.

Démonstration. Dans le premier cas, il suffit de considérer le produit cartésien
G :“

ś

iPI Gi avec la multiplication terme à terme, ainsi que les projections.
Dans le second cas, il s’agit du produit libre 1 G qui est l’ensemble des suites fi-
nies ppx1, i1q, . . . , pxn, inqq avec xk P Gikzt1u et ik`1 ‰ ik P I. On le munit de la
concaténation

ppx1, i1q, . . . , pxn, inqq ‹ ppy1, j1, . . . , pym, jmqq

“ ppx1, i1q, . . . , pxn, inq, py1, j1q, . . . , pym, jmqq

sauf si in “ j1. Si c’est le cas et que xny1 ‰ 1, on prend

ppx1, i1q, . . . , pxn´1, in´1q, pxny1, inq, py2, j2q . . . , pym, jmqq.

Enfin, si xny1 “ 1, on prend ppx1, i1q, . . . , pxn´1, in´1q, py2, j2q, . . . , pym, jmqq (et une
récurrence). Là encore, les détails sont laissés en exercice. ■

Remarques 1. Le produit est donc le produit cartésien
ś

iPI Gi et on notera
‹iPIGi le produit libre.

2. Si G est un groupe, il revient au même de se donner un morphisme Z‹I :“
‹iPIZ Ñ G ou une famille pxiqiPI d’éléments de G (dans les notations de la
démonstration, xi est l’image de p1, iq).

3. Un groupe L est libre s’il existe un isomorphisme Z‹I » L. La famille pxiqiPI
correspondante est alors dite génératrice 2. Alternativement, L est libre et
pxiqiPI est génératrice si et seulement si pour tout groupe G et toute famille
pyiqiPI Ă G d’éléments de G, il existe un unique morphisme f : L Ñ G tel que
fpxiq “ yj.

1. On devrait dire coproduit.
2. On devrait dire une base.
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4. Une présentation d’un groupe G est une suite exacte L1 Ñ L0 Ñ G Ñ 1 où L0

et L1 sont des groupes libres. En pratique, on écrit

G » xpxiqiPI | prj “ 1qjPJy

où les xi sont des générateurs de L0 et les rj les images dans L0 des générateurs
de L1.

Exemples 1. Si L est un groupe libre sur deux générateurs t, s, alors

L “ xt, sy “ ttn1sm1 . . . tnksmk , ni,mi P Zu.

2. S3 » xt, s | t2 “ 1, s2 “ 1, ptsq3 “ 1y (exemple de groupe de Coxeter).

Proposition 2.1.6 Si f1 : H Ñ G1 et f2 : H Ñ G2 sont deux morphismes, alors
il existe un groupe G (leur produit libre amalgamé), ainsi que des morphismes
G1 Ñ G,G2 Ñ G qui coincident le long de f1, f2, tels que toute paire morphismes
ψ1 : G1 Ñ G1, ψ2 : G2 Ñ G1 telle que ψ1 ˝ f1 “ ψ2 ˝ f2 se factorise uniquement par
G.

Démonstration. Il suffit de poser (on devrait écrire G1 ‹f1,f2 G2)

G :“ G1 ‹H G2 “ pG1 ‹ G2q {xxj1pf1pxqq ‹ j2ppf2pxqq
´1, x P Hyy

ou ji : Gi ãÑ G1 ‹ G2 désigne l’application canonique pour i “ 1, 2. Détails en
exercice. ■

Remarques (Voir exercice 2.6).
1. G1 ‹t1u G2 » G1 ‹ G2.
2. G1 ‹H t1u » cokerpf1q.
3. Si f2 est surjectif (resp. bijectif), alors G1 Ñ G1 ‹H G2 aussi.
4. On peut montrer que si f1 et f2 sont injectifs, alors G1 Ñ G et G2 Ñ G aussi.

Proposition 2.1.7 Si G est un groupe, il existe alors un morphisme de groupes
p : G ↠ Gab avec Gab abélien tel que, pour tout groupe abélien M et tout
morphisme de groupes f : G Ñ M , il existe un unique morphisme de groupes
f 1 : Gab Ñ M tel que f “ f 1 ˝ p.

Démonstration. Il suffit de poser Gab “ G{rG,Gs ou rG,Gs est le sous-groupe (au-
tomatiquement distingué) dérivé engendré par les commutateurs rx, ys :“ xyx´1y´1.
Détails en exercice. ■

Remarques 1. Tout morphisme de groupes f : G Ñ G1 induit un morphisme de
groupes f ab : Gab Ñ G1ab et c’est fonctoriel.

2. Comme nous le verrons plus tard (lemme 4.1.1), on dispose de la notion de
somme directe ‘iPIMi Ă

ś

iPIMi (familles presque toujours nulles) de groupes
abéliens ainsi que de celle de groupe abélien libre (isomorphe à ZpIq :“ ‘iPIZ Ă

ZI :“
ś

iPI Z).
3. On a p‹iPIGiq

ab » ‘iPIG
ab
i et en particulier pZ‹Iqab » ZpIq si bien que L libre

implique Lab abélien libre.

Nous terminons avec un mot sur les groupes topologiques.
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Définition 2.1.8 Un groupe topologique est un espace topologique G muni d’une
structure de groupe telle que la multiplication et l’inverse sont des applications
continues. Un morphisme de groupes topologiques f : G Ñ H est un morphisme
de groupes qui est continu. C’est un isomorphisme de groupes topologiques si, de
plus, c’est un homémorphisme.

Remarques 1. On munit toujours un sous-groupe (resp. un groupe quotient)
d’un groupe topologique de la topologie induite (resp. de la topologie quotient).

2. Un morphisme de groupes topologiques f : G Ñ G1 est strict si G{ kerpfq »

impfq est un homéomorphisme (par exemple IdR : Rdisc Ñ Rtop n’est pas strict).
3. Une suite exacte 1 Ñ G1 i

Ñ G
p

Ñ G2 Ñ 1 est stricte si i et p sont stricts. De
manière équivalente, G1 a la topologie induite et G2 a la topologie quotient. On
remarquera que p est alors une application ouverte.

Exemples 1. Un espace vectoriel normé est un groupe topologique (pour l’addi-
tion).

2. Un groupe discret est un groupe topologique.
3. Les groupes linéaires (les sous-groupes fermés de GLn) sur R et C sont des

groupes topologiques.
4. On a une suite exacte stricte 0 Ñ Z Ñ R Ñ S Ñ 1.

Remarques 1. Si G est un groupe topologique et X un espace topologique, alors
CpX,Gq est un groupe pour la loi pfgqpxq “ fpxqgpxq.

2. Si G1 est un autre groupe topologique et φ : G Ñ G1 un morphisme continu,
alors φ˚ : CpX,Gq Ñ CpX,G1q est un morphisme de groupes.

3. De même pour CppX,Aq, pG,Hqq lorsque H est un sous-groupe de G et A une
partie de X.

2.2 Groupe fondamental

Définition 2.2.1 Le groupe fondamental a π1pX, xq d’un espace topologique X en
un point x P X est l’ensemble des classes d’homotopie (à extrémités fixées) des
lacets basés en x.

a. Ou groupe de Poincaré.

Puisque π1pX, xq Ă πpXq, on pourra appliquer librement tous les résultats
précédents sur les chemins à homotopie près et on peut déjà faire la remarque
suivante :

Proposition 2.2.2 Si X est un espace topologique et x P X, alors π1pX, xq est un
groupe (pour la composition des lacets). Si f : X Ñ Y est une application continue
et y “ fpxq, alors

f˚ “ π1pfq : π1pX, xq Ñ π1pY, yq, rγs ÞÑ rf ˝ γs

est un morphisme de groupes.
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Démonstration. En tenant compte du lemme 1.4.10, c’est une conséquence immédiate
du théorème 1.4.11 et de la proposition 1.4.3. ■

Exemples 1. Si X est simplement connexe, alors π1pX, xq » 1.
2. π1pS, xq » Z (voir théorème 2.2.13) et π1pSn, xq “ 1 sinon.
3. π1pT, xq » Zn si T est un tore de dimension n (homéomorphe à Tn).
4. π1pX, xq » Z‹n si X est un disque à n trous (voir exercice 2.20).
5. π1pPn, xq » Z{2Z pour n ě 2 (difficile).

Remarques 1. Le π1 est fonctoriel dans la mesure ou si g : Y Ñ Z est une autre
application continue, alors pg ˝ fq˚ “ g˚ ˝ f˚ et que IdX˚ “ Idπ1pX,xq.

2. On peut aussi définir des groupes (d’homotopie supérieure) πnpX, xq en rempla-
çant r0, 1s par r0, 1sn et t0, 1u par Br0, 1sn. Ceux-ci sont très difficiles à calculer
et toujours abéliens. C’est pourquoi on leur préfèrera les groupes d’homologie
HnpXq que nous verrons plus tard. On peut montrer par exemple que si X est
simplement connexe, alors π2pX, xq » H2pXq (théorème d’Hurewicz) mais les
groupes d’homotopie et d’homologie diffèrent en général.

Le point x joue un rôle secondaire :

Proposition 2.2.3 Si δ : x „ y dans X, alors on a un isomorphisme

adδ : π1pX, xq » π1pX, yq, rγs ÞÑ rδs´1
rγsrδs.

Démonstration. On voit immédiatement que c’est un morphisme de groupes et on a
ad´1

δ “ adδ´1 . ■

Remarques 1. L’isomorphisme π1pX, xq » π1pX, yq dépend du choix du chemin.
2. Si X est connexe par arcs, alors π1pX, xq est indépendant de x à isomorphisme

près.
3. Si X est connexe par arcs et qu’on choisit pour chaque y P X un chemin δy

entre x et y, il existe une rétraction (par conjugaison)

adX : πpXq ↠ π1pX, xq, rγs ÞÑ rδγp0qsrγsrδγp1qs
´1

compatible avec les opérations.

Corollaire 2.2.4 Soit x P X. Alors X est simplement connexe si et seulement si X
est connexe par arcs et π1pX, xq » 1.

Démonstration. L’implication est immédiate. Inversement, si δ, δ1 : y „ z sont deux
chemins, alors rδsrδ1s´1 P π1pX, yq. D’autre part, grâce à la proposition 2.2.3, puisque
X est connexe par arcs, π1pX, yq » π1pX, xq » 1. On a donc rδsrδ1s´1 “ 1 et alors
rδ1s “ rδs. ■

Proposition 2.2.5 Si ι : Y ãÑ X est l’inclusion d’une composante connexe par arcs
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et x P Y , alors on a un isomorphisme

ι˚ : π1pY, xq » π1pX, xq.

Démonstration. Résulte immédiatement des définitions. ■

Proposition 2.2.6 Soient X1, X2 deux espaces topologiques, a1 P X1 et a2 P X2. On
dispose alors un isomorphisme de groupes

π1pX1 ˆ X2, pa1, a2qq » π1pX1, a1q ˆ π1pX2, a2q

donné par

rγs ÞÑ pp1˚rγs, p2˚rγsq et prγ1s, rγ2sq ÞÑ i1˚rγ1s i2˚rγ2s

avec p1px1, x2q “ x1, p2px1, x2q “ x2, i1px1q “ px1, a2q, i2px2q “ pa1, x2q.

Démonstration. La première application est bien un morphisme de groupes car ses
composantes le sont. D’autre part, elle provient d’une bijection au niveau des chemins
par définition de la topologie produit. De plus, on a vu que les homotopies entre
les produits sont les produits d’homotopies. On a donc bien une bijection. Il reste à
montrer que la seconde application est bien l’inverse de la première (et il suffit de le
vérifier d’un coté). On a p1 ˝ i1 “ IdX1 et p1 ˝ i2 “ a1 est constante. On voit donc que

p1˚pi1˚rγ1s i2˚rγ2sq “ p1˚i1˚rγ1s p1˚i2˚rγ2s “ rγ1sr1a1s “ rγ1s

et de même pour p2. ■

Lemme 2.2.7 Si h : f „ g : X Ñ Y et qu’on pose pour t P r0, 1s, δptq :“ hpx, tq,
alors le diagramme

π1pY, fpxqq

adδ»

��

π1pX, xq

f˚

77

g˚

''
π1pY, gpxqq

est commutatif.

Démonstration. Résulte immédiatement de la proposition 1.4.14 qui nous dit que
pf˚γq ¨ δ „t0,1u δ ¨ pg˚γq. ■

Proposition 2.2.8 Si f : X „ Y et y :“ fpxq, on a alors un isomorphisme

f˚ : π1pX, xq » π1pY, yq.
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Démonstration. Résulte immédiatement du lemme 2.2.7. Plus précisément, on sait
qu’il existe g : Y Ñ X tel que g ˝ f „ IdX et f ˝ g „ IdY . On en déduit qu’il existe
deux chemins δ, δ1 tels que

adδ ˝ g˚ ˝ f˚ “ Idπ1pX,xq et adδ1 ˝ f˚ ˝ g˚ “ Idπ1pY,yq

et on sait que adδ et adδ1 sont des isomorphismes. ■

Corollaire 2.2.9 Si X „ Y et X est simplement connexe, alors Y aussi. ■

Corollaire 2.2.10 Tout espace contractile est simplement connexe. ■

Proposition 2.2.11 Si γ est un chemin d’origine 1 dans S, alors il existe un unique
chemin rγ d’origne 0 dans R tel que p˚rγ “ γ avec pptq “ e2iπt.

Démonstration. C’est un cas particulier du corollaire 3.3.4 que nous démontrerons
plus tard (on peut aussi appliquer l’exercice 2.11 au cas f “ γ). ■

Définition 2.2.12 Le degré d’un lacet γ en 1 dans S est degpγq :“ rγp1q.

Théoreme 2.2.13 On a un isomorphisme de groupes deg : π1pS, 1q » Z.

Démonstration. C’est une conséquence du corollaire 3.3.7 ci-dessous (voir aussi
l’exercice 2.12). ■

Remarque On a un homéomorphisme R{Z » S et donc un isomorphisme

π1pR{Z, 0q » π1pS, 1q » Z

qui envoie la classe du chemin γ : t ÞÑ t sur 1.

2.3 Théorème de Van Kampen
Soit X un espace topologique et G un groupe. Par définition, un morphisme

f : πpXq Ñ G est une application f telle que si γ et γ1 sont composables, alors

fprγsrγ1
sq “ fprγsqfprγ1

sq.

Proposition 2.3.1 Soient X un espace topologique et X1, X2 Ă X tels que X “

X̊1 Y X̊2. On désigne par

i1 : X1 ãÑ X, i2 : X2 ãÑ X, j1 : X1 X X2 ãÑ X1, j2 : X1 X X2 ãÑ X2

les applications d’inclusion. On se donne deux morphismes

f1 : πpX1q Ñ G, f2 : πpX2q Ñ G
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tels que f1 ˝ j1˚ “ f2 ˝ j2˚. Il existe alors un unique morphisme f : πpXq Ñ G tel
que f1 “ f ˝ i1˚ et f2 “ f ˝ i2˚.

Démonstration. On va définir f sur tous les chemins et on montrera à la fin que ça
ne dépend que de la classe d’homotopie. Soit γ : x „ y dans X. Si γ est contenu
dans Xi avec i P t1, 2u, on pose alors fpγq “ fiprγsq Ceci est bien défini grace à notre
hypothèse (que f1 et f2 coincident sur X1 X X2).

En général, puisque r0, 1s est compact, il existe 0 “ t0 ă t1 ¨ ¨ ¨ ă tn “ 1 tel que,
pour tout i “ 0, . . . n, on ait γprti, ti`1sq contenu dans X1 ou X2 (on dira que la
subdivision est adaptée à γ). Le chemin défini par γiptq :“ γpti ` tpti`1 ´ tiqq est
alors un chemin dans X1 ou dans X2 et on pose

fpγq :“ fpγ0q ¨ ¨ ¨ fpγn´1q. (2.1)

Cette définition étant forcée par les conditions montre l’unicité de f et la dernière
propriété est aussi automatique. Il faut tout de même nous assurer que notre définition
ne dépend pas de la subdivision choisie. Il faut donc montrer que si 0 “ t10 ă t11 ¨ ¨ ¨ ă

t1n1 “ 1 est une autre subdivision adaptée à γ, alors

fpγ0q ¨ ¨ ¨ fpγn´1q “ fpγ1
0q ¨ ¨ ¨ fpγ1

n1´1q.

On peut bien sûr supposer que la première subdivision est plus fine que la seconde,
ce qui nous ramène par récurrence au cas n1 “ 1 auquel cas l’assertion résulte du fait
que f1 et f2 sont des morphismes.

Il faut aussi montrer que si γ et γ1 sont deux chemins composables, alors fpγ ¨γ1q “

fpγqfpγ1q. Or, si on se donne deux subdivisions 0 “ t0 ă t1 ¨ ¨ ¨ ă tn “ 1 et
0 “ t10 ă t11 ¨ ¨ ¨ ă t1n1 “ 1 adaptées respectivement à γ, γ1, alors la subdivision

0 “ t0{2 ă ¨ ¨ ¨ ă tn´1{2, 1{2, 1{2 ` t11{2 ă ¨ ¨ ¨ ă 1{2 ` t1n1{2 “ 1

sera adaptée à γ ¨ γ1.
Pour conclure, il reste à montrer que fpγq ne dépend de γ qu’à homotopie près.

On se donc une homotopie h : γ „t0,1u γ
1 dans X. Puisque r0, 1s2 est compact, on

peut trouver comme ci-dessus 0 “ t0 ă t1 ¨ ¨ ¨ ă tn “ 1 et 0 “ s0 ă s1 ¨ ¨ ¨ ă sm “ 1
tel que, pour tout i “ 0, . . . n ´ 1, j “ 0, . . .m ´ 1, on ait hprti, ti`1s ˆ rsj, sj`1sq

contenu dans X1 ou dans X2. On pose alors

γi,jptq :“ hpti ` tpti`1 ´ tiq, sjq, δi,jptq :“ hpti, sj ` tpsj`1 ´ sjqq,

et on définit

hi,j : γi,j ¨ δi`1,j „t0,1u δi,j ¨ γi,j`1

comme dans le lemme 1.4.13 en partant de

h1
i,jpt, sq “ hpti ` tpti`1 ´ tiq, sj ` spsj`1 ´ sjq.

Tous ces chemins et homotopies sont définis dans X1 ou dans X2. On aura donc
d’une part,

fpγq “ fpγ0,0q ¨ ¨ ¨ fpγn´1,0q et fpγ1
q “ fpγ0,mq ¨ ¨ ¨ fpγn´1,mq,
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et d’autre part, pour tout i “ 0, . . . n ´ 1, j “ 0, . . .m ´ 1,

fpγi,jqfpδi`1,jq “ fpδi,jqfpγi,j`1q.

On obtient alors par télescopage, pour tout j “ 0, . . . ,m, puisque δ0,j “ 1x et
δn,j “ 1y,

fpγ0,jq ¨ ¨ ¨ fpγn´1,jq “

n´1
ź

i“0

fpδi,jqfpγi,j`1qfpδi`1,jq
´1

“ fpγ0,j`1q ¨ ¨ ¨ fpγn´1,j`1q.

Par récurrence, on aura bien fpγq “ fpγ1q. ■

Remarques 1. Dans la démonstration, on a utilisé le résultat classique suivant :
si X est un compact métrique et X “

Ť

iPI Ui est un recouvrement ouvert, il
existe ϵ ą 0 tel que, pour tout x P X, il existe i P I avec Bpx, ϵq Ă Ui.

2. La proposition est plus généralement valable (avec exactement la même dé-
monstration) en remplaçant G par ce qu’on appelle un « groupoïde ».

3. Un groupoïde est un ensemble G muni d’une loi de composition partielle
px, yq ÞÑ xy et d’une application x ÞÑ x´1 telles que
(a) Si x, y, z P G, alors xy et yz sont définis si et seulement si pxyqz et xpyzq

sont définis, et alors pxyqz “ xpyzq (“: xyzq,
(b) Si x P G, alors xx´1 et x´1x sont définis,
(c) Si x, y P G et xy est défini, alors xyy´1 “ x et x´1xy “ y.

On va enfin pouvoir démontrer un théorème qui nous permet de calculer des
groupes fondamentaux.

Théoreme 2.3.2 — van Kampen. Soient X un espace topologique, X1, X2 Ă X
tels que X “ X̊1 Y X̊2 et x P X1 X X2. Si X1 X X2 est connexe par arcs, alors

π1pX, xq » π1pX1, xq ‹π1pX1XX2,xq π1pX2, xq.

Démonstration. On peut supposer que X1 et X2 sont connexes par arcs. On désigne
toujours par

i1 : X1 ãÑ X, i2 : X2 ãÑ X, j1 : X1 X X2 ãÑ X1, j2 : X1 X X2 ãÑ X2

les applications d’inclusion. On se donne deux morphismes de groupes

f1 : π1pX1, xq Ñ G, f2 : π2pX2, xq Ñ G

tels que f1 ˝ j1˚ “ f2 ˝ j2˚ et il s’agit de montrer qu’il existe un unique morphisme
de groupes f : π1pX, xq Ñ G tel que f1 “ f ˝ i1˚ et f2 “ f ˝ i2˚.

On choisit maintenant pour chaque y P X1 X X2 (resp. X1zX2, resp. X2zX1) un
chemin λy : x „ y dans X1 XX2 (resp. dans X1, resp. dans X2). On dispose donc de
rétractions compatibles (des morphismes)

adX1XX2 : πpX1 X X2q ↠ π1pX1 X X2, xq,

adX1 : πpX1q ↠ π1pX1, xq, adX2 : πpX2q ↠ π1pX2, xq
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données par rγs ÞÑ rλγp0qsrγsrλ´1
γp1q

s. Il suffit alors d’appliquer la proposition 2.3.1 aux
applications composées

rf1 : πpX1q ↠ π1pX1, xq
f1

ÝÑ G, rf2 : πpX2q ↠ π1pX2, xq
f2

ÝÑ G.

Clairement, on a rf1˝j1˚ “ rf2˝j2˚ et il existe donc un unique morphisme rf : πpXq Ñ G

tel que rf1 “ rf ˝ i1˚ et rf2 “ rf ˝ i2˚. Il suffit alors de considérer la restriction

f : π1pX, xq ãÑ πpXq
rf

ÝÑ G. ■

Corollaire 2.3.3 Sous les hypothèses du théorème (avec X1 X X2 connexe par arcs
non-vide), on a

1. Si X1 X X2 est simplement connexe, alors

π1pX, xq » π1pX1, xq ‹ π1pX2, xq.

2. Si X2 est simplement connexe, alors

π1pX, xq » cokerpπ1pX1 X X2, xq Ñ π1pX1, xqq.

3. Si X1 X X2 ainsi que X2 sont simplement connexes, alors

π1pX, xq » π1pX1, xq.

4. Si X1 et X2 sont simplement connexes, alors X aussi.
5. Si π1pX1 XX2, xq Ñ π1pX2, xq est surjectif (resp. bijectif), alors π1pX1, xq Ñ

π1pX, xq aussi.

Exemples 1. On a Sn “ pSnzaq Y B̊n` avec pSnzaq X Bn` “ Bn`za. Donc Sn est
simplement connexe pour n ě 2.

