

Homological algebra
Homework (due December 10th)

You can compose in english or in french. You can freely (no need to make a precise reference) use any result (exercises included) obtained prior to the statement of the exercise in the (online) course.

1. Show that a complex $[M \xrightarrow{\text{Id}} M]$ is always contractible but the complex of abelian groups

$$\cdots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0 \rightarrow \cdots$$

is not.

Solution: For the complex $[M \xrightarrow{\text{Id}} M]$, we have by definition $d_0 = \text{Id}_M$ and $d_n = 0$ otherwise. Moreover, if we denote by f the identity of this complex, then we have $f_0 = f_1 