2. Par récurrence sur n, si X est un disque à n trous, alors π1pX, xq » Z‹n.

Corollaire 2.3.4 Soit Y un espace connexe par arcs tel que Y Ă Xi est un rétract
fort par déformation d’un ouvert Ui de Xi pour i “ 1, 2. Si X :“ X1

š

Y X2 et
x P Y , alors

π1pX, xq » π1pX1, xq ‹π1pY,xq π1pX2, xq.

Démonstration. On peut supposer que X “ X1 Y X2 et que Y “ X1 X X2. Il est
immédiat que X 1

1 :“ X1 Y U2 (resp. X 1
2 :“ U1 Y X2, resp. X 1

1 X X 1
2 “ U1 Y U2) se

rétracte par déformation sur X1 (resp. X2, resp. Y ). En particulier, X 1
1 X X 1

2 est
connexe par arcs et on peut appliquer le théorème de van Kampen àX “ X 1

1YX 1
2. ■

Le résultat suivant s’applique par exemple dans le cas de variétés topologiques :



58 Chapitre 2. Le groupe fondamental

Corollaire 2.3.5 Soient, pour i “ 1, 2, Xi un espace topologique et xi un point qui
est un rétract par déformation d’un ouvert de Xi. Alors,

π1pX1 _ X2, xq » π1pX1, x1q ‹ π1pX2, x2q

(où x désigne l’image commune de x1 et x2 dans X1 _ X2).

Démonstration. C’est un cas particulier du corollaire 2.3.4. ■

Dans le même style que le théorème de van Kampen (et avec le même genre de
démonstration), on a aussi :

Proposition 2.3.6 Soient X un espace topologique, X1, X2 Ă X tels que X “

X̊1 Y X̊2 et x P X1 XX2. Si X1 et X2 sont simplement connexes et X1 XX2 a deux
composantes connexes par arcs, alors π1pX, xq » Z.

Démonstration. On va montrer que π1pX, xq satisfait la propriété universelle de Z.
Plus précisément, on va montrer qu’il existe rµs P π1pX, xq tel que si G est un groupe
et g P G, alors il existe un unique morphisme de groupes f : π1pX, xq Ñ G tel que
fprµsq “ g.

On désigne par Y et Y 1 les composantes connexes par arcs de X1 XX2. Montrons
qu’il existe un unique morphisme φg : πpXq Ñ G tel que

φgprγsq “

$

&

%

g si γ Ă X1, γp0q R Y 1, γp1q P Y 1

g´1 si γ Ă X1, γp0q P Y 1, γp1q R Y 1,
1 sinon si γ Ă X1 ou γ Ă X2.

Puisque X1 est simplement connexe, on a une bijection

πpX1q » X1 ˆ X1, rγs Ñ pγp0q, γp1qq.

L’application

pa, bq P X1 ˆ X1 ÞÑ

$

&

%

g si a R Y 1, b P Y 1

g´1 si a P Y 1, b R Y 1

1 si a, b P Y 1 ou a, b R Y 1

correspond alors à un unique morphisme πpX1q Ñ G satisfaisant les premières
conditions ci-dessus. Puisque sa restriction à X1 XX2 “ Y Y Y 1 est triviale, il résulte
de la proposition 2.3.1 qu’il se prolonge trivialement sur X2 de manière unique. D’où
l’existence et l’unicité de φg.

On peut supposer que x P Y et on choisit x1 P Y 1. On choisit ensuite pour i “ 1, 2,
un chemin µi entre x et x1 dans Xi. On pose µ :“ µ´1

1 ¨ µ2. Par construction, on
dispose d’un morphisme de groupes f : π1pX, xq ãÑ πpXq

φg
Ñ G tel que fprµsq “ g.

On dispose en particulier, de φrµs : π1pXq Ñ π1pX, xq et on a f ˝ φrµs “ φg. Pour
montrer l’unicité de f et conclure, il suffit donc de s’assurer que φrµs est surjectif.

On choisit pour chaque y P Y un chemin λy entre x et y dans Y . On choisit pour
chaque y P Y 1 un chemin λ1

y entre x1 et y dans Y 1 et on pose λy “ µ2 ¨ λ1
y. On choisit



2.3 Théorème de Van Kampen 59

enfin pour i “ 1, 2 et chaque y P XizpX1 X X2q un chemin λy entre x et y dans Xi.
On dispose alors de la rétraction

ad : πpXq ↠ π1pX, xq, rγs ÞÑ rλγp0qsrγsrλ´1
γp1q

s

qui est surjective. En considérant les différents cas un par un, on voit que ad “

φrµs. ■

Exemple On a π1pS, 1q » Z (voir théorème 2.2.13 pour un énoncé plus précis).
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2.4 Exercices
2.4.1 Groupes

Exercice 2.1 — . 1. Montrer que si G est un groupe et S Ă G, alors

xSy “

#

n
ź

i“1

s˘
i , si P S

+

et xxSyy “

#

n
ź

i“1

xis
˘
i x

´1
i , xi P G, si P S

+

.

2. Montrer que si

G “ xpxiqiPI | prj “ 1qjPJy et G1
“ xpxiqiPI 1 | prj “ 1qjPJ 1y

alors G ‹ G1 “ xpxiqiPI\I 1 | prj “ 1qjPJ\J 1y.
3. Montrer que Z2 » xx, y | rx, ys “ 1y où on a posé rx, ys :“ xyx´1y´1.

Solution. 1. Ce sont manifestement des sous-groupes qui contiennent S et tout
sous-groupe (resp. distingué) qui contient S contient aussi xSy (resp. xxSyy). Il
faut s’assurer que xxSyy est bien distingué, ce qui résulte de la formule

x

˜

n
ź

i“1

xis
˘
i x

´1
i

¸

x´1
“

n
ź

i“1

pxxiqs
˘
i pxxiq

´1.

2. On peut déjà remarquer que si L et L1 sont libres de générateurs pxiqiPI et
pxiqiPI 1 respectivement, alors L ‹ L1 est libre de générateurs pxiqiPI\I 1 . Le cas
général résulte formellement du fait que le conoyau commute avec le produit
libre, c’est-à-dire que

cokerpL1 ‹ L1
1 Ñ L0 ‹ L1

0q » cokerpL1 Ñ L0q ‹ cokerpL1
1 Ñ L1

0q

puisque ces deux groupes satisfont la même propriété universelle :

L1
// L0

)) ((
‹ // H

L1
1

// L1
0
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pour H un groupe quelconque. On peut aussi (mais c’est laborieux) construire
formellement des morphismes dans chaque sens et montrer que leur composé
dans les deux sens est l’identité.

3. Cela résulte de nouveau du fait que les deux groupes ont la même propriété
universelle mais on peut le vérifier en détail. On dispose d’un morphisme

xx, yy Ñ Z2, x ÞÑ p1, 0q, y ÞÑ p0, 1q.

Puisque rx, ys est dans le noyau, on en déduit un morphisme

G :“ xx, y | rx, ys “ 1y Ñ Z2.

Inversement, on vérifie que l’application pm,nq Ñ xmyn induit un morphisme
de groupes Z2 Ñ G. Ce sont clairement des inverses l’un de l’autre. ■
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Exercice 2.2 Si G est un groupe, on désigne par rG,Gs le sous-groupe a engendré
par les commutateurs rx, ys “ xyx´1y´1 et on pose Gab :“ G{rG,Gs.

1. Montrer que rG,Gs est un sous-groupe distingué de G.
2. Montrer que G est abélien si et seulement si rG,Gs “ t1u si et seulement si

l’application G Ñ Gab est bijective.
3. Montrer que si f : G Ñ G1 est un morphisme de groupes, alors fprG,Gsq Ă

rG1, G1s avec égalité si f est surjectif.
4. En déduire que f induit un morphisme de groupes f ab : Gab Ñ G1ab.
5. Montrer que Gab est abélien.
6. Montrer que si M est un groupe abélien, alors tout morphisme de groupes
G Ñ M se factorise de manière unique par G Ñ Gab.

7. Montrer que p‹iPIGiq
ab » ‘iPIG

ab
i .

8. Montrer que si L est un groupe libre, alors Lab est un groupe abélien libre
(c’est-à-dire isomorphe à ZpIq “ ‘iPIZ).

a. Appelé sous-groupe dérivé.

Solution. 1. Pour x, y P G, on a rx, ys “ 1 si et seulement si xy “ yx.
2. Si x, y, z P G, alors zrx, ysz´1 “ rzxz´1, zyz´1s

3. Si x, y P G, on a fprx, ysq “ rfpxq, fpyqs.
4. C’est la propriété universelle du quotient.
5. Puisque rGab, Gabs est l’image de rG,Gs par l’application quotient, il est trivial.
6. En effet, on a M » Mab.
7. Les deux groupes ont même propriété universelle.
8. On applique le dernier résultat au cas Gi “ Z. ■

Exercice 2.3 Montrer que si a n,m P N, alors Z‹n » Z‹m ô n “ m.

a. C’est vrai aussi pour des cardinaux infinis.

Solution. En passant aux abélianisés, on aura Zn » Zm. L’isomorphisme est donné
par des matrices et on aura donc un isomorphisme de Q-espaces vectoriels Qn » Qm.
On a donc n “ dimQ Qn “ dimQ Qm “ m. ■

Exercice 2.4 On désigne par D2n le groupe diédral des isométries du plan qui
préservent le polygone régulier à n cotés et par D8 le groupe diédral infini des
isométries de la droite (réelle) qui préservent l’ensemble des entiers relatifs.

1. Montrer qu’on a des suite exacte 0 Ñ Z{nZ Ñ D2n Ñ Z{2Z Ñ 0 et
0 Ñ Z Ñ D8 Ñ Z{2Z Ñ 0.

2. Montrer que

D2n » xr, s | rn “ 1, s2 “ 1, psrq2 “ 1y

» xt, s | t2 “ 1, s2 “ 1, ptsqn “ 1y.

3. Montrer que

D8 » xt, s | t2 “ 1, s2 “ 1y.

4. En déduire un morphisme de groupes surjectif D8 ↠ D2n.
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5. Montrer que D8 » Z{2Z ‹ Z{2Z.

Solution. 1. Le groupe D2n est l’ensemble des rotations d’angle 2kπ{n et des
réflexions par rapport aux droites joignant le centre aux sommets ou aux
milieux des cotés. Si on désigne par ρ la rotation d’angle 2π{n et par σ la
réflexion par rapport à l’une des droites joignant le centre à un sommet, on a
donc

D2n “ t1, ρ, . . . , ρn´1, σ, σρ, . . . , σρn´1
u.

Puisque xρy est un sous-groupe d’indice 2, il est distingué et on donc une suite
exacte

1 Ñ xρy Ñ D2n Ñ D2n{xρy Ñ 1.

Il suffit alors de remarquer que xρy » Z{nZ (groupe cyclique) et D2n{xρy » Z{2Z
(groupe à deux éléments).
Le groupe D8 est l’ensemble des applications f : R Ñ R, x ÞÑ ˘x ` n avec
n P Z. Il est clairement engendré par la translation ρ : x ÞÑ x ` 1 et par la
réflexion σ : x ÞÑ ´x. On a donc

D8 “ t. . . , ρ´1, 1, ρ, ρ2, . . . , σρ´1, σ, σρ, σρ2, . . .u

et on conclut de la même manière.
2. Puisque σρ est une réflexion, on dispose d’un morphisme surjectif évident

xr, s | rn “ 1, s2 “ 1, psrq2y ↠ D2n, r ÞÑ ρ, s ÞÑ σ

et celui-ci est clairement injectif car tout élément de la source s’écrit srk avec
k P Z puisque rs “ sr´1 et sn “ s ou 1. Pour l’autre présentation, il suffit de
considérer

xt, s | t2 “ 1, s2 “ 1, ptsqn “ 1y » D2n, t ÞÑ σρ, s ÞÑ σ.

3. Puisque σρ est une réflexion, on a un morphisme évident

xt, s | t2 “ 1, s2 “ 1y Ñ D8, t ÞÑ σρ, s ÞÑ σ.

On vérifie aisément qu’il est surjectif et injectif (puisque tout élément de la
source s’écrit pstqn ou tpstqn ou pstqns).

4. On a par définition un morphisme surjectif

xt, s | t2 “ 1, s2 “ 1y ↠ xt, s | t2 “ 1, s2 “ 1, ptsqn “ 1y

et donc aussi D8 ↠ D2n comme annoncé.
5. Pour finir, on remarque que les groupes xt, s | t2 “ 1, s2 “ 1y et Z{2Z ‹ Z{2Z

ont la même propriété universelle. ■
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Exercice 2.5 Soit G le groupe d’isométries de R2 engendré par

α : pt, sq ÞÑ pt ` 1, sq et β : pt, sq ÞÑ p1 ´ t, s `
1

2
q.

1. Montrer que α ˝ β ˝ α “ β.
2. En déduire que β ˝ α “ α´1 ˝ β, β ˝ α´1 “ α ˝ β et β2 ˝ α “ α ˝ β2.
3. Montrer plus généralement que

@m, k P Z, βm ˝ αk “ αp´1qmk
˝ βm.

4. En déduire que tout élément de G s’écrit de manière unique αn ˝ βm avec
n,m P N.

5. Montrer que Gab “ G{xα2y » Z{2Z ‘ Z.

Solution. 1. On a

αpβpαpt, sqqq “ αpβppt ` 1, sqq “ αp´t, s `
1

2
q “ p1 ´ t, s `

1

2
q.

2. Les deux premières égalités sont immédiates et on a alors

β2
˝ α “ β ˝ α´1

˝ β “ α ˝ β2.

3. Puisque β2 et α commutent, le cas m pair est trivial. On traite maintenant le
cas m “ 1 et on procède d’abord par récurrence sur k ě 0. On aura

β ˝ αk`1
“ β ˝ αk ˝ α “ α´k

˝ β ˝ α “ α´k
˝ α´1

˝ β “ α´pk`1q
˝ β.

Si k ă 0, on aura donc β ˝ α´k “ αk ˝ β et alors α´k ˝ β “ β ˝ αk. Enfin, si m
est impair, alors

βm ˝ αk “ β ˝ βm´1
˝ αk “ β ˝ αk ˝ βm´1

“ α´k
˝ β ˝ βm´1

“ α´k
˝ βm.

4. Par définition, tout élément u de G s’écrit u “ αn1 ˝ βm1 ˝ . . . ˝ αnk ˝ βmk . Si
k ě 2, on a

αn1 ˝ βm1 ˝ αn2 ˝ βm2 “ αn1`p´1qm1n2 ˝ βm1`m2 .

et on conclut par récurrence descendante pour l’existence. Pour l’unicité, il
suffit de montrer que si αn “ βm, alors n “ m “ 0. Mais on aura alors
αnp0, 0q “ pn, 0q “ p0 ou 1,mq “ βmp0, 0q si bien que m “ 0 et donc αnp0, 0q “

pn, 0q “ p0, 0q si bien que n “ 0.
5. On a

rα, βs “ α ˝ β ˝ α´1
˝ β´1

“ α2.

De plus, β ˝ α2 ˝ β´1 “ α´2 si bien que xα2y ◁ G et donc Gab “ G{xα2y.
L’homomorphisme de groupes Z ‘ Z Ñ Gab, pn,mq ÞÑ αnβ

m est surjectif et
son noyau est 2Z ‘ t0u. Cela fournit l’isomorphisme annoncé. ■
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Exercice 2.6 Soient f1 : H Ñ G1 et f2 : H Ñ G2 deux morphismes de groupes.
1. Montrer que si H “ t1u, alors G1 ‹H G2 » G1 ‹ G2.
2. Monter que si G2 “ t1u, alors G1 ‹H G2 » cokerpH

f1
Ñ G1q.

3. Montrer que si f2 est surjectif (resp. bijectif), alors G1 Ñ G1 ‹H G2 aussi.

Solution. 1. C’est immédiat, soit en considérant la propriété universelle soit en
utilisant la définition :

G1 ‹H G2 :“ pG1 ‹ G2q {xxj1pf1pxqq ‹ j2pf2pxqq
´1, x P Hyy.

2. Même argument.
3. Puisque G1 ‹H G2 est engendré par les images de G1 et de G2, il suffit pour

obtenir la surjectivité, de montrer que l’image de tout x2 P G2 est aussi l’image
d’un élément de G1. Si f2 est surjectif, il existe x P H tel que f2pxq “ x2. Si on
pose x1 “ f1pxq P G1, on aura dans G1 ‹H G2,

x2 “ f2pxq “ f1pxq “ x1.

Enfin, si f2 est bijectif, on peut considérer les morphismes IdG1 : G1 Ñ G1 et
f1 ˝ f´1

2 : G2 Ñ G1 et on a IdG1 ˝ f1 “ f1 “ pf1 ˝ f´1
2 q ˝ f2. Par définition,

ceux-ci se prolongent donc en un morphisme G1 ‹H G2 Ñ G1. En particulier,
l’application composée G1 Ñ G1 ‹H G2 Ñ G1 est IdG1 et la première flèche est
donc nécessairement injective. ■

Exercice 2.7 Montrer qu’on dispose de suites exactes strictes de groupes topolo-
giques :

1. 0 Ñ Z Ñ C Ñ Cˆ Ñ 1,
2. 0 Ñ Z Ñ R Ñ S Ñ 1,
3. 0 Ñ Zn Ñ Rn Ñ Tn Ñ 1,
4. 0 Ñ Z{nZ Ñ Cˆ Ñ Cˆ Ñ 1,
5. 0 Ñ Z{nZ Ñ S Ñ S Ñ 1.

Solution. 1. On utilise l’application z ÞÑ e2iπz ainsi que l’inclusion Z Ă C (ou si
on préfère z ÞÑ ez et n ÞÑ 2iπn). C’est clairement une suite exacte courte, Z
est muni de la topologie induite et l’exponentielle est une application ouverte
comme toute application holomorphe non constante.

2. Même chose ou presque.
3. On fait le produit.
4. On utilise les applications z ÞÑ zn et k ÞÑ e2ikπ{n.
5. Même chose. ■

2.4.2 Groupe fondamental
Exercice 2.8 — . 1. Montrer que si X est un espace topologique et x P X, on

a une bijection

rpS, 1q, pX, xqs1 » π1pX, xq, rpγs Ø rγs

(le premier ensemble désigne les applications continues pointées modulo
homotopie relativement à 1).
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2. Montrer que si γ et γ1 sont deux lacets en x, alors pγ „ pγ1 si et seulement si
rγs et rγ1s sont conjugués dans π1pX, xq.

Solution. Les deux assertions résultent de l’exercice 1.17. ■

Exercice 2.9 Montrer que si A est un rétract (continu) de X et x P A, alors les
applications induites

π1pA, xq Ñ π1pX, xq et π1pX, xq Ñ π1pA, xq

sont respectivement injective et surjective. Montrer qu’elle sont bijectives si A est
un rétract par déformation.

Solution. Par définition, si on désigne l’inclusion par ι : A ãÑ X il existe une
application continue r : X Ñ A telle que r ˝ ι “ IdA. On aura donc r˚ ˝ ι˚ “ Idπ1pA,xq,
ce qui implique que ι˚ est injective et r˚ surjective. Si c’est un rétract par déformation,
alors ι : A „ X et les applications sont donc bien bijectives. ■

Exercice 2.10 Soit G un groupe topologique et Ge la composante connexe de
l’unité e.

1. Montrer qu’on a une suite exacte (stricte) de groupes (topologiques).

1 Ñ Ge Ñ G Ñ π0pGq Ñ 1.

2. On note ˚ la loi de groupe a de Cpr0, 1s, Gq. Montrer que si γ, γ1 sont deux
lacets en e, alors

pγ ¨ 1eq ˚ p1e ¨ γ1
q “ p1e ¨ γ1

q ˚ pγ ¨ 1eq “ γ ¨ γ1.

3. En déduire que π1pG, eq est abélien avec loi de groupe induite b par ˚.

a. c’est-à-dire pγ ˚ γ1qptq “ γptqγ1ptq.
b. c’est-à-dire rγ ¨ γ1s “ rγ ˚ γ1s.

Solution. 1. On sait que l’image d’un connexe par une application continue est
connexe et qu’un produit de connexes est connexe. Puisque la multiplication
et l’inverse sont continus sur G et préservent e, Ge est un sous-groupe de
G. Puisque la multiplication par g P G, à droite comme à gauche, est un
homéomorphisme, la composante connexe de g est égale à la fois à gGe et à
Geg. Cela montre que Ge est distingué et que G{Ge “ π0pGq. Attention que
π0pGq n’est pas discret en général (prendre G “ Q).

2. Par définition, on a

pγ ¨1eqptq “

"

γp2tq si t ď 1{2
e si t ą 1{2

et p1e ¨γ
1
qptq “

"

e si t ď 1{2
γ1p2t ´ 1q si t ą 1{2

si bien que

ppγ ¨ 1eq ˚ p1e ¨ γ1
qqptq “ pp1e ¨ γ1

q ˚ pγ ¨ 1eqqptq “

"

γp2tq si t ď 1{2
γ1p2t ´ 1q si t ą 1{2

comme attendu.
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3. Puisque la multiplication est continue dans G elle préserve les homotopies et
passe donc au quotient. On en déduit que dans π1pG, eq, on a toujours

rγs ˚ rγ1
s “ rγ1

s ˚ rγs “ rγs ¨ rγ1
s. ■

Exercice 2.11 — . Soit X un compact étoilé en a et p : R ↠ S, t ÞÑ e2iπt.
1. Montrer que si f : X Ñ S est une application continue, alors il existe η ą 0

tel que, si }x ´ y} ď η, alors fpxq{fpyq ‰ ´1.
2. En déduire que le groupe CppX, aq, pS, 1qq est engendré par CppX, aq, pSzt´1u, 1qq.
3. En déduire que si f : pX, aq Ñ pS, 1q une application continue, alors il existe

une unique application continue rf : pX, aq Ñ pR, 0q telle p ˝ rf “ f .

Solution. 1. Puisque f est continue sur X qui est compact, c’est une application
uniformément continue et il existe donc η ą 0 tel que, si }x ´ y} ď η, alors
|fpxq ´ fpyq| ă 2. Or, dans S, on a toujours |z ´ z1| ď 2 avec égalité si et
seulement si z{z1 “ ´1.

2. Il s’agit de montrer que si f : X Ñ S est une application continue telle
que fpaq “ 1, alors il existe, pour i “ 0, . . . , n, des applications continues
fi : X Ñ Szt´1u telles que fipaq “ 1 et 3

@x P X, fpxq “ f1pxq ¨ ¨ ¨ fnpxq. (2.2)

On peut supposer que a “ 0. Si n P N, alors pour tout i “ 0, . . . , n et x P X,
on a

›

›

›

›

pi ` 1qx

n ` 1
´

ix

n ` 1

›

›

›

›

ď }x}{n ` 1.

Puisque X est borné, si on se donne η ą 0, on peut choisir n P N tel que
}x}{pn ` 1q ď η pour tout x P X. Puisque X est étoilé en 0, on peut poser

@i “ 0, . . . , n, @x P X, fipxq “
f

`

i`1
n`1

x
˘

f
`

i
n`1

x
˘

et on aura bien la formule (2.2). Enfin, la première question nous montre qu’on
peut choisir η de telle sorte que fipxq ‰ ´1 pour tout x P X.

3. Si f est constante (égale à 1), alors rf sera une fonction continue sur X à valeurs
dans Z. Puisque X est connexe et Z discret, elle est nécessairement constante
(égale à 0). Cela montre que le morphisme de groupes

p˚ : CppX, aq, pR, 0qq Ñ CppX, aq, pS, 1qq

est injectif. Supposons maintenant que @x P X, fpxq ‰ ´1. Si on désigne
par lnpzq “ lnp|z|q ` i argpzq avec argpzq Ps ´ π, πr pour z R Rď0, il suffit
alors de poser rfpxq “ 1

2πi
lnpfpxqq. Puisque CppX, aq, pS, 1qq est engendré par

CppX, aq, pSzt´1u, 1qq, cela montre que p˚ est surjectif. Notre assertion est ainsi
démontrée. ■

3. Théoriquement, c’est f˘
i mais ça ne change rien ici.
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Exercice 2.12 Montrer que l’application deg : π1pS, 1q Ñ Z est un isomorphisme
de groupes.

Solution. On note toujours p : R ↠ S, t ÞÑ e2iπt et on désigne par rγ l’unique
relèvement basé en 0 dans R d’un chemin γ basé en 1 dans S. On rappelle aussi que
si γ est un lacet, alors degpγq :“ rγp1q. On aura pprγp1qq “ pp˚rγqp1q “ γp1q “ 0 si
bien que degpγq P Z. On se donne maintenant deux lacets γ, γ1 en 1 dans S et une
homotopie h : γ „t0,1u γ

1. Il résulte alors de l’exercice 2.11 appliqué à h qu’il existe
une homotopie rh : rγ „t0,1u rγ1 et en particulier que degpγq “ rγp1q “ rγ1p1q “ degpγ1q.
Cela montre que l’application est bien définie. Montrons que si γ, γ1 sont deux lacets
en 1 dans S, alors

@t P r0, 1s, pĆγ ¨ γ1qptq “

"

rγp2tq si t ď 1{2
rγp1q ` rγ1p2t ´ 1q si t ą 1{2.

En effet, si on désigne provisoirement ce chemin par δ, on a bien p˚δ “ γ ¨ γ1 et
δp0q “ 0. On en déduit que

degpγ ¨ γ1
q “ pĆγ ¨ γ1qp1q “ rγp1q ` rγ1

p1q “ degpγq ` degpγ1
q.

Supposons maintenant que degpγq “ 0. Cela signifie que rγ est un lacet en 0. Puisque
R est simplement connexe, on en déduit que rγ „t0,1u

r10. On aura donc γ „t0,1u 11.
Cela montre que l’application est injective. Enfin, l’application est surjective car
γptq :“ e2iπnt définit bien un lacet de degré n. ■

Exercice 2.13 Montrer que si T est un tore de dimension n, alors π1pT, 0q est un
groupe abélien libre de rang n.

Solution. Puisque T » Tn et que T “ S, cela résulte de la proposition 2.2.6 et du
théorème 2.2.13. ■

Exercice 2.14 Montrer que si n ď 2 et n ‰ m, il n’existe pas d’homéomorphisme
Rn » Rm.

Solution. On peut supposer n ă m et on aurait alors un homéomorphisme Rnz0 »

Rmza. Pour n “ 0, il suffit de remarquer que Rmza est non-vide. Pour n “ 1, il suffit
de remarquer que Rmza est connexe mais pas Rz0. Pour n “ 2, il suffit de rappeler
que Rmza „ Sm´1 est simplement connexe mais pas R2z0 „ S. ■

Exercice 2.15 — . 1. Montrer que S n’est pas un rétract (continu) de B2.
2. Montrer que l’application

F : pB2
ˆ B2

qz∆ Ñ S, px, yq ÞÑsxyq X S

est continue (on a posé ∆ “ tpx, xq, x P B2u).
3. Montrer que si f : B2 Ñ B2 est une application continue sans point fixe,

alors l’application

B2
Ñ S, x ÞÑ F pfpxq, xq
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est une rétraction.
4. En déduire qu’une application continue f : B2 Ñ B2 a un point fixe (théorème

de Brouwer).

Solution. 1. Si S était un rétract de B2, on aurait une application injective
Z » π1pS, 1q ãÑ π1pB2, 1q “ 0. Contradiction.

2. La condition F px, yq “ z s’écrit

Dt ą 0, z “ x ` tpy ´ xq et |z| “ 1.

On voit donc que t est alors l’unique racine positive de l’équation polynomiale
|x ` tpy ´ xq|2 ´ 1 “ 0, c’est-à-dire

t “
´b `

?
b2 ´ ac

a
avec a “ |y ´ x|

2, b “ 2Repxpy ´ xqq, c “ |x|
2

´ 1,

qui est bien une fonction continue de x et y.
3. Puisque pfpxq, xq R ∆, l’application x ÞÑ F pfpxq, xq est bien définie et c’est

clairement une rétraction car sfpxq, xq X S “ x si x P S.
4. Il existerait sinon une rétraction continue, ce qui contredirait la première

assertion. ■

Exercice 2.16 — . Soit P P Crzs un polynôme unitaire de degré n ą 0 sans racine
dans C. On pose fpzq :“ P pzq

}P pzq}
et on considère, pour r ą 0, le lacet γptq “ fpre2iπtq

dans S. On considère aussi le lacet standard γnptq :“ e2iπnt.
1. Montrer que f „0 fp0q : C Ñ S et en déduire que γ est trivial.
2. Montrer que lim}z}Ñ`8

´

P pzq

}P pzq}
´ zn

}zn}

¯

“ 0.
3. En déduire qu’il existe r ą 0, tel que @t P r0, 1s, |γptq ´ γnptq| ă 2, et donc

que γptq ‰ ´γnptq, puis finalement que γ „t0,1u γn.
4. Conclure finalement que C est algébriquement clos (théorème de D’alembert-

Gauss).

Solution. 1. L’existence de l’homotopie résulte du fait que C est contractile et S
connexe par arcs. Par composition, en déduit que γ est homotope (à extrémités
fixées) au lacet trivial.

2. Quand }z} Ñ `8, on a P pzq{zn Ñ 1 et donc

P pzq

}P pzq}
´

zn

}zn}
“

zn

}zn}

ˆ

P pzq{zn

}P pzq{zn}
´ 1

˙

Ñ 0.

3. Si r ąą 0, en posant z “ re2iπt pour t P r0, 1s, on aura

|γptq ´ γnptq| “

ˇ

ˇ

ˇ

ˇ

P pzq

}P pzq}
´

zn

}zn}

ˇ

ˇ

ˇ

ˇ

ă 2

et donc nécessairement γptq ‰ ´γnptq. Or on a vu dans l’exercice 1.11 qu’alors
γ „t0,1u γn.

4. On voit donc que γn est trivial si bien que n “ 0. Contradiction. Donc P a une
racine dans C. ■
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Exercice 2.17 1. Déterminer le groupe fondamental de Cˆ.
2. Déterminer le groupe fondamental du cylindre

X :“ tpx, y, zq, x2 ` y2 “ 1, 0 ď z ď 1u.

3. Montrer que si L est une droite dans un espace affine E de dimension trois
et x R L, alors π1pEzL, xq » Z.

4. Montrer que la rétraction im : Cztiu Ñ R n’est pas une rétraction par
déformation.

Solution. 1. On a S „ Cˆ et donc π1pCˆ, 1q » Z.
2. On a X » S ˆ r0, 1s „ S et on trouve encore Z.
3. On a EzL » R ˆ pR2z0q „ R2z0 „ S.
4. On a π1pCztiu, 0q » Z et R est simplement connexe si bien que Cztiu ȷ R. ■

Exercice 2.18 — . 1. Montrer que l’action naturelle de A P MnpZq sur Rn

induit une application continue f : Tn Ñ Tn et que f˚ a pour matrice A
dans la base canonique de π1pTn, 0q.

2. En déduire que f est bijective si et seulement si A P GLnpZq.

Solution. 1. Comme Tn » Rn{Zn, la multiplication par A induit bien une appli-
cation continue sur le tore. L’entrée aij de A va induire un homomorphisme
π1pS, 1q Ñ π1pS, 1q et il faut montrer qu’il est donné par γ ÞÑ γaij avec
γptq “ e2iπt. On est donc ramené au cas n “ 1. On regarde donc la multiplica-
tion par a P Z sur R et l’application correspondante f sur S qui est donnée par
z ÞÑ za. On aura alors

f˚pγqptq “ pf ˝ γqptq “ fpγptqq “ fpe2iπtq “ e2iπat “ γaptq

si bien que f˚rγs “ rγsa. On pouvait aussi travailler sur R{Z avec le générateur
rγptq “ t.

2. Si A P GLnpZq, il est clair que f est bijective (son inverse étant induit par
A´1). Réciproquement, si f est bijective, c’est un automorphisme du groupe
topologique Tn et il suit que f˚ est un automorphisme du groupe π1pTn, 1q » Zn.
Comme sa matrice est A, on doit avoir A P GLnpZq. ■

Exercice 2.19 Montrer que
1. π1pSOn, 1q » π1pOn, 1q » π1pGLn, 1q,
2. En déduire que π1pGL2, 1q » Z.

Solution. 1. On sait que SOn est la composante connexe de On et que On „ GLn.
2. En effet, on sait que SO2 » S. ■

2.4.3 Théorème de van Kampen
Exercice 2.20 1. Montrer (par récurrence sur n) que si E Ă R2 est un ensemble

à n éléments et x R E, alors π1pR2zE, xq » Z‹n.
2. Montrer que si E Ă S2 est un ensemble à n ą 0 éléments et x R E, alors
π1pS2zE, xq » Z‹pn´1q.
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3. Montrer que si X est un disque à n trous, alors π1pX, xq » Z‹n.

Solution. 1. Si n “ 1, on a R2zE „ S et on peut donc supposer dorénavant que
n ě 2 et procéder par récurrence forte. On peut trouver une droite ∆ qui
rencontre l’enveloppe convexe de E mais ne passe par aucun point de E. On
désigne par Hi avec i “ 1, 2 les demi-plans délimités par ∆, Ei “ E XHi, ni le
nombre de points de Ei et Xi “ HizEi. On a alors n “ n1 `n2 avec n1, n2 ă n.
Par construction, R2zE “ X1 Y X2 et X1 X X2 “ ∆ est un rétract simplement
connexe d’ouverts de X1 et X2. Techniquement, si ∆ : ax` by` c “ 0 et qu’on
pose ∆ϵ : |ax ` by ` c “ 0| ă ϵ, alors ∆ϵ X E “ H pour ϵ petit et on prend
∆i “ ∆ϵ XHi. On applique ensuite le (corollaire du) théorème de van Kampen :

π1pR
2
zE, xq » π1pX1, xq ‹ π1pX2, xq.

En projetant H2 sur ∆, on voit que X1 est un rétract fort par déformation
de R2zE1 et symétriquement. On a donc π1pXi, xq “ π1pR2zEi, xq » Z‹ni par
récurrence et on peut conclure. Alternativement, on pouvait utiliser le vrai
théorème de van Kampen en remplaçant Hi par Hiϵ :“ Hi Y ∆ϵ pour i “ 1, 2.

2. Si E “ ta1, . . . , anu, on considère la projection stéréographique p : S2zan » R2.
On a alors un homéomorphisme S2zE » R2ztppa1q, . . . , ppan´1qu.

3. Un disque à n trous est une partie X de R2 de la forme B2pa, rqz
Ťn
i“1 B̊2pai, riq

avec B̊2pai, riq Ă B2pa, rq et B̊2pai, riq X B̊2paj, rjq “ H pour i ‰ j. Il est
clair que X est un rétract fort par déformation de X 1 :“ B2pa, rqzta1, . . . , aru.
Techniquement, on considère l’application r qui envoie x P B2pai, riqzai sur
ai `

x´ai
}x´ai}

et on pose hpx, tq “ p1 ´ tqx ` trpxq. De même X 1 est un rétract
fort par déformation de R2zta1, . . . , aru. ■

Exercice 2.21 On suppose n ě 3 et on considère la projection stéréographique
p : Snza » Rn avec a “ p0, . . . , 0, 1q.

1. Montrer que si A Ă Rn est bornée, alors p induit un isomorphisme

π1pS
n
zp´1

pAq, xq » π1pR
n
zA, ppxqq.

2. Montrer que p induit des homéomorphismes pour k “ 1, . . . , n ´ 1

Sk ˆ 0 » Sk ˆ 0 et Snzp0 ˆ Skq » Rnzp0 ˆ Rkq.

3. En déduire le groupe fondamental de RnzpSk ˆ 0q.

Solution. 1. On pose X :“ Snzp´1pAq et X1 :“ Xza » RnzA. Puisque A est borné
dans Rn, on voit que A est compact et puisque p est un homéomorphisme,
p´1pAq est un compact de Rn`1 qui ne contient pas a. Il existe donc une boule
Bpa, ϵq qui ne rencontre pas p´1pAq et on pose X2 :“ Bpa, ϵq X Sn. On a alors
X “ X̊1 Y X̊2 et X1 X X2 “ X2za. Bien sûr, X2 » Bn est simplement connexe
mais, puisque n ě 3, X2za » Bnz0 „ Sn´1 aussi est simplement connexe. On
applique le théorème de van Kampen.

2. Par définition, p induit un homéomorphisme

Sn´1
ˆ 0 “ Sn X pRn ˆ 0q » Sn´1,
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et donc en particulier Sk ˆ 0 » Sk ˆ 0. De même, p induit la projection
stéréographique p0 ˆ Skqza » 0 ˆ Rk.

3. Il résulte de la première question appliquée à A “ Sk ˆ 0 que

π1pR
n
zpSk ˆ 0q, ppxqq » π1pS

n
zpSk ˆ 0q, xq.

D’autre part, on a aussi

SnzpSk ˆ 0q » Snzp0 ˆ Skq » Rnzp0 ˆ Rkq » pRn´k
z0q ˆ Rk „ Sn´k´1.

On trouve donc Z quand k “ n´ 2 et 0 si n ą 3. Remarquons que, dans le cas
n “ 3 et k “ 1, on pouvait utiliser la question 2) de l’exercice 1.14 et appliquer
le théorème de van Kampen à S2 Y p0 ˆ Bq. ■





3. Revêtements

3.1 Action de groupe (rappels)
Si X est un ensemble, on note SpXq le groupe des permutations de X (les

bijections de X dans lui même muni de la composition).

Définition 3.1.1 Une action (à gauche) d’un groupe G sur un ensemble X est un
morphisme de groupes

G Ñ SpXq, g ÞÑ px ÞÑ g.xq.

Remarques 1. Ça signifie que 1.x “ x et pghq.x “ gph.xq.
2. Une action à droite est une action (à gauche) du groupe opposé Gop. On écrit

alors x.g et on aura donc x.1 “ x et x.pghq “ px.gq.h.
3. L’action est dite fidèle si l’application G ãÑ SpXq est injective. On peut alors

identifier G avec un sous-groupe de SpXq.
4. Le stabilisateur Gx (resp. l’orbite Gx) de x P X est

Gx :“ tg P G, g.x “ xu presp. Gx :“ tg.x : g P Guq.

Les stabilisateurs sont des sous-groupes, les orbites forment une partition de
X et on désigne par X{G l’ensemble quotient formé des orbites.

5. On a pour tout x P X, une bijection G{Gx » Gx, g Ø g.x.
6. L’action est transitive s’il existe une unique orbite (équivalent à G{Gx » X).

En d’autres termes : @x, y P X, Dg P G, y “ g.x.
7. L’action est libre (ou sans points fixes) si tous les stabilisateurs sont triviaux

(équivalent à G » Gx). Une action libre est fidèle.
8. Si H Ă G est un sous-groupe, alors H agit librement sur G par translation à

gauche (et à droite).
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Exemples 1. Rˆ agit sur Sn par λ.x “ λ
|λ|
x. On a pRˆqx “ Rą0, pRˆqx “ tx,´xu

et Sn{Rˆ » Pn.
2. Analogues en remplaçant Rˆ par µ2 “ t1,´1u ou Sn par Rn`1z0 (actions libres).

Lemme 3.1.2 Soit G un groupe agissant librement sur un ensemble X et U Ă X.
Alors, les conditions suivantes sont équivalentes

1. L’application composée U ãÑ X
p
↠ X{G est injective,

2. @g ‰ 1 P G, gU X U “ H,
3. @g ‰ h P G, gU X hU “ H.

Démonstration. Si g P G et x P gU X U , alors il existe y P U tel que x “ gy et donc
ppxq “ ppyq. Si l’application composée est injective, on a x “ y et donc x “ gx si
bien que g P Gx. Comme l’action est libre, on a g “ 1.

Réciproquement, supposons que la condition est satisfaite. Soient x, y P U tels
que ppxq “ ppyq. Alors, il existe g P G tel que x “ gy et donc x P gU XU si bien que
g “ 1 et donc x “ y.

De plus, si ces conditions sont satisfaites et g ‰ h P G, alors gU X hU “

gpU X g´1hUq “ H. ■

Définition 3.1.3 Une action d’un groupe topologique G sur un espace topologique
et X est continue si l’application

G ˆ X Ñ X, pg, xq ÞÑ gx

est continue.

Remarques (voir exercice 3.1).
1. On munit toujours X{G de la topologie quotient. L’application quotient p :
X ÞÑ X{G est alors (continue et) ouverte.

2. SiH est un sous-groupe d’un groupe topologiqueG, alors l’action par translation
à gauche est continue (et libre)

3. Si une action est continue, alors c’est une action par homéomorphismes : pour
tout g P G, l’application x ÞÑ gx est un homéomorphisme. Et réciproquement
si G est discret.

Définition 3.1.4 Une action continue d’un groupe discret G sur un espace topolo-
gique X est proprement discontinue si tout point x P X possède un voisinage U
tel que gU X U “ H pour g ‰ 1.

Remarques 1. Attention, certains auteurs disent errante ou topologiquement
libre pour ce que nous avons appelé proprement discontinue.

2. Attention, certains auteurs disent que l’action est proprement discontinue
si pour tout compact K Ă X, il existe un nombre fini de g P G tels que
K X gK ‰ H. Cette condition est strictement plus forte que la notre quand X
est séparé.

3. Une action proprement discontinue est libre. En particulier, elle est fidèle et on
peut ainsi identifier G avec un groupe d’homéomorphismes de X.
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4. Si H est un sous-groupe discret d’un groupe topologique G, alors l’action par
translation à gauche de H est proprement discontinue (voir exercice 3.2).

3.2 Revêtement
On considère maintenant une nouvelle manière de déformer un espace :

Définition 3.2.1 Une application surjective a p : X 1 ↠ X est un revêtement si,
pour tout x P X, il existe un voisinage ouvert U de x, tel que p´1pUq “

š

iPI Ui
où les Ui sont des ouverts de X 1 et p induit un homéomorphisme Ui » U :

X 1

p
����

š

iPI Ui
? _oo

����
X U Q x? _oo

Ui

»

��
U.

On dit alors que tUiuiPI est une trivialisation de p au dessus de U et que chaque
Ui est un feuillet.

a. C’est automatique si X est connexe et X 1 non vide.

On dira aussi parfois que X 1 est un revêtement de X sans mentionner p explicite-
ment.

Exemples 1. L’application p : R ↠ S, t ÞÑ e2iπt est un revêtement.
2. Plus généralement : Rn ↠ Tn est un revêtement.
3. L’application exp : C ↠ Cˆ est un revêtement.
4. L’application S ↠ S, z ÞÑ zn (ou Cˆ ↠ Cˆ) est un revêtement.
5. La projection Sn ↠ Pn est un revêtement.
6. La projection S0

š

S0 ↠ S0 est un revêtement (trivial) mais il existe une autre
décomposition p´1pS0q “ V1 Y V2 avec V1 “ 1

š

´1 et V2 “ ´1
š

1.

Remarques 1. Un revêtement est une application surjective, continue et ouverte
(et X est donc muni de la topologie quotient).

2. Si I est un espace topologique discret non vide, alors la projection p : XˆI ↠ X
est un revêtement (dit trivial). En effet, on a une décomposition en union
disjointe d’ouverts X ˆ I “

š

iPIpX ˆ iq tous homéomorphes à X.
3. Réciproquement, si p : X 1 ↠ X est un revêtement, il existe pour tout x P X

un voisinage ouvert U de x et un espace discret I et un homéomorphisme
p´1pUq » U ˆ I compatible avec les projections :

X 1

p
����

p´1pUq? _oo

## ##

» // U ˆ I

||||
X U.? _oo

4. Si p : X 1 ↠ X est un revêtement, Y Ă X et Y 1 :“ p´1pY q, alors l’application
induite Y 1 ↠ Y est aussi un revêtement.

5. Un produit fini de revêtements est un revêtement.
6. Si p : X 1 ↠ X est un revêtement et X est séparé, alors X 1 aussi.
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7. Si p : X 1 ↠ X est un revêtement et X 1 est connexe (ou connexe par arcs) alors
X aussi (car p est continue surjective).

8. Si p : X 1 ↠ X est un revêtement, X 1 est compact et X est séparé, alors X est
compact.

9. Si p : X 1 ↠ X est un revêtement, alors X est localement connexe 1 si et
seulement si X 1 l’est.

10. Si p : X 1 ↠ X est un revêtement et x P X, alors la fibre p´1pxq est discrète et
le degré de p en x est le cardinal de la fibre. Si X est connexe, alors le degré
est constant.

On dispose aussi d’une notion un peu plus faible (locale en haut) :

Définition 3.2.2 Une application p : X 1 Ñ X est un homéomorphisme local si, pour
tout x1 P X 1 il existe un voisinage ouvert U 1 de x1 (resp. U de x :“ ppx1q) tel que
p induise un homéomorphisme U 1 » U .

Exemple La projection

tpx, yq P R2, xy “ 1 ou y “ 0u ↠ R, px, yq ÞÑ x (3.1)

est un homéomorphisme local surjectif mais ce n’est pas un revêtement.

Proposition 3.2.3 Si X 1 est séparé, alors p : X 1 Ñ X est un revêtement de degré
fini n si et seulement si c’est un homéomorphisme local et toutes les fibres ont
même cardinal n.

Démonstration. La condition est clairement nécessaire et on va montrer qu’elle
est suffisante. Soit x P X et p´1pxq “ tx1

1, . . . , x
1
nu. Il existe alors des voisinages

ouverts Ui et U 1
i de x et x1

i respectivement tel que p induise un homéomorphisme
U 1
i » Ui. Puisque X 1 est séparé, on peut supposer que U 1

i X U 1
j “ H pour i ‰ j.

On peut ensuite remplacer Ui par U :“
Şn
i“1 Ui puis U 1

i par U 1
i X p´1pUq. On va

montrer qu’alors p´1pUq “
Ťn
i“1 U

1
i . Soit y1 P X 1 tel que u :“ ppy1q P U . Il existe

alors pour tout i “ 1, . . . , n, un y1
i P U 1

i tel que ppy1
iq “ y. Comme, pour i ‰ j,

U 1
i XU 1

j “ H, on a y1
i ‰ y1

j . Comme les fibres ont le même nombre n d’éléments, on a
p´1pyq “ ty1

1, . . . , y
1
nu et il existe donc i tel que y1 “ y1

i. ■

Proposition 3.2.4 Soit G un groupe topologique agissant continûment sur un espace
topologique X. Alors, les conditions suivantes sont équivalentes :

1. G est discret et l’action est proprement discontinue,
2. l’action est libre et l’application quotient est un revêtement,
3. l’action est libre et l’application quotient est un homéomorphisme local.

Démonstration. On désigne la projection par p : X ↠ X{G. Supposons que G est
discret et que l’action est proprement discontinue. On sait déjà que l’action est libre.
Soit x P X et U un voisinage ouvert de x tel que gU XU “ H pour g ‰ 1. Si on pose
V “ ppUq, alors l’application U Ñ V induite par p est surjective, continue et ouverte

1. Ou localement n’importe quoi d’ailleurs.
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mais aussi injective grace au lemme 3.1.2. C’est donc un homémorphisme. De plus,
on a p´1pV q “

Ť

gPG gU qui est une union disjointe d’ouverts homéomorphes à U . Il
suit que p est un revêtement.

Supposons réciproquement que l’action est libre et que p est un homéomorphisme
local. Soit x P X. Puisque l’action est libre et continue, on a une bijection continue
G » Gx “ p´1pxq et puisque p est un homéomorphisme local, p´1pxq est discret
(clair). Il suit que G est nécessairement discret. De plus, il existe un voisinage U de x
dans X tel que p induise un homéomorphisme U » ppUq. En particulier, l’application
composée U ãÑ X ↠ X{G est injective. Il résulte du lemme 3.1.2 que pour tout
g ‰ 1, on a U X gU “ H et l’action est donc proprement discontinue. ■

Corollaire 3.2.5 Soit H un sous-groupe d’un groupe topologique G. Alors, les
conditions suivantes sont équivalentes :

1. H est discret,
2. l’application quotient G↠ G{H est un revêtement. ■

Remarque De manière équivalente : si 1 Ñ G1 Ñ G Ñ G2 Ñ 1 est une suite exacte
stricte de groupes topologiques, alors G1 est discret si et seulement si G Ñ G2 est un
revêtement.

Exemples 1. Avec Z Ă R, on trouve R ↠ R{Z » S.
2. Avec Zn Ă Rn, on trouve Rn ↠ Rn{Zn » Tn.
3. Avec 2iπZ Ă C, on trouve C ↠ C{2iπZ » Cˆ.
4. Avec µn Ă S (Ă Cˆ), on trouve S ↠ S{µn » S (Cˆ ↠ Cˆ{µn » Cˆ).
5. Avec Z{2Z ˆ Sn Ñ Sn, p1, xq ÞÑ ´x, on trouve Sn ↠ Sn{pZ{2Zq » Pn.

3.3 Monodromie
Définition 3.3.1 Soit p : X 1 ↠ X un revêtement et f : Y Ñ X une application
continue. Un relèvement de f le long de p est une application continue f 1 : Y Ñ X 1

telle que p ˝ f 1 “ f .

Remarques 1. Lorsque fpyq “ x et f 1pyq “ x1, on dira aussi que f 1 : pY, yq Ñ

pX 1, x1q est un relèvement de f : pY, yq Ñ pX, xq le long de p : pX 1, x1q Ñ pX, xq.
2. Si x P X et x1 P p´1pxq, on dira que x1 est un relèvement de x. Cette définition

est compatible avec la précédente dans la mesure ou on peut identifier un point
x P X avec l’application (continue) t0u Ñ X, 0 ÞÑ x.

Proposition 3.3.2 Soit p : X 1 ↠ X un revêtement, f : Y Ñ X une application
continue avec Y connexe, y0 P Y et x1

0 P X 1. Il existe alors au plus un relèvement
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f 1 de f tel que f 1py0q “ x1
0 :

X 1

p
����

Y
f //

f 1

88

X

x1
0_

��
y0

� //
0

88

x0.

Démonstration. Soient f2 un autre relèvement de f tel que f2py0q “ x1
0 et C :“ ty P

Y, f 1pyq “ f2pyqu. Soit y P C et U 1 un feuillet qui contient f 1pyq “ f2pyq. On pose
W “ f 1´1pU 1q X f2´1pU 1q. Par construction, W est un ouvert de C qui contient y.
Cela montre que C est ouvert. Soit maintenant y R C et U un voisinage de fpyq

qui trivialise le revêtement. Puisque f 1pyq ‰ f2pyq, il existe deux feuillets distincts
(et donc disjoints) U 1 et U2 au dessus de U tels que f 1pyq P U 1 et f2pyq P U2. Par
construction, W :“ f 1´1pU 1q X f2´1pU2q est un ouvert de Y zC qui contient y. Cela
montre que Y zC est un ouvert. Donc C est fermé, ouvert, et non vide car il contient
y0. Puisque Y est connexe, on a Y “ C et donc f 1 “ f2. ■

Proposition 3.3.3 Soit p : X 1 ↠ X un revêtement, h : f „ g : Y Ñ X une
homotopie et f 1 : Y Ñ X 1 un relèvement de f . Il existe alors un unique relèvement
h1 : Y ˆ r0, 1s Ñ X 1 de h tel que f 1 “ h1

0 :

y
_

��

Y
f 1

//� _

��

X 1

p
����

py, 0q Y ˆ r0, 1s
h //

h1

66

X

Démonstration. Si y P Y , alors y ˆ r0, 1s est connexe et h1py, 0q “ f 1pyq. L’unicité
résulte donc de la proposition 3.3.2.

On montre maintenant qu’on peut composer deux tels relèvements et on suppose
déjà qu’il en existe un. Posons g1 “ h1

1. Soit k : Y ˆ r0, 1s Ñ X une homotopie
satisfaisant k0 “ g. Supposons que celle-ci aussi se relève en une homotopie k1 :
Y ˆr0, 1s Ñ X 1 telle que k1

0 “ g1. On peut alors considérer l’homotopie h ¨k composée
h et k. Il est clair que l’homotopie h1 ¨ k1 composée h1 et k1 est un relèvement de h ¨ k
tel que f 1 “ ph1 ¨ k1q0.

On montre ensuite que la question de l’existence est locale sur Y . On suppose
donc que pour tout y P Y , il existe un voisinage Wy de y dans Y et une application h1

y

satisfaisant la propriété sur Wy. Par unicité, si y1, y2 P Y , alors h1
y1

et h1
y2

coincident
sur Wy1 X Wy2 . L’existence de h1 en résulte.

Supposons maintenant que le revêtement est trivial si bien qu’on a une union
disjointe d’ouverts X 1 “

Ť

iPI Xi tel que p induise un homéomorphisme pi : Xi » X.
On dispose alors d’un recouvrement ouvert disjoint Y “

Ť

iPI Yi en posant Yi “:
f 1´1pXiq et il suffit de prendre h1 “ p´1

i ˝ h sur Yi ˆ r0, 1s.
En général, pour tout y P Y (fixé pour l’instant) et t P r0, 1s, il existe une

trivialisation de p sur un ouvert Ut Q hpy, tq. Puisque h est continue, on peut trouver
un voisinageWt de y ainsi que ϵ ą 0 (qui dépend de t) tel que hpWtˆrt´ϵ, t`ϵsq Ă Ut.
Par compacité de y ˆ r0, 1s, on peut trouver une suite 0 “ t0 ă . . . ă tn “ 1 tel
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que hpWi ˆ rti´1, tisq Ă Ui pour i “ 1, . . . , n et p est trivialisé sur Ui. On pose
Wy “

Şn
i“1Wi. L’application induite hy,i : Wy ˆ rti´1, tis Ñ X 1 possède alors un

relèvement h1
y,i : Wy ˆ rti´1, tis Ñ X 1 (cas trivial). Par composition, on obtient des

relèvements h1
y : Wy ˆ r0, 1s Ñ X 1 et finalement h1 en recollant. ■

L’énoncé précédent dit qu’un revêtement est une fibration de Hurewicz (la pro-
priété de la proposition).

Corollaire 3.3.4 Soit p : X 1 ↠ X un revêtement et x1 un relèvement de x. Alors,
1. si γ est un chemin partant de x, il existe un unique relèvement γ1 de γ partant

de x1 et
2. si γ1 „t0,1u γ2 dans X (partant de x) et γ1

1, γ
1
2 désignent les relèvements

respectifs de γ1, γ2 partant de x1, alors γ1
1 „t0,1u γ

1
2 .

Démonstration. Il suffit d’appliquer le théorème aux cas Y “ t0u puis Y “ r0, 1s. ■

Remarque 1. En d’autres termes, p induit une application bijective entre les
(classes de) chemins dans X 1 partant de x1 et les (classes de) chemins dans X
partant de x : on a une bijection

p˚ : Cppr0, 1s, 0q, pX 1, x1
qq » Cppr0, 1s, 0q, pX, xqq

compatible avec l’homotopie (à extrémités fixées).
2. Comme conséquence, on obtient a une application injective

p˚ : π1pX
1, x1

q ãÑ π1pX, xq.

3. Si δ : x „ y dans X se relève en δ1 : x1 „ y1, alors le diagramme

π1pX 1, x1q
� � p˚ //

adδ1»

��

π1pX, xq

adδ»

��
π1pX

1, y1q
� � p˚ // π1pX, yq

est commutatif.

Exemple Dans le cas p : R ↠ S, t ÞÑ e2iπt, x “ 1 et x1 “ 0, le corollaire 3.3.4.1
redonne la proposition 2.2.11 (et la définition du degré).

Si p : X 1 ↠ X est un revêtement, γ : x „ y est un chemin dans X et γ1 : x1 „ y1

désigne le relèvement de γ partant de x1, on pose x1 ¨ γ :“ y1. Autrement dit, x1 ¨ γ
est le point final de l’unique relèvement de γ partant de x1. Sous forme compacte :
γ1 : x1 „ y1 ô y1 “ x1 ¨ p˚γ

1. Puisque y1 ne dépend que de la classe d’homotopie de γ,
on écrit aussi parfois x1 ¨ rγs.

Proposition 3.3.5 Soit p : X 1 ↠ X un revêtement et x1 un relèvement de x. Alors,
1. x1 ¨ 1x “ x1 et
2. si γ : x „ y et δ : y „ z, alors px1 ¨ γq ¨ δ “ x1 ¨ γδ.
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Démonstration. Puisque 1x1 est un relèvement de 1x partant de x1, on a bien x1¨1x “ x1.
Ensuite, soit γ1 le relèvement de γ partant de x1 et δ1 le relèvement de δ partant de
y1 :“ x1 ¨ γ. Alors, γ1 ¨ δ1 est un relèvement de γ ¨ δ reliant x1 à z1 :“ y1 ¨ δ. On a donc
bien x1 ¨ γδ “ z1. ■

Corollaire 3.3.6 Si p : X 1 ↠ X est un revêtement et x P X, on dispose d’une
action à droite du groupe fondamental sur la fibre appelée monodromie :

p´1
pxq ˆ π1pX, xq Ñ p´1

pxq, px1, rγsq ÞÑ x1
¨ γ. ■

Exemple Dans le cas p : R ↠ S, t ÞÑ e2iπt et x “ 1, la monodromie s’écrit

Z ˆ π1pS, 1q Ñ Z, pn, γq ÞÑ n ` degpγq.

En particulier, degpγq “ 0 ¨ γ.

Proposition 3.3.7 Soit p : X 1 ↠ X un revêtement (avec X 1) connexe par arcs
et x P X. Alors la monodromie sur p´1pxq est transitive et le stabilisateur d’un
relèvement x1 de x est p˚π1pX 1, x1q.

On désigne par p˚π1pX
1, x1q l’image de p˚ : π1pX

1, x1q ãÑ π1pX, xq.

Démonstration. Soient x1, y1 P p´1pxq. Puisque X 1 est connexe par arcs, il existe un
chemin γ1 : x1 „ y1. On considère alors le lacet γ “ p˚γ

1 dans X. Par construction,
γ1 est le relèvement de γ partant de x1 et on a donc x1 ¨ γ “ y1. Cela montre que
l’action est transitive. Soit maintenant x1 P p´1pxq et γ un lacet en x. Si γ1 désigne
le relèvement de γ partant de x1, on a x1 ¨ γ “ x1 si et seulement si rγ1s P π1pX 1, x1q.
Il en résulte que le stabilisateur de x1 est p˚π1pX

1, x1q. ■

Remarques 1. On a donc une bijection (à x1 fixé)

π1pX, xq{p˚π1pX 1, x1
q » p´1

pxq, rγs Ø x1
¨ γ.

2. Le degré du revêtement est égal à l’indice de p˚π1pX
1, x1q dans π1pX, xq.

3. La monodromie est libre si et seulement si X 1 est simplement connexe et on a
alors une bijection

π1pX, xq » p´1
pxq, rγs Ø x1

¨ γ.

Exemple Avec p : R ↠ S, t ÞÑ e2iπt, x “ 1 et x1 “ 0, on obtient une bijection

π1pS, 1q » Z, rγs Ø degpγq

et donc (presque) le théorème 2.2.13.

Théoreme 3.3.8 Soit G un groupe agissant de manière proprement discontinue sur
un espace topologique X connexe par arcs et p : X Ñ X{G l’application quotient.
Si x P X, on a une suite exacte courte

1 Ñ π1pX, xq
p˚
Ñ π1pX{G, ppxqq Ñ G Ñ 1.
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Démonstration. On a montré dans la proposition 3.2.4 que p est un revêtement. Si
rγs P π1pX{G, ppxqq, alors x ¨ γ P p´1pppxqq “ Gx. Puisque, par hypothèse, l’action
de G sur X est libre, il existe un unique g P G tel que x ¨ γ “ gx. On dispose donc
d’une application

ϕ : π1pX{G, ppxqq Ñ G

déterminée par ϕprγsq “ g ô x ¨ γ “ gx. Avant d’aller plus loin, remarquons que,
grâce à la proposition 3.4.2 plus bas, puisque la multiplication par g est continue, les
deux actions commutent 2 : on a toujours pgxq ¨ γ “ gpx ¨ γq. Supposons maintenant
que ϕprγsq “ g et ϕprδsq “ h. On aura alors x ¨ γ “ gx et x ¨ δ “ hx. On en déduit
que

x ¨ γδ “ px ¨ γq ¨ δ “ pgxq ¨ δ “ gpx ¨ δq “ gphxq “ pghqx,

c’est-à-dire ϕprγsrδsq “ gh. Cela montre que ϕ est un omomorphisme de groupes.
Pour conclure, on applique la proposition 3.3.7. Puisque la monodromie est transitive
sur X, on voit immédiatement que ϕ est surjective. Puisque le stabilisateur de x
pour la monodromie est p˚π1pX, xq, on voit que kerϕ “ p˚π1pX, xq. On a donc bien
la suite exacte courte annoncée. ■

Remarques 1. Comme conséquence, on voit que p˚π1pX, xq◁ π1pX{G, ppxqq (le
sous-groupe est distingué).

2. Si X est simplement connexe, alors

π1pX{G, ppxqq » G prγs Ø g ô x ¨ γ “ g ¨ xq.

Exemple Dans le cas de l’action par translation de Z sur R, on trouve un isomor-
phisme de groupes

π1pS, 1q » π1pR{Z, 0q » Z prγs Ø n ô 0 ¨ γ “ n ` 0q,

c’est-à-dire rγs ÞÑ degpγq. On obtient enfin ainsi une démonstration complète du
théorème 2.2.13.

On peut aussi calculer le groupe fondamental de l’espace projectif :

Corollaire 3.3.9 Si n ě 2, alors π1pPn, xq » Z{2Z. ■

Corollaire 3.3.10 Soit 1 Ñ G1 Ñ G Ñ G2 Ñ 1 une suite exacte stricte de groupes
topologiques avec G1 discret et G connexe par arcs. On dispose alors d’une suite
exacte courte

1 Ñ π1pG, 1q Ñ π1pG2, 1q Ñ G1
Ñ 1.

Démonstration. On peut supposer que G1 ◁G et G2 “ G{G1. ■

2. Ou bien directement : si x ¨ γ “ y, il existe alors γ1 : x „ y avec p˚γ
1 “ γ, donc g˚γ

1 : gx „ gy
avec p˚g˚γ

1 “ p˚γ
1 “ γ et alors pgxqrγs “ gy.
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Remarques 1. Si G1 est un sous-groupe de G, alors la seconde flèche est donnée
par rγs ÞÑ 1 ¨ γ.

2. Si G est simplement connexe, alors π1pG2, 1q » G1.
3. On obtient automatiquement l’isomorphisme deg : π1pS, 1q » Z à partir de la

suite exacte 0 Ñ Z Ñ R Ñ S Ñ 1.
4. On remarquera qu’on a même une suite exacte longue

π1pG
1, 1q Ñ π1pG, 1q Ñ π1pG

2, 1q Ñ G1
Ñ G Ñ G2

Ñ 1.

5. Si on se donne un groupe G, on peut toujours trouver un espace topologique
X tel que π1pX, xq » G. Il suffit pour cela de considérer le « complexe sim-
plicial » EG obtenu en recollant les simplexes rg0, . . . , gns où g0, . . . , gn P G
et de prendre pour X le quotient BG (appelé espace classifiant) par l’action
naturelle de G.

3.4 Revêtement universel
Il va être pratique de considérer des applications pointées.

Définition 3.4.1 Si p1 : X 1 ↠ X est un revêtement tel que p1px1q “ x, on dit
que p1 : pX 1, x1q ↠ pX, xq est un revêtement pointé. Un morphisme entre deux
revêtement pointés p1 : pX 1, x1q ↠ pX, xq et p2 : pX2, x2q ↠ pX, xq est une
application continue f : pX 1, x1q Ñ pX2, x2q telle que p1 “ p2 ˝ f et fpx2q “ x1.

Remarques 1. Il résulte de la proposition 3.3.2 que, lorsque X 1 est connexe, il
existe au plus un morphisme f : pX 1, x1q Ñ pX2, x2q de revêtements pointés de
pX, xq.

2. Si X est localement connexe par arcs et X2 est connexe, alors tout morphisme
de revêtements pointés f : pX 1, x1q Ñ pX2, x2q est aussi un revêtement pointé
(voir exercice 3.11).

3. On dispose aussi bien sûr de la notion de morphisme de revêtements non pointés
p1 : X 1 ↠ X et p2 : X2 ↠ X : c’est une application continue f : X 1 Ñ X 1 telle
que p1 “ p2 ˝ f . On dit encore isomorphisme si f est un homéomorphisme, et
automorphisme si, de plus, X 1 “ X2.

Proposition 3.4.2 Un morphisme f : pX 1, x1q Ñ pX2, x2q de revêtements pointés de
pX, xq préserve la monodromie : Si γ est un chemin partant de x, alors fpx1 ¨ γq “

x2 ¨ γ.

Démonstration. Par définition, y1 :“ x1 ¨ γ est le point final du relèvement γ1 de γ
partant de x1. Alors, γ2 :“ f˚γ

1 est un chemin dans X2 joignant x2 à y2 :“ fpy1q. De
plus, p2

˚γ
2 :“ p2

˚f˚γ
1 “ p1

˚γ
1 “ γ. On aura donc y2 “ x2 ¨ γ. ■

Proposition 3.4.3 Soit p : pX 1, x1
0q ↠ pX, x0q un revêtement pointé et f : pY, y0q Ñ

pX, x0q une application continue pointée avec Y connexe localement connexe par
arcs. Alors, f se relève le long de p (en une application continue pointée) si et
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seulement si f˚ se factorise par p˚ :

pX 1, x1
0q

p
����

pY, y0q
f //

Dp!q
66

pX, x0q

ô π1pX
1, x1

0q� _

p˚

��
π1pY, y0q

f˚ //

Dp!q
55

π1pX, x0q.

Démonstration. La condition est clairement nécessaire. De plus, le relèvement sera
unique car Y est connexe et la factorisation unique car p˚ est injectif.

Supposons donnés deux chemins γ1, γ2 : y0 „ y dans Y . Alors γ1 ¨ γ´1
2 est un lacet

en y0 et f˚pγ1 ¨ γ´1
2 q est donc un lacet en x0. Notre hypothèse implique que celui-ci

se relève en un lacet γ1 en x1
0. Si, pour i “ 1, 2, on désigne par γ1

i l’unique chemin
partant de x1

0 qui relève f˚γi, alors γ1 ¨ γ1
2 et γ1

1 sont deux relèvements de f˚γ1 partant
de x1

0. Cela implique que γ1 ¨ γ1
2 “ γ1

1 et donc que γ1
1 et γ1

2 ont même point final.
Maintenant, puisque Y est connexe par arcs, si y P Y , il existe un chemin

γ : y0 „ y. D’après ce qui précède, le point final du relèvement γ1 de f˚γ partant de
x1
0 ne dépend que de y et on le note f 1pyq.

Soit U 1 un voisinage ouvert suffisamment petit de f 1pyq dans X 1 que l’on peut
supposer être un feuillet au dessus de U Ă X. Puisque f est continue, il existe un
voisinage ouvert W de y tel que fpW q Ă U . Puisque Y est localement connexe par
arcs, on peut supposer que W est connexe par arcs. Si z P W , il existe donc un
chemin δ : y „ z dans W . On peut alors considérer le chemin γ ¨ δ : y0 „ z si bien que
f 1pzq est le point final du relèvement de f˚pγ ¨ δq partant de x1

0. Puisque δ est contenu
dans W , f˚pδq est contenu dans U . Puisque p induit un homéomorphisme U 1 » U , on
voit que f˚pδq se relève de manière unique en un chemin δ1 dans U 1 partant de f 1pyq.
Il suit que γ1 ¨ δ1 est le relèvement de f˚pγ ¨ δq partant de x1

0 si bien que f 1pzq P U 1.
Cela montre que f 1 est continue (comme composée W Ñ U » U 1 Ă X 1 au voisinage
de y). ■

Remarques 1. Le relèvement, s’il existe, est unique grâce à la proposition 3.3.2.
2. La condition s’exprime plus simplement en disant que f˚pπ1pY, y0qq Ă p˚π1pX

1, x1
0q.

3. Lorsque Y est simplement connexe et localement connexe par arcs, toute
application continue pointée pY, y0q Ñ pX, x0q se relève de manière unique le
long de p1.

4. Si X est localement connexe par arcs, alors deux revêtements pointés connexes
pX 1, x1q et pX2, x2q de pX, xq sont isomorphes si et seulement si les images de
π1pX

1, x1q et π1pX2, x2q dans π1pX, xq coincident.

Définition 3.4.4 Un revêtement pointé p : p rX, rxq ↠ pX, xq est universel si, pour
tout revêtement pointé p1 : pX 1, x1q ↠ pX, xq, il existe un unique morphisme de
revêtements pointés f : p rX, rxq Ñ pX 1, x1q.

Remarques 1. Un revêtement universel, s’il existe, est unique à unique isomor-
phisme près, et on dira parfois « le » revêtement universel.

2. Un revêtement universel est connexe (voir exercice 3.9).
3. Un revêtement simplement connexe d’un espace localement connexe par arcs

est universel grâce à la proposition 3.4.3.
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Exemples 1. C est un revêtement universel de Cˆ.
2. Rn est un revêtement universel du tore Tn (et R est donc un revêtement universel

de S).
3. Sn est un revêtement universel de Pn pour n ě 2 (et R est un revêtement

universel de P).

Définition 3.4.5 Un voisinage U d’un point x d’un espace topologique X est simple
si l’image de π1pU, xq dans π1pX, xq est triviale. Un espace est semi-localement
simplement connexe si tout x P X possède un voisinage simple.

Remarques 1. Un ouvert est simple en x si tout lacet en x dans U est homotope
au lacet trivial dans X. Si x P U 1 Ă U , alors U 1 aussi est simple.

2. Un espace localement simplement connexe est semi-localement simplement
connexe.

3. Un espace est semi-localement simplement connexe si et seulement s’il possède
une base d’ouverts simples (attention : simple est une notion relative).

Exemples 1. La boucle d’oreille hawaïenne X “
Ť

nPN Spp1{n, 0q, 1{nq Ă R2

n’est pas semi-localement simplement connexe.
2. Le cône sur la boucle d’oreille hawaïenne est contractile (donc simplement

connexe, donc semi-localement simplement connexe) mais pas localement sim-
plement connexe.

Théoreme 3.4.6 Si X est un espace connexe, localement connexe par arcs et
semi-localement simplement connexe a, alors il possède un revêtement simplement
connexe.

a. On dit alors que X est délaçable.

Démonstration. On fixe x0 P X et on définit

rX :“ trγs : γp0q “ x0u Ă πpXq.

Si γ : x0 „ x dans X et U est un voisinage simple de x, on pose

Uγ :“ trγ ¨ δs, δ P Cpr0, 1s, 0q, pU, xqqu Ă rX.

C’est donc l’ensemble des classes de chemins γ1 “ γ ¨ δ ou δ : x „ y est contenu dans
U . On a alors les propriétés suivantes :

1. Si γ, γ1 : x0 „ x, alors
"

Uγ “ Uγ1 si rγs “ rγ1s,
Uγ X Uγ1 “ H sinon.

Démonstration. En effet, si Uγ X Uγ1 ‰ H, alors il existe δ et δ1 dans U tels
que rγ ¨ δs “ rγ1 ¨ δ1s. On a alors rγs “ rγs ¨ δ1δ´1 “ rγ1s puisque δ1δ´1 est un
lacet dans U et que U est simple. Et réciproquement. ■

2. Si γ : x0 „ x et γ1 : x0 „ y, alors rγ1s P Uγ ô Uγ “ Uγ1 .
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Démonstration. En effet, il existe alors α : x „ y contenu dans U tel que
rγ1s “ rγ ¨αs. Si δ : x „ z est contenu dans U , alors rγ ¨ δs “ rγ1 ¨ pα´1 ¨ δqs P Uγ1

et réciproquement. ■

3. Si U 1 Ă U est un autre voisinage (automatiquement simple) de x, alors U 1
γ Ă Uγ .

Démonstration. Clair. ■

Donnons nous maintenant pour i “ 1, 2, γi : x0 „ xi et un voisinage simple Ui de
xi. Soit γ : x0 „ x. Si rγs P U1,γ1 X U2,γ2 et U Ă U1 X U2 est un voisinage (simple) de
x, alors Uγ Ă Ui,γ “ Ui,γi pour i “ 1, 2 et donc Uγ Ă U1,γ1 X U2,γ2 . Cela montre que
les Uγ forment une base pour une topologie sur rX. On munit dorénavant rX de cette
topologie.

On considère maintenant l’application

p : rX Ñ X, rγs ÞÑ γp1q

qui associe le point x à γ : x0 „ x. On montre alors l’assertion suivante :

Si γ : x0 „ x et U est un voisinage simple connexe par arcs de x, alors p induit une
bijection Uγ » U .

Démonstration. Si δ : x „ y est contenu dans U , alors pprγ ¨ δsq “ y P U et
l’application est donc bien définie. Réciproquement, si y P U , alors il existe un
chemin δ : x „ y contenu dans U et pprγ ¨ δsq “ y, cela montre que l’application est
surjective. Enfin, si δ, δ1 : x „ y sont contenus dans U , alors δ ¨ δ´1 est un lacet dans
U si bien que rδs “ rδ1s et donc rγ ¨ δs “ rγ ¨ δ1s. Cela montre que l’application est
injective. ■

On montre maintenant l’assertion suivante :

Si U est un ouvert simple connexe par arcs de X, alors p´1pUq “
Ť

γp1qPU Uγ.

Démonstration. Soit γ : x0 „ x. Si rγs P p´1pUq alors γp1q “ pprγsq P U et on a
bien sûr rγs P Uγ. Réciproquement, s’il existe γ1 tel que γ1p1q P U et rγs P Uγ1 , alors
γp1q P U et donc rγs P p´1pUq. ■

Puisque les ouverts simples U de X forment une base pour la topologie de X et
que les ouverts de la forme Uγ forment une base pour la topologie de rX, cela implique
que p est continue. Mais cela implique aussi que p est ouverte. En particulier, les
bijections induites Uγ » U induites par p sont des homéomorphisme. Puisque p est
clairement surjective et que les Uγ sont disjoints (ou confondus), on en déduit que p
est un revêtement.

On pose maintenant rx0 :“ r1x0s P rX et on montre :

Si γ est un chemin partant de x0 dans X, alors le relèvement rγ de γ partant de rx0
dans rX est donné par @t P r0, 1s, rγptq “ rγts avec pour tout s P r0, 1s, γtpsq “ γptsq.

Démonstration. On aura bien sûr rγp0q “ rγ0s “ r1x0s “ rx0 et pour tout t P r0, 1s,

pp˚rγqptq “ pp ˝ rγqptq “ pprγtsq “ γtp1q “ γptq
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si bien que p˚rγ “ γ. Il faut tout de même s’assurer que rγ est continu. Comme γ est
continu, si t P r0, 1s et si U est un voisinage ouvert simple de γptq, alors il existe un
voisinage I de t dans r0, 1s tel que γpIq Ă U . Si t1 P I, alors le chemin γtt1 défini pour
s P r0, 1s par γtt1psq “ γpp1 ´ sqt ` st1q est contenu dans U et on a rγt1s “ rγt ¨ γtt1s.
On aura donc rγpt1q “ rγt1s P Uγt . Il suit que rγpIq Ă Uγt si bien que rγ est continu. ■

On voit donc que si γ est un chemin partant de x0 dans X, alors son relèvement
rγ partant de rx0 dans rX satisfait rγp1q “ rγs. Autrement dit, le point final de rγ est
égal à rγs. Il suit que rX est connexe (par arcs). Si on impose de plus que rγ est un
lacet, alors rγs “ rrx0s “ r1x0s. Or on sait que p est un revêtement, et l’application

p˚ : π1p rX, rx0q ãÑ π1pX, x0q

est donc injective. Il suit que rrγs “ r1
rx0s. Puisque tout chemin partant de rx0 dans

rX, et en particulier tout lacet basé en rx0, est le relèvement rγ de son image γ par p˚,
cela implique que π1p rX, rx0q “ 1 et rX est donc simplement connexe. ■

Remarques 1. Comme conséquence du théorème, un espace délaçable possède
toujours un revêtement universel (qui s’avère être simplement connexe).

2. On peut montrer qu’un espace localement connexe par arcs possède un revête-
ment simplement connexe si et seulement si il est délaçable.

3. On peut montrer plus généralement que si X est délaçable, on a une bijection
entre les classes d’isomorphismes de revêtements de X et les sous-groupes de
π1pX, x0q. Le cas du revêtement universel correspond au sous-groupe trivial
(et le cas du revêtement trivial correspond au groupe fondamental lui même).
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3.5 Exercices
3.5.1 Action de groupe

Exercice 3.1 Soit G un groupe topologique agissant sur un espace topologique X.
1. Montrer que si c’est une action par homéomorphismes, alors l’application

quotient p : X ↠ X{G est ouverte.
2. Montrer que si l’action est continue, alors c’est une action par homéomor-

phismes, et réciproquement lorsque G est discret.

Solution. 1. Pour la première assertion, il suffit de remarquer que

p´1
pppUqq “

ď

gPG

gU

est bien ouvert puisque la multiplication par g est un homéomorphisme et que
X{G est muni de la topologie quotient.

2. Pour la seconde assertion, il suffit de rappeler qu’on dispose d’une bijection
continue

ž

gPG

X » G ˆ X

et que c’est un homéomorphisme lorsque G est discret. On voit donc que si
l’action est continue, alors chaque application X Ñ X, x ÞÑ gx est continue,
ainsi que la réciproque si G est discret. On conclut en remarquant que si g et
g´1 sont continues, alors ce sont des homéomorphismes réciproques. ■

Exercice 3.2 Montrer que si H est un sous-groupe discret d’un groupe topologique
G, alors l’action par translation à gauche de H sur G est proprement discontinue.

Solution. Puisque H est discret, il existe un voisinage ouvert W de 1 dans G tel
que W X H “ t1u. Puisque l’application pg, g1q ÞÑ gg1´1 est continue, il existe des
voisinages V1, V2 de 1 dans G tel que V1V ´1

2 Ă W . On pose alors V :“ V1 X V2. Si
h P H et g P V XhV , alors il existe g1 P V tel que g “ hg1 et donc h “ gg1´1 P W XH
si bien que h “ 1. Par translation, la propriété sera valide en tout point de G : si
g P G, on pose U “ V g. On aura alors, pour h P Hz1, UXhU “ pV XhV qg “ H. ■

3.5.2 Revêtements

Exercice 3.3 Montrer que la projection

p : C :“ tpx, yq P R2, xy “ 1 ou y “ 0u ↠ R, px, yq ÞÑ x

est un homéomorphisme local mais n’est pas un revêtement.

Solution. On a une union disjointe p´1pRˆq “ Γ Y Rˆ où Γ :“ tpx, yq P R2, xy “ 1u

et p induit bien des homéomorphismes Γ » Rˆ et Rˆ » Rˆ. Cela montre que p induit
un revêtement au dessus de Rˆ. De plus, p induit un homéomorphisme (l’identité)
R » R au voisinage de 0. C’est donc bien un homéomorphisme local. Par contre la
fibre p´1p0q n’a qu’un élément contrairement aux autres. L’application p n’est donc
pas un revêtement. ■
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Exercice 3.4 1. Décrire p´1pSzt1uq et p´1pSzt´1uq lorsque p : R Ñ S, t ÞÑ e2iπt

ou p : S Ñ S, z ÞÑ zn.
2. En déduire dans les deux cas que p est un revêtement.
3. En déduire aussi que Rn est un revêtement de Tn.

Solution. 1. Dans le premier cas, on a

p´1
pSzt1uq “

ď

nPZ

sn, n ` 1r et p´1
pSzt´1uq “

ď

nPZ

sn ´ 1{2, n ` 1{2r.

Dans le second cas, on a

p´1
pSzt1uq “ Szµn et p´1

pSzt´1uq “ Szpµ2nzµnq

avec

µn :“ tz P C, zn “ 1u “ te2ikπ{n : k “ 0, . . . n ´ 1u.

2. On a bien une trivialisation locale de p. Dans le premier cas, les feuillets sont
les sn, n ` 1r et sn ´ 1{2, n ` 1{2r respectivement. Dans le second, ce sont les

teiθ, 2kπ{n ă θ ă 2pk`1qπ{nu et teiθ, p4k`1qπ{2n ă θ ă p4k`3qπ{2nu.

3. Puisqu’un produit fini de revêtements est un revêtement et que T “ S, Rn est
un revêtement de Tn. ■

Exercice 3.5 Montrer que l’application canonique p : Sn ↠ Pn est un revêtement
de degré 2 et que pour tout a P Sn, Upaq :“ tx P Sn, }x´ a} ă

?
2u est un feuillet.

Solution. Puisque ppxq “ ppyq ô y “ ˘x, on voit que si V Ă Sn est ouvert, alors
p´1pppV qq “ V Y ´V est ouvert et donc ppV q est ouvert (puisque c’est la topologie
quotient). Cela montre que p est une application ouverte. Clairement, Upaq est ouvert
et ´Upaq “ Up´aq. Puisque }x ´ a}2 ` }x ` a}2 “ 4, les conditions }x ´ a} ă

?
2

et }x ` a} ă
?
2 sont incompatibles si bien que Upaq X Up´aq “ H. En particulier,

p est injectif sur Upaq. Il suit que p induit un homémorphisme (injectif, continu,
ouvert) entre Upaq et son image. Puisque p´1pppUpaqqq “ Upaq Y Up´aq, on a bien
un revêtement de degré 2 et Upaq est un feuillet. ■

Exercice 3.6 Montrer que les applications exp : C ↠ Cˆ et Cˆ ↠ Cˆ, z ÞÑ zn

sont des revêtements.

Solution. On utilise les suite exactes 0 Ñ Z Ñ C Ñ Cˆ Ñ 1 et 0 Ñ Z{nZ Ñ Cˆ Ñ

Cˆ Ñ 1 de l’exercice 2.7. ■

3.5.3 Monodromie

Exercice 3.7 1. Monter que le revêtement R ↠ S, t ÞÑ e2iπt provient a d’une
action du groupe Z et en déduire le groupe fondamental de S. Question
analogue avec Rn ↠ Tn.

2. Montrer que le revêtement p : S ↠ S, z ÞÑ zn provient d’une action du
groupe Z{nZ et en déduire une suite exacte reliant le groupe fondamental
de S et Z{nZ.

3. Montrer que le revêtement Sn ↠ Pn provient d’une action du groupe Z{2Z
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et en déduire le groupe fondamental de Pn lorsque n ě 2.

a. Un revêtement p : X 1 ↠ X provient d’une action de groupes de G sur X 1 si p induit un
homéomorphisme X 1{G » X.

Solution. 1. On utilise les suites 0 Ñ Z Ñ R Ñ S Ñ 1 et 0 Ñ Zn Ñ Rn Ñ Tn Ñ 1
de l’exercice 2.7.

2. On utilise la suite 0 Ñ Z{nZ Ñ S
p

Ñ S Ñ 1 et on en déduit une suite exacte

1 Ñ π1pS, 1q
p˚
Ñ π1pS, 1q Ñ Z{nZ Ñ 0.

3. On fait agir Z{2Z sur Sn par 1 ¨ x “ ´x. Il résulte de l’exercice 3.5 que c’est
une action proprement discontinue. Puisque, pour n ě 2, Sn est simplement
connexe, on en déduit que π1pPn, xq » Z{2Z. ■

3.5.4 Revêtement universel

Exercice 3.8 On identifie π1pS, 1q avec Z via le degré et µn avec Z{nZ en faisant
correspondre e2ikπ{n et k mod n. On considère le revêtement pn : S ↠ S, z ÞÑ zn.

1. Identifier l’image de pn˚ avec un sous-groupe de Z.
2. Montrer qu’il existe une application continue f : pS, 1q Ñ pS, 1q telle que
pm ˝ f “ pn si et seulement si m | n.

3. Montrer que l’action de la monodromie de π1pS, 1q sur µn est l’action
naturelle de Z sur Z{nZ.

Solution. 1. Clairement, pn˚ correspond via le degré à l’application Z n
Ñ Z et son

image s’identifie donc à nZ.
2. Puisque pm est un revêtement et que S est connexe localement connexe par arcs,

on sait que pn se relève le long de pm si et seulement si pn˚π1pS, 1q Ă pm˚π1pS, 1q,
c’est-à-dire nZ Ă mZ, ou encore m | n.

3. L’action par la monodromie est donnée par

µn ˆ π1pS, 1q Ñ µn, pζ, rγsq ÞÑ ζ ¨ γ

ou ζ ¨ γ est le point final du relèvement rγ de γ partant de ζ. D’autre part,
l’action naturelle de Z sur Z{nZ est donnée par

Z{nZ ˆ Z Ñ Z{nZ, pk mod n,mq ÞÑ k ` m mod n.

Posons ζ “ e2iπ{n et @t P r0, 1s, γptq “ e2iπt. Rappelons que les deux définitions
de γm (en utilisant la loi de groupe de S ou la composition des lacets) coincident
à homotopie prés. Le relèvement δ de γm en ζk doit satisfaire δp0q “ ζk et
pn˚pδq “ γm. Or on a pour t P r0, 1s,

pn˚pδqptq “ pnppδptqq “ δptqn et γmptq “ e2iπmt

(en utilisant la loi de groupe de S) et la condition pn˚pδq “ γm s’écrit donc
δptqn “ e2iπmt. Il suffit donc de poser

@t P r0, 1s, δptq :“ ζke2iπ
m
n
t.

On aura bien ζk ¨ γm “ δp1q “ ζk`m. ■
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Exercice 3.9 Montrer qu’un revêtement universel est connexe.

Solution. Soit p : p rX, rx0q ↠ pX, x0q un revêtement universel. On considère le revête-
ment

pX ˆ t0, 1u, px0, 0qq Ñ pX, x0q.

Soit Y la composante connexe de rx0 et Z son complémentaire. Soient f, g : rX Ñ Xˆ

t0, 1u les applications données par fpyq “ gpyq “ pppyq, 0q si y P Y et fpzq “ pppzq, 0q,
gpzq “ pppzq, 1q si z P Z. Ce sont deux morphismes de revêtements pointés si bien
que f “ g et Z “ H. Il faut tout de même s’assurer que g est continue. Il suffit
de montrer que si U est ouvert dans X, alors g´1pU ˆ iq est ouvert pour i “ 0, 1.
Puisque Y est fermé, Z est ouvert et donc g´1pU ˆ 1q “ p´1pUq X Z est ouvert. De
même si F “ XzU , alors g´1pF ˆ 0q “ p´1pF q X Y est fermé et g´1pU ˆ 0q aussi est
ouvert. ■

Exercice 3.10 Quels sont les revêtements universels de Sn, Tn et Pn ?

Solution. On a R ↠ S, t ÞÑ e2iπt, Id : Sn “ Sn pour n ě 2, Rn ↠ Tn, ptiq ÞÑ pe2iπtiq,
R ↠ S » P et Sn ↠ Pn, x ÞÑ x pour n ě 2. ■

Exercice 3.11 Soit f : X 1 Ñ X2 un morphisme de revêtements de X.
1. Montrer que si X est localement connexe et f surjective, alors f est un

revêtement.
2. Montrer que si X est localement connexe par arcs et X2 est connexe, alors
f est un revêtement.

Solution. 1. On peut remplacer X par un voisinage suffisamment petit U d’un de
ses points, et conséquemment X 1 et X2 par p1´1pUq et p2´1pUq respectivement.
On peut donc supposer que X est connexe et que les revêtements X 1 et X2

sont triviaux. On suppose ainsi que X 1 “ X ˆ I 1 et X2 “ X ˆ I2. Puisque X
est connexe, pour tout i P I 1, il existe αpiq P I2 tel que fpX ˆ iq Ă X ˆ αpiq.
Puisque les applications X ˆ i Ñ X et X ˆαpiq Ñ X induites par p1 et p2 sont
des homéomorphismes, il en va de même de l’application X ˆ i » X ˆ αpiq
induite par f . De plus, on a clairement f´1pX ˆ jq “

Ť

αpiq“j X ˆ i. Cela
montre que f est un revêtement.

2. On suppose maintenant que X est localement connexe par arcs et X2 est
connexe. Cela implique que X et X2 sont tous deux connexes par arcs. Soient
x1 P X 1, x2 :“ fpx1q et x :“ p1px1q “ p2px2q. Si y2 P X2, il existe un chemin
γ2 : x2 „ y2 dans X2. On peut relever γ “ p2

˚γ
2 : x „ y :“ p2py2q en un chemin

γ1 : x1 „ y1 dans X 1. On considère alors les chemins γ2 et f˚γ
1. Ce sont deux

relèvements de γ qui partent de x2. Puisque X2 est un revêtement de X, ils
coincident et ont donc même point final fpy1q “ y2. Cela montre que f est
surjective et c’est donc un revêtement grâce à la première question. ■

Exercice 3.12 Soit p : Y ↠ X un revêtement.
1. Montrer que l’ensemble AutpY {Xq des automorphismes g du revêtement est

un sous-groupe de SpY q.
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2. Montrer que si Y est connexe et g P AutpY {Xq a un point fixe, alors g “ IdY .
3. Montrer que p se factorise de manière unique par l’application quotient :
Y ↠ Y {AutpY {Xq

p
Ñ X. Lorsque p est bijectif, on dit que p est galoisien.

4. Montrer que si Y est connexe et p est galoisien, alors AutpY {Xq agit de
manière proprement discontinue sur Y .

5. Réciproquement, montrer que si un groupe G agit de manière proprement
discontinue sur Y connexe, alors Y ↠ Y {G est galoisien.

Solution. 1. Immédiat.
2. Puisque Y est connexe, si y P Y , il existe au plus un morphisme de revêtements
g : Y Ñ Y tel que gpyq “ y. C’est nécessairement l’identité.

3. Immédiat.
4. Supposons que p est galoisien et posons G :“ AutpY {Xq. Puisque G est discret

et qu’il agit par homéomorphismes, c’est une action continue. De plus, par
hypothèse, la projection p : Y Ñ Y {G » X est un revêtement. Enfin, il résulte
de la question 2 que l’action est libre. On sait alors qu’elle est proprement
discontinue.

5. Puisque l’action est proprement discontinue, elle est libre et donc fidèle si bien
qu’on a une application injective G ãÑ SpXq. Puisque l’action est continue,
cette application est à valeurs dans AutpY {Xq et il faut montrer que c’est une
bijection. Si f : Y Ñ Y est un automorphisme du revêtement p : Y ↠ Y {G, et
y P Y , alors fpyq P p´1pppyqq “ Gy et il existe donc g P G tel que fpyq “ g ¨ y,
c’est-à-dire pg´1 ˝ fqpyq “ y. Il résulte de la question 2) que pg´1 ˝ fq “ IdY et
donc que f “ g (la multiplication par g). ■





4. Homologie

4.1 Algèbre linéaire (Rappels)

Lemme 4.1.1 Soit pMiqiPI une famille de groupes abéliens. Il existe alors un groupe
abélien M (leur somme directe) et des morphismes ji : Mi Ñ M , tels que si on
se donne des morphismes fi : Mi Ñ N avec N abélien, alors il existe un unique
morphisme f :M Ñ N rendant commutatif les diagrammes

Mi
� � ji //

fi

!!

M

f
��
N.

Démonstration. Il suffit de considérer le sous-groupe M :“
À

iPIMi Ă
ś

iPIMi des
familles à support fini. Les détails sont laissés en exercice. ■

Remarques 1. En particulier, on a
Àn

i“1Mi “
śn

i“1Mi.
2. Si on pose ZpIq :“

À

iPI Z, alors toute application I Ñ J induit un morphisme
de groupes ZpIq Ñ ZpJq et c’est fonctoriel.

3. Un groupe abélien M est libre s’il est isomorphe à ZpIq. Cela signifie qu’il
possède une base peiqiPI avec ei P M : tout x P M s’écrit de manière unique
comme somme finie x “

ř

iPI aiei avec ai P Z et réciproquement. On écrit alors
aussi M “

À

iPI Zei (somme directe interne).
4. Un groupe abélien est de type fini s’il possède un nombre fini de générateurs.

C’est équivalent à dire qu’il existe un morphisme surjectif Zn ↠ M . Il est
monogène s’il est engendré par un seul élément. C’est équivalent à dire qu’il
existe un isomorphisme Z{nZ » M avec n P N.

5. Une suite exacte courte 0 Ñ M 1 i
Ñ M

p
Ñ M2 Ñ 0 est dite scindée si p possède

une section s :M2 Ñ M (c’est-à-dire p ˝ s “ IdM2) ou de manière équivalente,
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si i possède une rétraction r :M Ñ M 1 (c’est-à-dire r ˝ i “ IdM 1). Dans ce cas,
M » M 1 ‘ M2 (voir exercice 4.1).

Théoreme 4.1.2 Tout sous-groupe d’un groupe abélien libre est libre.

Démonstration. Si M Ă ZpIq, on applique le lemme de Zorn aux bases B de MJ :“
M X ZpJq pour J Ă I. Si B est maximale et k R J , alors (en notant ek le vecteur
d’indice k de la base canonique de ZpIq)

tn P N, Dx P MJ , x ` nek P MJYku “ dZ

(car c’est un idéal) et B Y dek est une base de MJYk. Contradiction. Détails en
exercice. ■

Remarques 1. Comme conséquence, on voit que si M est un groupe abélien, il
existe une suite exacte courte 0 Ñ L1 Ñ L0 Ñ M Ñ 0 avec L0, L1 abéliens
libres.

2. Un groupe abélien L est libre si et seulement si tout morphisme surjectif
M ↠ L admet une section (en tant que morphisme de groupe). De manière
équivalente, toute suite exacte 0 Ñ M 1 Ñ M Ñ L Ñ 0 est scindée.

Théoreme 4.1.3 Tout groupe abélien de type fini est somme directe de groupes
monogènes.

Démonstration. On peut écrire M » coker A avec A P MnˆmpZq. La méthode
du pivot montre que A est équivalente à une matrice diagonale D. On aura donc
M » coker D. Détails laissés en exercice. ■

Remarques 1. Plus précisément, l’idéal engendré par les mineurs de taille i de
A est de la forme pd1 . . . diq avec di | di`1 et D “ rd1, . . . , drs (théorème des
facteurs invariants).

2. Le théorème 4.1.3 implique que M est somme directe d’un groupe abélien libre
et d’un groupe fini.

Proposition 4.1.4 Si M est un groupe abélien, il existe un Q-espace vectoriel MQ

et un morphisme de groupes j :M Ñ MQ tel que si f :M Ñ V est un morphisme
de groupes où V est un Q-espace vectoriel, alors il existe une unique application
linéaire rf :MQ Ñ V avec rf ˝ j “ f .

M
j //

f

!!

MQ

rf
��
V

Démonstration. Il suffit de poser MQ :“ pM ˆ Zzt0uq{ „ avec px, nq „ py,mq ô

mx “ ny. Les détails sont laissés en exercice. ■
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Remarques 1. On a

Mtors :“ kerpM Ñ MQq “ tx P M, Dn P Zzt0u, nx “ 0u.

Le groupe abélien M est sans torsion (resp. de torsion) si Mtors “ 0 (resp.
Mtors “ M).

2. Le rang de M est rangpMq :“ dimMQ. Si M » ZpIq alors MQ » QpIq et donc
rangpMq “ #I. Le groupe M est de torsion si et seulement si rangpMq “ 0.

3. Un groupe abélien de type fini est sans-torsion (resp. de torsion) si et seulement
s’il est libre (resp. fini).

Lemme 4.1.5 Si 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 est une suite exacte de groupes abéliens,
alors la suite 0 Ñ M 1

Q Ñ MQ Ñ M2
Q Ñ 0 est aussi exacte.

Démonstration. Vérification élémentaire. ■

Remarque Il résulte alors du théorème du rang usuel que

rangpMq “ rangpM 1
q ` rangpM2

q.

Définition 4.1.6 Un complexe (de chaînes) C est une suite de groupes abéliens et
d’homomorphismes

¨ ¨ ¨ ÝÑ Cn`1
dn`1
ÝÑ Cn

dn
ÝÑ Cn´1 Ñ ¨ ¨ ¨

tels que @n P Z, dn ˝ dn`1 “ 0. Le groupe des cycles (resp. bords) est

ZnpCq :“ ker dn presp. BnpCq :“ im dn`1q.

Le n-ème groupe d’homologie de C est HnpCq “ ZnpCq{BnpCq.

Remarques 1. On dit que Cn est le terme de degré n et que dn est la différentielle
en degré n.

2. La suite est exacte en degré n (c’est à dire en Cn) si et seulement BnpCq “ ZnpCq

si et seulement si HnpCq “ 0.
3. Un complexe exact partout est dit acyclique. De manière équivalente : @n P

N,HnpCq “ 0.
4. Un complexe est de rang fini si Cn est de rang fini pour tout n P Z et Cn “ 0

pour |n| ąą 0.
5. Si tCpiquiPI est une famille de complexes, leur somme directe C :“ ‘iPIC

piq est le
complexe défini par Cpiq

n “ ‘iPIC
piq
n . C’est bien un complexe puisque dn respecte

des composantes. De plus, on a pour tout n P N, HnpCq » ‘iPIHnpCpiqq.

Quand on définit Cn pour seulement certaines valeurs de n, on sous-entend que
Cn “ 0 sinon.

Exemples 1. Avec M en degré 0 (et 0 ailleurs), on a H0 “ M et Hn “ 0 sinon.
2. Avec M f

Ñ N en degrés 0 et 1 (et 0 ailleurs), on a H0 “ coker f , H1 “ ker f et
Hn “ 0 sinon.
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Théoreme 4.1.7 — du rang. Si C est un complexe de rang fini, alors
ÿ

p´1q
nrangpCnq “

ÿ

p´1q
nrangpHnpCqq.

Démonstration. Il suffit d’appliquer le théorème du rang aux suites exactes

0 Ñ ZnpCq Ñ Cn Ñ Bn´1pCq Ñ 0, 0 Ñ BnpCq Ñ ZnpCq Ñ HnpCq Ñ 0.

On aura ainsi
ÿ

p´1q
nrangpCnq “

ÿ

p´1q
nrangpZnpCqq `

ÿ

p´1q
nrangpBn´1pCqq

et
ÿ

p´1q
nrangpZnpCqq “

ÿ

p´1q
nrangpBnpCqq `

ÿ

p´1q
n
prangHnpCqq

La formule annoncée en résulte. ■

Définition 4.1.8 Un morphisme de complexes f : C Ñ C 1 est une suite de mor-
phismes fn : Cn Ñ C 1

n rendant commutatif le diagramme

¨ ¨ ¨ // Cn`1
dn`1 //

fn`1

��

Cn
dn //

fn
��

Cn´1
//

fn´1

��

¨ ¨ ¨

¨ ¨ ¨ // C 1
n`1

d1
n`1 // C 1

n

d1
n // C 1

n´1
// ¨ ¨ ¨ .

Remarques 1. Un morphisme de complexes f : C Ñ C 1 induit des morphismes
(fonctoriels)

f˚ “ Znpfq : ZnpCq Ñ ZnpC 1
q, f˚ “ Bnpfq : BnpCq Ñ BnpC 1

q

et

f˚ “ Hnpfq : HnpCq Ñ HnpC 1
q.

2. En particulier, si f 1 : C 1 Ñ C est un autre morphisme de complexes, alors
Hnpf 1 ˝ fq “ Hnpf 1q ˝ Hnpfq et on a toujours HnpIdCq “ IdHnpCq.

3. f est un quasi-isomorphisme si Hnpfq est un isomorphisme pour tout n P Z et
on écrit alors C » C 1.

4. C est acyclique si et seulement si C est quasi-isomorphe au complexe nul 0.

Définition 4.1.9 1. Si f, g : C Ñ C 1 sont des morphismes de complexes, une
homotopie (de chaînes) h : f „ g est une famille de morphismes

¨ ¨ ¨ // Cn`1
dn`1 //

hn`1

||

Cn
dn //

hn

||

Cn´1
//

hn´1

||

¨ ¨ ¨

¨ ¨ ¨ // C 1
n`1

d1
n`1 // C 1

n

d1
n // C 1

n´1
// ¨ ¨ ¨

tels que

@n P N, d1
n`1 ˝ hn ` hn´1 ˝ dn “ fn ´ gn.
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2. Un morphisme de complexes f : C Ñ C 1 est une équivalence d’homotopie
s’il existe un morphisme g : C 1 Ñ C tel que g ˝ f „ IdC et f ˝ g „ IdC1 .

3. Un complexe est contractile s’il est homotopiquement équivalent au complexe
nul.

Remarques 1. Si f „ g : C Ñ C 1, alors, pour tout n P N, Hnpfq “ Hnpgq.
2. Si f : C „ C 1 est une équivalence d’homotopie, alors f est un quasi-isomorphisme.
3. Si C est contractile, alors C est acyclique.

Exemple 1. On dispose d’une homotopie h : Id „ 0 :

¨ ¨ ¨ // 0 // 0 //

�� ��

Z Id //

Id
����

Z //

Id
��

Id

��

0 //

�� ��

¨ ¨ ¨

¨ ¨ ¨ // 0 // 0 // Z Id // Z // 0 // ¨ ¨ ¨

Ça implique que le complexe Z id
Ñ Z est contractile et pas seulement acyclique.

2. Le complexe

¨ ¨ ¨ Ñ 0 Ñ Z 2
Ñ Z Ñ Z{2Z Ñ 0 Ñ ¨ ¨ ¨

est acyclique mais pas contractile.

Définition 4.1.10 Une suite exacte courte de complexes est une suite de morphismes
de complexes 0 Ñ C 1 Ñ C Ñ C2 Ñ 0 telle que 0 Ñ C 1

n Ñ Cn Ñ C2
n Ñ 0 soit une

suite exacte courte pour tout n P N.

Remarques 1. Soient C un complexe et pour tout n P Z, C 1
n Ă Cn tel que

dpC 1
nq Ă C 1

n´1. On dit alors que C 1 Ă C est un sous-complexe.
2. Si C 1 Ă C est un sous-complexe, on pose pour tout n P Z, pC{C 1qn “ Cn{C 1

n et
on désigne par dn : pC{C 1qn Ñ pC{C 1qn´1 l’application quotient. Alors, C{C 1

le complexe quotient.
3. Si C 1 Ă C, alors 0 Ñ C 1 Ñ C Ñ C{C 1 Ñ 0 est une suite exacte courte.

On démontre maintenant le fondamental théorème du serpent :

Théoreme 4.1.11 — du serpent. Si 0 Ñ C 1 i
Ñ C

p
Ñ C2 Ñ 0 est une suite exacte

courte de complexes, alors il existe pour tout n P N, un morphisme δn : HnpC2q Ñ

Hn´1pCq tel que la suite

¨ ¨ ¨ Ñ HnpC 1
q Ñ HnpCq Ñ HnpC2

q
δn
Ñ Hn´1pC

1
q Ñ Hn´1pCq Ñ Hn´1pC

2
q Ñ ¨ ¨ ¨

soit exacte (partout).

Démonstration. Afin d’alléger l’écriture, on écrira simplement dn pour les différen-
tielles des différents complexes (et pas d1

n et d2
n).

On construit d’abord δn comme suit. Si α2 P HnpC2q, on peut écrire α2 :“ c2 avec
c2 P ZnpC2q. Puisque pn est surjective, on peut écrire c2 “ pnpcq avec c P Cn. On
considère alors dnpcq P Cn´1. On a pn´1pdnpcqq “ dnppnpcqqq “ dnpc2q “ 0 puisque



98 Chapitre 4. Homologie

c2 P ZnpC2q. Puisque la suite 0 Ñ C 1
n´1 Ñ Cn´1 Ñ C2

n´1 Ñ 0 est exacte, il existe
donc un unique c1 P Cn´1 tel que in´1pc

1q “ dnpcq. On a

in´2pdn´1pc
1
qq “ dn´1pin´1pc1

qq “ dn´1pdnppcqq “ 0

et puisque in´2 est injective, dn´1pc
1q “ 0. Autrement, dit c1 P Zn´1pC

1q et on pose
δnpα2q :“ β1 :“ c1 P Hn´1pC

1q.
On montre maintenant que δn est bien défini. On peut perturber c en c ` inpc1

1q

avec c1
1 P C 1

n. On aura alors

dnpc` inpc1
1qq “ dnpcq ` dnpinpc1

1qqq “ in´1pc
1
q ` in´1pdnpc1

1qq “ in´1pc
1
` dnpc1

1qq

et c1 ` dnpc1
1q “ c1 “ β1 puisque dnpc1

1q P BnpC 1q. On peut aussi perturber c2 en
c2 ` b2 avec b2 P BnpC2q. On peut alors écrire b2 “ dn`1pc

2
1q puis c2

1 “ pnpc1q avec
c1 P Cn`1. On aura alors

pnpc ` dn`1pc1qq “ c2
` dn`1ppnpc1qq “ c2

` b2

et

dnpc ` dn`1pc1qq “ dnpcq ` dnpdn`1pc1qq “ dnpcq.

Montrons maintenant que la suite est exacte en Hn´1pC 1q. On montre d’abord
que Hn´1piq ˝ δn “ 0. Avec les notations ci-dessus, in´1pc

1q “ dnpcq P Bn´1pCq et donc
Hn´1piqpδnpα2qq “ 0. Supposons réciproquement, que pour un certain β1 P Hn´1pCq,
on ait Hn´1piqpβ1q “ 0. On écrit alors β1 “ c1 si bien que in´1pc

1q P Bn´1pCq. On peut
alors écrire in´1pc

1q “ dnpcq avec a P Cn et il suffit de poser c2 “ pnpcq et α2 “ c2

pour que δnpα2q “ β1.
On montre ensuite qu’elle est exacte en HnpC2q. On montre d’abord que δn ˝

Hnppq “ 0. Avec les notations ci-dessus, on suppose donc que α2 “ Hnppqpαq avec
α P HnpCq. On peut alors choisir c P Cn de telle sorte que α “ c avec c P ZnpCq. On
aura alors dnpcq “ 0 si bien que in´1pc1q “ 0 et donc c1 “ 0 puisque in´1 est injective
et finalement β “ 0. Réciproquement, on suppose que δnpα2q “ 0. Avec les notations
ci-dessus, on aura donc c1 P Bn´1pC 1q et on peut donc écrire c1 “ dnpc1

1q avec c1
1 P C 1

n.

dnpc ´ inpc1
1qq “ dnpcq ´ dnpinpc1

1qq “ in´1pc
1
q ´ in´1pdnpc1

1qq

“ in´1pc
1
´ dnpc1

1qq “ 0

Cela montre que c ´ inpc1
1q P ZnpCq et on peut poser α “ c ´ inpc1

1q P HnpCq. On a
pnpc ´ inpc1

1qq “ pnpcq ´ pnpinpc1
1qq “ pnpcq “ c2 et donc Hnppqpαq “ α2.

Il ne reste plus qu’à montrer l’exactitude en HnpCq. On a bien sûr

Hnppq ˝ Hnpiq “ Hnppn ˝ inq “ Hnp0q “ 0.

Réciproquement, supposons qu’on ait Hnppqpαq “ 0 avec α P HnpCq. On a donc
α “ c avec c P ZnpCq et pnpcq P BnpC2q. On peut donc écrire pnpcq “ dn`1pc

2q avec
c2 P C2

n`1. Puisque pn`1 est surjective, on a c2 “ pn`1pc1q avec c1 P Cn`1. On aura
donc

pnpc ´ dn`1pc1qq “ pnpcq ´ dn`1ppn`1pc1qq “ pnpcq ´ dn`1pc
2
q “ 0.
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Puisque la suite 0 Ñ C 1
n Ñ Cn Ñ C2

n Ñ 0 est exacte, il existe un unique c1 P Cn tel
que inpc1q “ c ´ dn`1pc1q. On a

in´1pdnpc1
qq “ dnpinpc1

qq “ dnpc ´ dn`1pc1qq “ dnpcq ´ dnpdn`1pc1qq “ 0

puisque c P ZnpCq. Puisque in´1 est injective, on en déduit que dnpc1q “ 0, c’est-à-dire
que c1 P ZnpC 1q. On pose alors α1 “ c1. Par construction, Hnpiqpα1q “ α. ■

Remarques 1. Le morphisme δn est caractérisé pour c2 P ZnpC2q par

δnpc2
q “ c1

ô Dc P Cn, c
2

“ pnpcq et dnpcq “ in´1pc
1
q

ô @c P Cn, c
2

“ pnpcq ñ dnpcq “ in´1pc1
q.

2. Si

0 // C 1 //

f 1

��

C //

f
��

C2 //

f2

��

0

0 // D1 // D // D2 // 0

est un morphisme de suites exactes courtes, alors le diagramme

¨ ¨ ¨ // HnpCq //

��

HnpC2q
δn //

��

Hn´1pC 1q //

��

Hn´1pCq //

��

¨ ¨ ¨

¨ ¨ ¨ // HnpDq // HnpD2q
δn // Hn´1pD1q // Hn´1pDq // ¨ ¨ ¨

est aussi commutatif (voir exercice 4.5).

4.2 Ensemble semi-simplicial
Définition 4.2.1 1. Si n P N, alors le simplexe standard de dimension n est

|∆n
| :“

#

t :“ pt0, . . . , tnq {

n
ÿ

i“0

ti “ 1, ti ě 0

+

Ă Rn`1.

2. Un n-simplexe (régulier) est une application affine injective σ : |∆n| ãÑ X
où X est une partie d’un espace vectoriel E.

Remarques 1. Si on désigne par pe0, . . . , enq la base canonique de Rn`1, alors
|∆n| est l’enveloppe convexe de te0, . . . , enu.

2. Un n-simplexe σ est uniquement déterminé par les images a0, . . . , an des vecteurs
e0, . . . , en de la base canonique. On écrit alors σ “ ra0, . . . , ans et on dit que
a0, . . . , an sont les sommets de σ. On pose ∆n :“ re0, . . . , ens.

3. Des points a0, . . . , an de E sont affinement indépendants (i.e. ÝÝÑa0a1, . . . ,ÝÝÑa0an
sont linéairement indépendants) si et seulement si ra0, . . . , ans est un n-simplexe.
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4. L’image de σ “ ra0, . . . , ans est l’enveloppe convexe

|σ| :“

#

n
ÿ

i“0

tiai {

n
ÿ

i“0

ti “ 1, ti ě 0

+

de ta0, . . . , anu. En pratique, on ne fait pas de différence entre un n-simplexe
et son image.

Exemples 1. Un 0-simplexe ras est un point.
2. Un 1 simplexe ra, bs est un segment fermé orienté à extrémités distinctes.
3. Un 2-simplexe ra, b, cs est un triangle plein orienté à sommets distincts.

Définition 4.2.2 1. Si 0 ď i0 ă . . . ă im ď n, alors le n-simplexe régulier

rei0 , . . . , eims : |∆m
| ãÑ |∆n

|

est une face de dimension m de ∆n.
2. En particulier a, δni :“ re0, . . . , pei, . . . , ens : |∆n´1| ãÑ |∆n| est la i-ième face

de dimension n ´ 1 de ∆n.
a. On écrira e0, . . . , pei, . . . , en au lieu de e0, . . . , ei´1, ei`1, . . . , en.

Remarques 1. Explicitement, on a

@k “ 0, . . . , n, δni pekq “

"

ek si k ă i
ek`1 si k ě i,

ou encore

δni pt0, . . . , tn´1q “ pt0, . . . , ti´1, 0, ti, . . . , tn´1q.

2. On dira aussi que |rei0 , . . . , eims| est une face de |∆n|.
3. On dira aussi que rai0 , . . . , aims est une face de ra0, . . . , ans (c’est le composé

avec la face correspondante de |∆n|) et on considèrera en particulier la i-ième
face ra0, . . . , pai . . . , ans.

Exemples 1. Les faces de dimension 0 du simplexe sont les sommets. Les faces
de dimension 1 sont les arêtes du simplexe.

2. Les faces de ra, b, cs sont ra, b, cs, ra, bs, ra, cs, rb, cs, ras, rbs et rcs.
3. La frontière d’un simplexe (vu comme sous-espace de l’espace affine qu’il

engendre) est l’union des faces de codimension 1 (et l’intérieur est leur complé-
mentaire).

4. On dispose d’homéomorphismes

|∆0
| “ t1u » t0u et |∆1

| “ tpt, sq t ` s “ 1, t, s ě 0u » r0, 1s, pt, sq ÞÑ s.

Les applications δ0, δ1 : |∆0| ÞÑ |∆1| correspondent respectivement à 0 ÞÑ 1 et
0 ÞÑ 0 :

|∆0|
» //

δ0
��
δ1
��

t0u

1
��

0
��

|∆1|
» // r0, 1s.

(4.1)
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Lemme 4.2.3 @0 ď i ă j ď n ` 1, δn`1
j ˝ δni “ δn`1

i ˝ δnj´1.

Démonstration. En effet, dans les deux cas, l’image de pt0, . . . , tn´1q est

pt0, . . . , ti´1, 0, ti, . . . , tj´1, 0, tj, . . . , tn´1q. ■

Définition 4.2.4 Un ensemble semi-simplicial S est une suite d’ensembles et d’ap-
plications

¨ ¨ ¨
//... // Sn`1

d0n`1 //

dn`1
n`1

... // Sn

d0n //

dnn

... // Sn´1

//... // ¨ ¨ ¨
//
//
// S1

d01 //

d11

// S0

tels que

@n P N, @0 ď i ă j ď n ` 1, din ˝ djn`1 “ dj´1
n ˝ din`1.

Il est fini si Sn est fini pour tout n P N et Sn “ H pour n ąą 0.

Exemples 1. Si ra0, . . . , ans est un simplexe et Sm désigne l’ensemble des faces
de dimension m, on peut considérer les applications face

djmprai0 , . . . , aimsq “ rai0 , . . . , xaij , . . . , aims.

On obtient ainsi un ensemble semi-simplicial grace au lemme 4.2.3.
2. Plus généralement, on définit un « complexe simplicial » en « recollant » des

simplexes.
3. On peut considérer l’ensemble semi-simplicial (correspondant au cercle) S0 “

tvu, S1 “ teu (et Sn “ H pour n ě 2). On a alors pas le choix pour les din.
4. On peut aussi considérer l’ensemble semi-simplicial S0 “ tvu, S1 “ ta, b, cu,
S2 “ tσ, τu (correspondant au tore) avec

d02pσq “ b, d12pσq “ c, d22pσq “ a et d02pτq “ a, d12pτq “ c, d22pτq “ b.

Définition 4.2.5 Soient S et S 1 deux ensembles semi-simpliciaux. Un morphisme
d’ensembles semi-simpliciaux f : S Ñ S 1 est famille d’applications fn : Sn Ñ S 1

n

telle que

@n P N, @i “ 0, . . . , n, fn´1 ˝ din “ din ˝ fn.

Lemme 4.2.6 Soit S un ensemble semi-simplicial. On désigne pour n ě 0, par
CnpSq :“ ZpSnq »

À

σPSn
Zσ le groupe abélien libre de base Sn et, pour n ą 1,

dn “

n
ÿ

i“0

p´1q
idin : CnpSq Ñ Cn´1pSq

où din : CnpSq Ñ Cn´1pSq désigne l’unique morphisme de groupes qui prolonge
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din : Sn Ñ Sn´1. On pose aussi CnpSq “ 0 pour n ă 0 et dn “ 0 pour n ď 0. Alors
CpSq est un complexe de chaînes.

Démonstration. On a

dn ˝ dn`1 “

˜

n
ÿ

i“0

p´1q
idin

¸

˝

˜

n`1
ÿ

j“0

p´1q
jdjn`1

¸

“

n
ÿ

i“0

n`1
ÿ

j“0

p´1q
i`jdin ˝ djn`1

“
ÿ

0ďiăjďn`1

p´1q
i`jdin ˝ djn`1 `

ÿ

0ďjďiďn

p´1q
i`jdin ˝ djn`1

“
ÿ

0ďiăjďn`1

p´1q
i`jdj´1

n ˝ din`1 `
ÿ

0ďiďjďn

p´1q
i`jdjn ˝ din`1

“
ÿ

0ďiďjďn

p´1q
i`j`1djn ˝ din`1 `

ÿ

0ďiďjďn

p´1q
i`jdjn ˝ din`1

“ 0. ■

Remarques 1. Tout morphisme de complexes simpliciaux f : S Ñ S 1 se prolonge
de manière unique en un morphisme de complexes de chaînes f˚ “ Cpfq :
CpSq Ñ CpS 1q et c’est fonctoriel.

2. Si tSpiquiPI est une famille d’ensemble semi-simpliciaux, leur union disjointe
S :“

š

iPI S
piq est l’ensemble semi-simplicial défini par Spiq

n “
š

iPI S
piq
n (union

disjointe). C’est bien un ensemble semi-simplicial puisque dni respecte des
composantes. De plus CpSq “ ‘iPICpSpiqq.

3. Si S est un complexe semi-simplicial, le complexe de chaînes augmenté est

rCpSq :“ ¨ ¨ ¨ Ñ CnpSq
dn
Ñ Cn´1pSq Ñ ¨ ¨ ¨ Ñ C1pSq

d1
Ñ C0pSq

ϵ
Ñ Z

avec ϵ
`
ř

σPS0
aσσ

˘

“
ř

σPS0
aσ. On notera qu’on a bien ϵ ˝ d1 “ 0.

4. On désigne par HnpSq (resp. rHnpSq) le n-ème groupe d’homologie de CpSq

(resp. rCpSq). Si S ‰ H, alors
#

H0pSq » rH0pSq ‘ Z
HnpSq “ rHnpSq si n ‰ 0.

Les formules avec rH sont souvent plus facile à mémoriser que les formules avec
H.

Exemples 1. Si ra0, . . . , ans est un n-simplexe, alors

dmprai0 , . . . , aimsq “

m
ÿ

j“0

p´1q
j
rai0 , . . . , xaij , . . . , aims

(on peut y penser comme étant la frontière – signée – du simplexe).
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2. Dans le cas du cercle (exemple (3) ci-dessus), on a

CpSq : rZe 0
Ñ Zvs.

On aura donc H0pCpSqq » H1pCpSqq » Z et HnpCpSqq “ 0 sinon.
3. Dans le cas du tore (exemple (4) ci-dessus), on a

CpSq : rZσ ‘ Zτ d
Ñ Za ‘ Zb ‘ Zc 0

Ñ Zvs

avec dpσq “ dpτq “ a ´ c ` b. On en déduit que H0pCpSqq » H2pCpSqq » Z et
H1pCpSqq » Z2 (et 0 sinon).

Définition 4.2.7 Si S est un ensemble semi-simplicial fini, sa caractéristique d’Euler-
Poincaré est

χpSq “
ÿ

n

p´1q
n#Sn.

Son n-ème nombre de Betti est βnpSq “ rangpHnpCpSqq.

Proposition 4.2.8 Si S est un ensemble semi-simplicial fini, alors

χpSq “
ÿ

n

p´1q
nβnpSq.

Démonstration. En effet, il résulte de la proposition 4.1.7 que

χpSq :“
ÿ

n

p´1q
n#Sn “

ÿ

n

p´1q
nrangpCnpSqq

“
ÿ

n

p´1q
nrangpHnpSqq “

ÿ

n

p´1q
nβnpSq. ■

4.3 Homologie singulière
On pourrait développer maintenant l’homologie simpliciale mais on va se concen-

trer sur l’homologie singulière qui est bien plus puissante (mais moins intuitive).

Définition 4.3.1 Soit X un espace topologique. Si n P N, alors un n-simplexe sin-
gulier est une application continue σ : |∆n| Ñ X et on pose SnpXq :“ Cp|∆n|, Xq.
Si n ą 0 et 0 ď i . . . ď n, alors la i-ième face de σ est l’application composée
σ ˝ δni : |∆n´1| Ñ X et on pose dinpσq :“ δn˚

i pσq “ σ ˝ δni .

Lemme 4.3.2 Si X est un espace topologique, alors SpXq est un ensemble semi-
simplicial.

Démonstration. On sait que si n P N, i P t0, . . . , nu et j P t1, . . . n ` 1u, alors
δn`1
j ˝ δni “ δn`1

i ˝ δnj´1. Par fonctorialité, on aura donc

din ˝ djn`1 “ δn˚
i ˝ δn`1˚

j “
`

δn`1
j ˝ δni

˘˚

“
`

δn`1
i ˝ δnj´1

˘˚
“ δn˚

j´1 ˝ δn`1˚
i

“ dj´1
n ˝ din`1. ■
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Remarques 1. Une application continue f : X Ñ Y fournit un morphisme
d’ensembles semi-simpliciaux f˚ “ Spfq : SpXq Ñ SpY q et c’est fonctoriel.

2. On peut identifier S0pXq avec X (et on le fera) puisque |∆0| est réduit à un
point.

3. On peut identifier S1pXq avec l’ensemble Cpr0, 1s, Xq des chemins (et on le fera)
puisqu’on a un homéomorphisme |∆1| » r0, 1s, pt, sq ÞÑ s.

4. Avec cette identification, si γ : x0 „ x1 est un chemin dans X, on aura donc
d01pγq “ x1 et d11pγq “ x0.

5. Avec cette identification, si σ est un 2-simplexe, on peut considérer les chemins
γ0 :“ d02pσq, γ1 :“ d12pσq et γ2 :“ d22pσq. Ceux-ci sont explicitement définis pour
t P r0, 1s, par

γ0ptq “ σp0, 1 ´ t, tq, γ1ptq “ σp1 ´ t, 0, tq, γ2ptq “ σp1 ´ t, t, 0q.

Autrement dit, on a le diagramme commutatif suivant :

x1
γ0

!!
x0

γ2
==

γ1
//

�� σ

x2.

Exemple Si a0, . . . , an P X Ă E espace vectoriel (pas nécessairement affinement
indépendants), on peut considérer le n-simplexe singulier

ra0, . . . , ans : |∆n
| Ñ X, t ÞÑ

n
ÿ

i“0

tiai.

Lorsque a0, . . . , an sont affinement indépendant, c’est un n-simplexe régulier, mais
sinon, il peut aussi être dégénéré.

Définition 4.3.3 Si X est un espace topologique, alors CpXq :“ CpSpXqq est le
complexe des n-chaînes singulières de X et HnpXq :“ HnpCpXqq est le n-ème
groupe d’homologie singulière de X.

On notera aussi ZnpXq et BnpXq les groupes des cycles et des bords.

Remarques 1. Le groupe des n-chaînes singulières est

CnpXq :“ CpXqn :“ ‘σPSnpXqZσ.

et la différentielle associée est donnée par

dn : CnpXq Ñ Cn´1pXq, σ ÞÑ

n
ÿ

i“0

p´1q
i
pσ ˝ δni q.

2. Toute application continue f : X Ñ Y induit fonctoriellement un morphisme
de complexes de chaînes f˚ “ Cpfq : CpXq Ñ CpY q, et pour tout n P N, un
morphisme de groupes

f˚ “ Hnpfq : HnpXq Ñ HnpY q.
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3. On écrira aussi rHnpXq :“ rHnpCpXqq “ HnpČCpXqq.

Exemples 1. Si on identifie les 0-simplexes singuliers avec les points de X, une
0-chaîne singulière est donc une somme finie

řn
i“1 aixi avec xi P X et ai P Z.

2. Si on identifie les 1-simplexes singuliers avec les chemins dans X, une 1-chaîne
singulière est donc une somme finie

řn
i“1 ciγi où γi est un chemin dans X et

ci P Z et on aura donc

d1

˜

n
ÿ

i“1

ciγi

¸

“

n
ÿ

i“1

cipγip1q ´ γip0qq.

3. En particulier, si γ est un chemin dans X entre x0 et x1, on aura d1pγq “ x1´x0
(est le bord orienté de γ). De même, avec les notations ci-dessus, si σ est un
2-simplexe, alors d2pσq “ γ0 ´ γ1 ` γ2 (est le bord orienté de σ).

Définition 4.3.4 Un espace topologique X est acyclique si le complexe augmenté
rCpXq est acyclique.

De manière équivalente, H0pXq » Z et HnpXq “ 0 pour n ą 0.

Exemples 1. Un point est acyclique (voir exercice 4.8).
2. Plus généralement, un espace contractile est acyclique (voir corollaire 4.4).
3. Par contre, un espace simplement connexe n’est pas toujours acyclique (par

exemple Sn pour n ě 2).
4. Un espace acyclique n’est pas non plus nécessairement simplement connexe

(difficile).

Proposition 4.3.5 Si tXiuiPI désigne l’ensemble des composantes connexes (par
arcs) de X, alors

@n P N, HnpXq “ ‘iPIHnpXiq.

Démonstration. Puisque |∆n| est connexe (par arcs), on a

Cp|∆n
|, Xq “

ž

iPI

Cp|∆n
|, Xiq

(union disjointe) et SpXq est donc l’union disjointe des ensembles semi-simpliciaux
SpXiq. L’assertion en résulte formellement. ■

Remarques 1. De même, si X “
š

iPI Xi est une union disjointe, alors pour
tout n P N, on a HnpXq “ ‘iPIHnpXiq.

2. Attention, ces résultats sont faux pour rH.
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Proposition 4.3.6 H0pXq » Zpπarc
0 pXqq »

À

XiPπarc
0 pXq

Z ¨ Xi.

Démonstration. Il suffit de considérer le cas où X est non-vide et connexe par arcs
et de montrer que rH0pXq “ 0. En d’autres termes, il faut s’assurer que la suite

C1pXq
d

Ñ C0pXq
ϵ

Ñ Z Ñ 0

est exacte en C0pXq. On sait déjà que ϵ ˝ d “ 0. Réciproquement, on se donne
řn
i“0 aixi P C0pXq tel que

řn
i“0 ai “ 0. Soit pour tout i “ 0, . . . , n un chemin γi

entre x0 et xi. On a alors

d1

˜

n
ÿ

i“0

aiγi

¸

“

n
ÿ

i“0

aipxi ´ x0q “

n
ÿ

i“0

aixi ´

˜

n
ÿ

i“0

ai

¸

x0 “

n
ÿ

i“0

aixi. ■

On va avoir besoin de résultats préliminaires pour comparer le groupe fondamental
à l’homologie.

Proposition 4.3.7 Soient γ0 : x1 „ x2, , γ1 : x0 „ x2, γ2 : x0 „ x1 dans X. Alors, les
conditions suivantes sont équivalentes :

1. Il existe alors un 2-simplexe singulier σ dont les faces sont γ0, γ1, γ2,
2. γ1 „t0,1u γ2 ¨ γ0.

Démonstration. On sait qu’un lacet γ dans X est trivial si et seulement si pγ :
S Ñ X se prolonge en un morphisme rγ : B2 Ñ X. On sait aussi qu’il existe un
homéomorphisme B2 » ∆2 induisant un homéomorphisme sur les frontières S » B∆2.
On considère alors l’application continue B∆2 Ñ X donnée respectivement par
γ0, γ

´1
1 , γ2 sur les faces ∆0,∆1,∆2 de ∆2. On voit alors que le lacet γ0 ¨ γ´1

1 ¨ γ2 est
trivial si et seulement s’il existe une application continue σ : ∆2 Ñ X telle que
σ|∆0 “ γ0, σ|∆1 “ ´γ1 et σ|∆2 “ γ2. c’est-à-dire un 2-simplexe singulier dont les
faces sont γ0, γ1, γ2. Enfin, dire que γ0 ¨ γ´1

1 ¨ γ2 est trivial est équivalent à dire que
γ1 „t0,1u γ2 ¨ γ0. ■

Lemme 4.3.8 Soit X un espace topologique et γ, γ1 des chemins dans X. Alors,
1. si γ et γ1 sont composables, alors γ ¨ γ1 ” γ ` γ1 mod B1pXq,
2. si γ „t0,1u γ

1, alors γ ” γ1 mod B1pXq.

Démonstration. On désigne par c P C1pXq{B1pXq la classe de c P C1pXq. La première
condition de la proposition 4.3.7 s’écrit Dσ P C2pXq, γ0 ´ γ1 ` γ2 “ d2σ, ce qui est
équivalent à γ1 “ γ0 ` γ2. Les deux assertions en résultent. Tout d’abord, si γ et γ1

sont composables, on aura trivialement γ ¨γ1 „t0,1u γ ¨γ1 et donc γ ¨ γ1 “ γ`γ1. Ensuite,
si γ „t0,1u γ

1 et si y désigne le point final, on remarque d’abord que 1y „t0,1u 1y ¨ 1y,
et on aura donc 1y “ 1y ` 1y si bien que 1y “ 0. Puisque γ „t0,1u γ

1 ¨ 1y, on aura
donc γ “ γ1 ` 1y “ γ1. ■

Théoreme 4.3.9 — Hurewicz. SiX est connexe par arcs et x P X, alors π1pX, xqab »
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H1pXq.

Démonstration. Si γ est un lacet en x, alors d1pγq “ x ´ x “ 0 et donc γ P Z1pXq.
En utilisant le lemme (4.3.8), on obtient un morphisme de groupes

Φ : π1pX, xq Ñ H1pXq, rγs ÞÑ γ. (4.2)

Puisque H1pXq est abélien, Φ se factorise par un morphisme de groupes abéliens

ϕ : π1pX, xq
ab

Ñ H1pXq, rγs ÞÑ γ.

Réciproquement, on choisit pour tout y P X, un chemin δy : x „ y. Si γ : y „ z
dans X, on pose (uniquement dans cette démonstration) pγ “ δyγδ

´1
z . Ceci définit

une application

S1pXq Ñ π1pX, xq, γ ÞÑ rpγs.

L’application composée

S1pXq Ñ π1pX, xq Ñ π1pX, xq
ab

se prolonge alors de manière unique en un morphisme de groupes

Ψ : C1pXq Ñ π1pX, xq
ab, γ ÞÑ rpγs

Soit σ un 2-simplexe et γ0, γ1, γ2 ses faces. Il résulte du lemme 4.3.7 que γ0 ¨γ´1
1 ¨γ2 est

trivial. Si on désigne par x0, x1, x2 les sommets du 2-simplexe et qu’on écrit δi :“ δxi ,
on voit donc que

pγ0 ¨ pγ´1
1 pγ2 “ δ1 ¨ γ0 ¨ δ´1

2 ¨ δ2 ¨ γ´1
1 ¨ δ´1

0 ¨ δ0 ¨ γ2 ¨ δ´1
1 “ δ1 ¨ pγ0 ¨ γ´1

1 γ2q ¨ δ´1
1

est aussi trivial. Il suit que pΨ ˝ d2qpσq “ r1xs et Ψ induit donc un morphisme

ψ : H1pXq Ñ π1pX, xq
ab,

ÿ

aiγi ÞÑ
ź

rpγisai

Par construction, si γ est un lacet en x, on a pψ˝ϕqprγsq “ rγs. Pour la réciproque,
on rapelle d’abord que l’application x ÞÑ δx se prolonge de manière unique en un
morphisme de groupes

C0pXq Ñ C1pXq, s “

n
ÿ

i“1

aixi ÞÑ δs :“
n

ÿ

i“1

aiδxi .

Si γ est un chemin dans X, on a

pϕ ˝ Ψqpγq “ δγp0q ` γ ´ δγp1q.

On en déduit que si c “
řn
i aiγi P Z1pXq, on aura

pϕ ˝ ψqpcq “

n
ÿ

i“1

ai
`

δγip0q ` γi ´ δγip1q

˘

“ c ` δd1pcq “ c. ■
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Exemples 1. On a H1pBnq “ 0 pour tout n P N.
2. On a H1pSnq “ 0 pour n ‰ 1 et H1pSq » Z.
3. On a H1pPnq “ Z{2Z pour n ě 2 et H1pPq » Z.
4. On a H1pTnq » Zn pour tout n P N.
5. On a H1pS _ Sq » Z2.

Remarques 1. On a toujours H1pX ˆ Y q » H1pXq ‘ H1pY q.
2. Si X est simplement connexe, alors H1pXq “ 0.
3. Si G est un groupe topologique connexe par arcs, alors H1pGq “ π1pG, 1q. En

particulier, G est simplement connexe si et seulement si H1pGq “ 0.
4. Soient X un espace topologique et X1, X2 Ă X tels que X “ X̊1 Y X̊2. Si
X,X1, X1 X X2 sont connexe par arcs, on a une suite exacte

H1pX1 X X2q Ñ H1pX1q ‘ H1pX2q Ñ H1pXq Ñ 0.

On généralisera ça dans le theorème 4.4.7.
5. Soient, pour i “ 1, 2, pXi, xiq un espace pointé connexe par arcs tel que xi soit

un rétract par déformation d’un ouvert de Xi. Alors,

H1pX1 _ X2q » H1pX1q ‘ H1pX2q

On généralisera ça dans l’exercice 4.11
6. Si un groupe G agit de manière proprement discontinue sur un espace topolo-

gique X connexe par arcs, on a une suite exacte (à droite)

H1pXq Ñ H1pX{Gq Ñ Gab
Ñ 0.

7. Si 1 Ñ G1 Ñ G Ñ G2 Ñ 1 est une suite exacte courte stricte de groupes
topologiques avec G1 discret et G connexe par arcs, on a une suite exacte
courte :

0 Ñ H1pGq Ñ H1pG
2
q Ñ H0pG

1
q Ñ 0.

Et même une suite exacte longue

H1pG
1
q Ñ H1pGq Ñ H1pG2

q Ñ H0pG
1
q Ñ H0pGq Ñ H0pG

2
q Ñ 0.

4.4 Homologie singulière (suite)
Avant de construire la suite de Mayer-Vietoris, on va d’abord montrer que

l’homotopie topologique entraine l’homotopie algébrique. Nous aurons besoin du
résultat technique suivant sur les prismes :

Lemme 4.4.1 On pose pour 0 ď i ď n, vi “ pei, 0q, wi :“ pei, 1q P |∆n| ˆ r0, 1s et
pour n P N,

pn :“
n

ÿ

i“0

p´1q
i
rv0, . . . , vi, wi, . . . , wns P Cn`1p|∆n

| ˆ r0, 1sq
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Alors, pour tout n P N,

dn`1ppnq `

n
ÿ

j“0

p´1q
j`1

pδnj ˆ Idr0,1sq˚ppn´1q “ rw0, . . . , wns ´ rv0, . . . , vns.

Démonstration. On a d’une part

dn`1ppnq “

n
ÿ

i“0

p´1q
idn`1prv0, . . . , vi, wi, . . . , wnsq

“

n
ÿ

i“0

p´1q
i
n`1
ÿ

j“0

p´1q
jdjn`1prv0, . . . , vi, wi, . . . , wnsq

“
ÿ

0ďjďiďn

p´1q
i`j

rv0, . . . , pvj, . . . vi, wi, . . . , wns

´

n
ÿ

0ďiďjďn

p´1q
i`j

rv0, . . . vi, wi, . . .xwj, . . . , wns.

et d’autre part

n
ÿ

j“0

p´1q
j`1

pδnj ˆ Idr0,1sq˚ppn´1q

“

n
ÿ

j“0

p´1q
j`1

pδnj ˆ Idr0,1sq˚

˜

n´1
ÿ

i“0

p´1q
i
rv0, . . . , vi, wi, . . . , wn´1s

¸

“

n
ÿ

j“0

n´1
ÿ

i“0

p´1q
i`j`1

pδnj ˆ Idr0,1sq ˝ rv0, . . . , vi, wi, . . . , wn´1s

“
ÿ

0ďjďiďn´1

p´1q
i`j`1

rv0, . . . , pvj, . . . vi`1, wi`1, . . . , wns

`
ÿ

0ďiăjďn

p´1q
i`j`1

rv0, . . . , vi, wi, . . .xwj, . . . , wns

“
ÿ

0ďjăiďn

p´1q
i`j

rv0, . . . , pvj, . . . vi, wi, . . . , wns

´
ÿ

0ďiăjďn

p´1q
i`j

rv0, . . . , vi, wi, . . . ,xwj, . . . , wns

On a donc

dn`1ppnq `

n
ÿ

j“0

p´1q
j`1

pδnj ˆ Idr0,1sq˚ppn´1q

“

n
ÿ

i“0

prv0, . . . , pvi, wi, . . . , wns ´ rv0, . . . , vi, pwi, . . . , wnsq

“ rw0, . . . , wns ´ rv0, . . . , vns. ■
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Théoreme 4.4.2 Si f „ g : X Ñ Y , alors f˚ „ g˚ : CpXq Ñ CpY q.

Démonstration. Soit h : X ˆ r0, 1s Ñ Y une homotopie entre f et g. Si σ P SnpXq,
on considère l’application composée

hσ : |∆n
| ˆ r0, 1s

σˆIdr0,1s

ÝÑ X ˆ r0, 1s
h

ÝÑ Y.

Avec les notations du lemme 4.4.1, il existe un unique morphisme de groupes

Pn : CnpXq Ñ Cn`1pY q, σ ÞÑ hσ˚ppnq

et nous allons montrer que ça définit une homotopie entre f˚ et g˚. On aura hσpviq “

fpσpeiqq et hσpwiq “ gpσpeiqq si bien que

hσ˚prv0, . . . , vnsq “ f˚pσq et hσ˚prw0, . . . , wnsq “ g˚pσq.

On calcule ensuite

Pn´1pdnpσqq “ ph ˝ pdnpσq ˆ Idr0,1sqq˚ppn´1q

“ h˚

˜

n
ÿ

j“0

p´1q
j
pdjnpσq ˆ Idr0,1sq˚ppn´1q

¸

“ h˚

˜

n
ÿ

j“0

p´1q
j
ppσ ˝ δnj q ˆ Idr0,1sq˚ppn´1q

¸

“ ph ˝ pσ ˆ Idr0,1sqq˚

˜

n
ÿ

j“0

p´1q
j
pδnj ˆ Idr0,1sq˚ppn´1q

¸

“ hσ˚

˜

n
ÿ

j“0

p´1q
j
pδnj ˆ Idr0,1sq˚ppn´1q

¸

.

On déduit alors du lemme 4.4.1 que

pdn`1 ˝ Pn ´ Pn´1 ˝ dnqpσq “

“ dn`1phσ˚ppnqq ´ Pn´1pdnpσqq

“ hσ˚pdn`1ppnqq ´ hσ˚

˜

n
ÿ

j“0

p´1q
j
pδnj ˆ Idr0,1sq˚ppn´1q

¸

.

“ hσ˚

˜

dn`1ppnq `

n
ÿ

j“0

p´1q
j`1

pδnj ˆ Idr0,1sq˚ppn´1q

¸

“ hσ˚prw0, . . . , wns ´ rv0, . . . , vnsq

“ pgn˚ ´ fn˚qpσq. ■

Corollaire 4.4.3 1. Si f „ g : X Ñ Y , alors

Hnpfq “ Hnpgq : HnpXq Ñ HnpY q

pour tout n P N.
2. Si X „ Y , alors CpXq „ CpY q et HnpXq » HnpY q pour tout n P N.



4.4 Homologie singulière (suite) 111

3. Un espace contractile est acyclique. ■

Remarques 1. Si f „ g, on a aussi f˚ „ g˚ : rCpXq Ñ rCpY q et rHnpfq “ rHnpgq.
2. De même, si X „ Y , alors rCpXq „ rCpY q et rHnpXq » rHnpY q.

Pour la suite, nous aurons besoin de la notion de subdivision barycentrique. Si
s P Sn`1 est une permutation, alors le n-simplexe singulier Bars de ∆n est défini par

Barspekq “ Barpsp0q, . . . , spkqq

(barycentre). On pourra faire un dessin pour n “ 2.

Lemme 4.4.4 Si X est un espace topologique, alors l’application

Subn : CnpXq Ñ CnpXq, σ ÞÑ
ÿ

sPSn`1

p´1q
s
pBars ˝ σq

définit un endomorphisme du complexe de chaînes CpXq et IdCpXq „ Sub.

Démonstration. On vérifie aisément que c’est bien un endomorphisme de CpXq.
On construit ensuite par récurrence sur n, pour tout espace topologique X, des
morphismes hn : CnpXq Ñ Cn`1pXq tels que dn`1 ˝ hn ` hn´1 ˝ dn “ Id ´ Subn en
partant de h0 “ 0. On aura alors

dn`1 ˝ phn ˝ dn`1 ´ Id`Subn`1q “ phn ˝ dn`1 `hn´1 ˝ dn ´ Id`Subnq ˝ dn`1 “ 0.

En appliquant ça à la n ` 1-chaîne re0, . . . , en`1s de ∆n`1, on aura

dn`1pphn ˝ dn`1 ´ Id ` Subn`1qpre0, . . . , en`1sqq “ 0.

Puisque ∆n`1 est contractile, il est acyclique, et il existe donc cn`2 P Cn`2p∆
n`1q tel

que

phn ˝ dn`1 ´ Id ` Subn`1qpre0, . . . , en`1sq “ dn`2pcn`2q.

Il suffit alors de poser hn`1pσq “ σ˚pcn`2q pour σ P Sn`1pXq et de vérifier que

dn`2 ˝ hn`1 ` hn ˝ dn`1 “ Id ´ Subn`1. ■

Définition 4.4.5 Si X “
Ť

iPI X̊i, alors X “ tXiuiPI est un recouvrement de X.

On pose alors SnpX q “
Ť

iPI SnpXiq Ă SnpXq et CpX q :“ CpSpX qq.

Théoreme 4.4.6 — des petites chaînes. Si X est un recouvrement de X, alors
l’inclusion est un quasi-isomorphisme CpX q » CpXq.

Démonstration. Il résulte de la compacité de |∆n| que

@c P CnpXq, Dr P N, Subrnpcq P CnpX q.
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En particulier, si c P ZnpXq, alors il existe r P N tel que c1 :“ Subrnpcq P CnpX q.
On a alors c1 P ZnpX q et aussi c ” c1 mod BnpXq grâce au lemme 4.4.4. Cela
implique que HnpX q Ñ HnpXq est surjective. De même si c P ZnpX q et c ” 0
mod BnpXq, alors il existe c1 P CnpXq tel que c “ dn`1pc

1q. Il existe alors r P N tel
que c2 :“ Subrn`1pc

1q P Cn`1pX q et on a

dn`1pc
2
q “ dn`1pSub

r
n`1pc

1
qq “ Subrn`1pdn`1pc

1
qq “ Subrnpcq ” c mod BnpX q.

Cela montre que HnpX q Ñ HnpXq est injective. ■

On construit maintenant la suite de Mayer-Vietoris :

Théoreme 4.4.7 Soit X un espace topologique et X1, X2 Ă X tels que X “ X̊1YX̊2.
On a alors une suite exacte longue

¨ ¨ ¨ Ñ HnpX1 XX2q Ñ HnpX1q ‘ HnpX2q Ñ HnpXq Ñ Hn´1pX1 XX2q Ñ ¨ ¨ ¨

Démonstration. On a

SnpX1 X X2q “ SnpX1q X SnpX2q et SnptX1, X2uq “ SnpX1q Y SnpX2q.

On en déduit une suite exacte de complexes

0 Ñ CpX1 X X2q Ñ CpX1q ‘ CpX2q Ñ CptX1, X2uq Ñ 0.

On applique le theorème du serpent 4.1.11 et le théorème des petites chaînes 4.4.6. ■

Remarques 1. le théorème des petites chaînes est aussi valide pour les complexes
augmentés : rCpX q » rCpXq.

2. De même, la suite de Mayer-Vietoris est toujours valide pour rH.

Corollaire 4.4.8 Si n, k ě 0, alors rHkpSnq »

"

Z si k “ n
0 sinon.

Démonstration. Soit a P Sn et X˘ :“ Snzt˘au. On a X˘ » Rn et X` XX´ » Rnz0 „

Sn´1. Par récurrence, la suite de Mayer-Vietoris nous fournit un isomorphisme

rHkpSnq » rHk´1pS
n´1

q

et tout le reste est nul. ■

Remarques 1. On voit en particulier que Sn n’est pas acyclique et donc pas
contractile.

2. On voit aussi que, pour n ‰ m, Sn ȷ Sm.
3. On obtient ainsi une nouvelle démonstration du théorème 2.2.13 : puisque S

est un groupe topologique, on a π1pS, 1q “ H1pSq “ Z.

Enfin, on répond à la question de Cantor :
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Théoreme 4.4.9 — Brouwer. Soient m,n P R. Alors Rn est homéomorphe à Rm si
et seulement si n “ m.

Démonstration. Sinon, on aurait un homéomorphisme entre Rnzt0u et Rmztcu qui
ont respectivement même type d’homotopie que Sn et Sm. Contradiction. ■
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4.5 Exercices
4.5.1 Algèbre linéaire

Exercice 4.1 1. Soit 0 Ñ M 1 i
Ñ M

p
Ñ M2 Ñ 0 une suite exacte courte de

groupes abéliens. Montrer que les conditions suivantes sont équivalentes :
(a) il existe une section (un morphisme s :M2 Ñ M telle que p˝s “ IdM2),
(b) il existe une rétraction (un morphisme r : M Ñ M 1 telle que r ˝ i “

IdM 1),
et qu’alors IdM “ i ˝ r ` s ˝ p.

2. On dit alors que la suite est scindée. Montrer que, dans ce cas, M » M 1 ‘M2.
3. Montrer que si M2 est libre alors la suite est toujours scindée.
4. Montrer que si M 1 est un Q-espace vectoriel, alors la suite est toujours

scindée.
5. Montrer que la suite 0 Ñ Z 2

Ñ Z Ñ Z{2Z Ñ 0 est une suite exacte courte
qui n’est pas scindée.

Solution. 1. Supposons pour commencer qu’il existe une section s. Alors, si
x P M , on a ppx ´ spppxqqq “ 0 et il existe donc un unique x1 P M 1 tel que
iprpxqq “ x´ spppxqq et on pose rpxq “ x1. On peut remarquer d’ores et déjà
que IdM “ i ˝ r` s ˝ p. Montrons que r est un morphisme de groupes. Si y P M ,
on aura

iprpxq ` rpyqq “ iprpxqq ` iprpyqq “ x ´ spppxqq ` y ´ spppyqq

“ x ` y ´ spppx ` yqq “ iprpx ` yqq.

Puisque i est injective, cela montre que rpx ` yq “ rpxq ` rpyq. De plus, si
x1 P M 1, on a ppipx1qq “ 0 et donc ipx1q ´ spppipx1qqq “ ipx1q si bien que
rpipx1qq “ x1 et r est bien une rétraction.
Supposons maintenant qu’il existe une rétraction r. Si x P M2, alors il existe x P

M tel que ppxq “ x2. On pose alors spx2q “ x´iprpxqq. Il faut montrer que ça ne
dépend pas du choix de x. Mais si ppyq “ x2, alors pppy´irpyqq´px´irpxqqq “ 0.
Il existe donc z1 P M 1 tel que py ´ irpyqq ´ px ´ irpxqq “ ipz1q. On aura alors
z1 “ rpipz1qq “ rpy´ irpyqq ´ rpx´ irpxqq “ 0 si bien que y´ irpyq “ x´ irpxq.
Il faut ensuite montrer que c’est un morphisme de groupes. On se donne donc
x, y P M tels que ppxq “ x2 et ppyq “ y2. On aura alors ppx ` yq “ x2 ` y2 et

spx2
q ` spy2

q “ x´ iprpxqq ` y´ iprpyqq “ px` yq ` irpx` yq “ spx2
` y2

q.

Enfin, si ppxq “ x2 P M2, on aura bien ppspx2qq “ ppx ´ iprpxqqq “ ppxq “ x2

et s est bien une section.
2. On en déduit des isomorphismes réciproques M Ñ M 1 ‘ M2, x ÞÑ prpxq, ppxqq

et M 1 ‘ M2 Ñ M, px1, x2q ÞÑ ipx1q ` spx2q. Vérifier.
3. Si B “ peiqiPI est une base de M2, il suffit de poser speiq “ xi avec ppxiq “ ei.
4. On a alors M 1 “ M 1

Q et l’application linéaire injective iQ :M 1
Q ãÑ MQ possède

une rétraction linéaire f que l’on peut composer avec le morphisme M Ñ MQ.
5. L’unique morphisme s : Z{2Z Ñ Z est le morphisme nul. ■
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Exercice 4.2 Calculer dans chaque cas l’homologie du complexe et vérifier le
théorème du rang :

1. Ze 0
Ñ Zv (concentré en degrés 0 et 1),

2. Zσ ‘ Zτ d
Ñ Za‘ Zb‘ Zc 0

Ñ Zv avec dpσq “ dpτq “ a´ c` b (concentré en
degrés 0 et 1 et 2).

Solution. 1. On a H0 » H1 » Z et Hn “ 0 sinon. On a bien 1 ´ 1 “ 0 “ 1 ´ 1.
2. On a H0 » H2 » Z, H1 » Z2 et 0 sinon. Pour le H1, on pourra remarquer que
B1 est facteur direct (avec section a ÞÑ a ´ c ` b, b ÞÑ 0, c ÞÑ 0 par exemple).
On a bien 1 ´ 3 ` 2 “ 0 “ 1 ´ 2 ` 1. ■

Exercice 4.3 1. Montrer que si f „ g : C Ñ C 1, alors, pour tout n P N,
Hnpfq “ Hnpgq.

2. En déduire que si f : C „ C 1 est une équivalence d’homotopie, alors f est
un quasi-isomorphisme.

Solution. 1. Il suffit de remarquer que si c P ZnpCq, alors

gnpcq ´ fnpcq “ pdn`1 ˝ hnqpcq ´ phn´1 ˝ dnqpcq “ dn`1phnpcqq P BnpC 1
q.

2. Cela résulte de la fonctorialité de l’homologie. ■

Exercice 4.4 Montrer le lemme du serpent : Si

0 //M 1 i //

f 1

��

M
p //

f
��

M2 //

f2

��

0

0 // N 1 j // N
q // N2 // 0

est un diagramme commutatif à lignes exactes, alors il existe une suite exacte

0 Ñ ker f 1
Ñ ker f Ñ ker f2

Ñ coker f 1
Ñ coker f Ñ coker f2

Ñ 0.

Solution. Il suffit de considérer le complexe

C :“ ¨ ¨ ¨ Ñ 0 Ñ M
d1
Ñ N Ñ 0 ¨ ¨ ¨

avec d1 “ f et les complexes analogues C 1 et C2. On a alors H0pCq “ coker f ,
H1pCq “ ker f et HnpCq “ 0 sinon. De même pour C 1 et C2. On applique alors
le théorème du serpent. On peut aussi le refaire à la main, ce qui est un très bon
exercice. ■

Exercice 4.5 Montrer que si

0 // C 1 i //

f 1

��

C
p //

f
��

C2 //

f2

��

0

0 // D1 j // D
q // D2 // 0
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est un morphisme de suites exactes courtes de complexes, alors le diagramme

¨ ¨ ¨ // HnpCq //

��

HnpC2q
δn //

��

Hn´1pC
1q //

��

Hn´1pCq //

��

¨ ¨ ¨

¨ ¨ ¨ // HnpDq // HnpD2q
δn // Hn´1pD

1q // Hn´1pDq // ¨ ¨ ¨

est commutatif.
Solution. Les carrés extérieurs sont commutatifs par fonctorialité et il reste à traiter
celui du milieu. On rappelle que, pour c2 P ZnpC2q,

δnpc2
q “ c1

ô Dc P Cn, c
2

“ pnpcq et dnpcq “ in´1pc
1
q

ô @c P Cn, c
2

“ pnpcq et dnpcq “ in´1pc1
q,

et on a

Hn´1pf
1
n´1qpδnpc2

qq “ f 1
n´1pc

1q.

Mais on aura aussi

f2
npc2

q “ f2
nppnpcqq “ qnpfnpcqq

et

dnpfnpcqq “ fn´1pdnpcqq “ fn´1pin´1pc1
qq “ jn´1pf

1
n´1pc

1
qq.

Cela montre qu’on a

δn
`

Hn´1pf 1
n´1qpc2

q
˘

“ δnpf 1
n´1pc2qq “ f 1

n´1pc1q. ■

4.5.2 Ensemble semi-simplicial

Exercice 4.6 1. Représenter |∆n| pour n “ 0, 1, 2, 3.
2. Quel est le nombre de faces de dimensions k dans |∆n| ?
3. Montrer que |∆n| » Bn et que B|∆n| » Sn´1.

Solution. 1. On trouve respectivement un point, un segment, un triangle (plein),
un tétraèdre (plein).

2. On a
`

n`1
k`1

˘

faces de dimensions k dans |∆n|.
3. On peut utiliser l’exercice 1.3 puisque |∆n| est un convexe compact de dimension
n. ■

Exercice 4.7 1. Montrer qu’il existe une unique structure d’ensemble semi-
simplicial telle que S0 “ tvu, S1 “ teu et Sn “ H pour n ě 2. Calculer
HnpSq. Vérifier la formule d’Euler-Poincaré.

2. On pose S0 “ tvu, S1 “ ta, b, cu, S2 “ tσ, τu et

d20pσq “ b, d21pσq “ c, d22pσq “ a et d20pτq “ a, d21pτq “ c, d22pτq “ b.

Calculer HnpSq. Vérifier la formule d’Euler-Poincaré.
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Solution. 1. Il existe une unique application d0 “ d1 : S1 Ñ S0, e ÞÑ v et seulement
l’application H : Sn Ñ Sn´1 pour n ě 2. On a donc d “ d0 ´ d1 “ 0 et donc

CpSq : rZe 0
Ñ Zvs.

On a donc H0pSq » H1pSq » Z et HnpSq “ 0 sinon. La formule d’Euler-Poincaré,
c’est le théorème du rang.

2. On a

CpSq : rZσ ‘ Zτ d
Ñ Za ‘ Zb ‘ Zc 0

Ñ Zvs

avec dpσq “ dpτq “ a ´ c ` b. On a donc H0pSq » H2pSq » Z et H1pSq » Z2

(et 0 sinon). La formule d’Euler-Poincaré, c’est le théorème du rang. ■

4.5.3 Homologie singulière

Exercice 4.8 Montrer (par un calcul) qu’un point est acyclique.

Solution. Il s’agit de montrer que rHnpxq “ 0 pour tout n ą 0. On a dni “ IdZ : Z Ñ Z
et, pour n ą 0,

dn “
řn
i“0p´1qiIdZ “

"

0 si n impair
IdZ si n pair.

On doit donc calculer l’homologie du complexe

¨ ¨ ¨
0

Ñ Z
IdZ
Ñ Z 0

Ñ Z
IdZ
Ñ Z 0

Ñ Z
IdZ
Ñ Z.

Et on trouve Z{Z ou 0{0 selon les cas, c’est-à-dire 0. ■

Exercice 4.9 Soient X un espace topologique et f, f 1 P S1pXq avec d1
0pfq “

d1
0pf

1q “ y et d1
1pfq “ d1

1pf
1q “ x. On dit que σ P S2pXq est une homotopie entre

f et f 1 si d2
0pσq “ y, d2

1pσq “ f 1 et d2
2pσq “ f :

y
y

��
x

f
??

f 1
//

�� σ

y.

On considère les applications

π1 : r0, 1s Ñ ∆1, t Ñ p1´ t, tq, π2 : r0, 1s
2

Ñ ∆2, pt, sq Ñ p1´ t, p1´ sqt, tsq.

Montrer que σ est une homotopie entres f et f 1 si et seulement si h :“ σ ˝ π2 est
une homotopie à extrémités fixées entre γ :“ f ˝ π1 et γ1 :“ f 1 ˝ π1.

Solution. Les conditions pour que σ soit une homotopie s’écrivent

σp0, t0, t1q “ y, σpt0, 0, t1q “ f 1
pt0, t1q, σpt0, t1, 0q “ fpt0, t1q
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lorsque t0, t1 P R satisfont t0 ` t1 “ 1. D’autre part, les conditions pour que h soit
une homotopie à extrémité fixées sont

hpt, 0q “ γptq, hpt, 1q “ γ1
ptq, hp0, sq “ x et hp1, sq “ y.

On a

π2pt, 0q “ p1 ´ t, t, 0q, π2pt, 1q “ p1 ´ t, 0, tq

π2p0, sq “ p1, 0, 0q et π2p1, sq “ p0, 1 ´ s, sq.

Les conditions sur h s’écrivent donc

σp1 ´ t, t, 0q “ fp1 ´ t, tq, σp1 ´ t, 0, tq “ f 1
p1 ´ t, tq,

σp1, 0, 0q “ x et σp0, 1 ´ s, sq “ y

pour t P r0, 1s. C’est bien la même chose que ci-dessus. ■

Exercice 4.10 Soit X “ CzR.
1. Calculer HnpXq pour tout n P N.
2. On pose Y “ Xzt˘iu. Calculer HnpY q pour tout n ď 1.
3. On pose Z “ Xzt˘i,˘2iu. Calculer HnpZq pour tout n ď 1.

Solution. 1. Puisque X a deux composantes connexes par arcs X˘ (partie imagi-
naire ą 0 ou ă 0), on a

H0pXq » H0pX`q ‘ H0pX´q “ Z ‘ Z “ Z2.

Puisque X˘ est contractile, on a pour n ě 0,

HnpXq » HnpX`q ‘ HnpX´q “ 0 ‘ 0 “ 0.

2. On regarde maintenant Y` :“ X` X Y . C’est un encore un espace connexe par
arcs et on a (pour un y quelconque) π1pY`, yq » Z qui est abélien. On aura
donc

H1pY`q » π1pY`, yq
ab

» Z.

Donc, finalement H0pY q » H1pY q » Z2.
3. On traite le dernier cas de la même manière en posant Z` “ X` X Z. On sait

que (pour z quelconque) π1pZ`, zq » Z ‹ Z et donc π1pZ`, zqab » Z2. On aura
donc H0pZq » Z2 et H1pZq » Z4. ■

4.5.4 Homologie singulière (suite)

Exercice 4.11 1. Montrer que si, pour i “ 1, 2, pXi, xiq est un espace pointé
tel que xi est un rétract par déformation d’un ouvert de Xi, alors, pour tout
n P N,

rHnpX1 _ X2q » rHnpX1q ‘ rHnpX2q.

2. En déduire HnpS _ Sq.
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Solution. 1. On choisit un ouvert Ui de Xi qui se rétracte sur xi et on applique
la suite de Mayer-Vietoris à tX1 Y U2, U1 Y X2u.

2. On aura donc H0 » Z, H1 » Z2 et H0 “ 0 sinon. ■

Exercice 4.12 1. Calculer HnpSzt1uˆSq, HnpSzt´1uˆSq et HnpSzt1,´1uˆSq.
2. En déduire HnpT2q.

Solution. 1. On a Szt1u ˆ S „ S si bien que HnpSzt1u ˆ Sq » Z lorsque n “ 0
ou n “ 1 et est réduit à 0 sinon. Même chose pour HnpSzt´1u ˆ Sq. Enfin,
puisque Szt1,´1u „ ti,´iu, le même argument donne HnpSzt1,´1u ˆ Sq » Z2

pour n “ 0, 1 et 0 sinon.
2. On sait déjà que H0pXq “ Z puisque X est connexe par arcs et que H1pXq »

π1pXq » Z2. La suite de Mayer-Vietoris s’écrit donc

0 Ñ H2pT
2
q Ñ Z2

Ñ Z2
Ñ Z2

Ñ Z2
Ñ Z2

Ñ Z Ñ 0

Puisque H2pT2q est un sous-groupe d’un groupe abélien libre, c’est aussi un
groupe abélien libre. Il résulte alors du théorème du rang que H2pT2q » Z. Bien
sûr, HnpT2q “ 0 pour n ě 3. ■

Exercice 4.13 Calculer HkpPnq pour tout k P N et n ď 3. On admettra (ou on
montrera) que Pn “ X1 YX2 avec X1, X2 ouverts dans Pn, X1 » B̊n, X2 » Pnzt0u

et que l’inclusion X1 X X2 ãÑ X2 s’identifie à homotopie près avec la projection
Sn´1 Ñ Pn´1.

Solution. Puisque Pn est connexe par arcs, on aura toujours H0pPnq » Z. Puisque P0

est un point, on a HkpP0q “ 0 pour k ą 0. Puisque P est un cercle, on a H1pPq » Z
et HkpPq “ 0 pour k ‰ 0, 1. On peut donc dorénavant supposer que n ě 2 et on peut
déjà remarquer que H1pP2q “ π1pP2, xqab “ Z{2Z. On dispose en général de la suite
de Mayer-Vietoris

¨ ¨ ¨ Ñ HkpSn´1
q Ñ HkpB̊nq ‘ HkpPn´1

q Ñ HkpPnq Ñ Hk´1pS
n´1

q Ñ ¨ ¨ ¨

Dans le cas n “ 2, on aura alors une suite exacte

0 Ñ H2pP
2
q Ñ Z Ñ Z Ñ Z{2Z Ñ 0

qui implique que H2pP2q » 0 (groupe abélien libre de rang 0) ainsi que des égalités
HkpP2q “ 0 pour k ě 3. Pour n ě 2, on aura une suite exacte longue

0 Ñ HnpPn´1
q Ñ HnpPnq Ñ Z Ñ Hn´1pP

n´1
q Ñ Hn´1pP

n
q Ñ 0

et, pour k ‰ 0, n´ 1, n, des isomorphismes HkpPn´1q » HkpPnq. On en déduit alors
que HkpP3q “ 0 pour k ě 4, H3pP3q “ Z, H2pP3q “ 0, H1pP3q » Z{2Z et H0pP3q » Z.

Pour traiter le cas n ě 4, il faudrait étudier l’application HnpSnq Ñ HnpPnq

(l’identifier à Z Ñ 0 si n pair et Z 2
Ñ Z si n impair). ■
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Exercice 4.14 Montrer que pour deux espaces vectoriels normés de dimension
finie, les conditions suivantes sont équivalentes :

1. être isomorphes,
2. être homéomorphes,
3. avoir même type d’homotopie,
4. avoir même dimension.
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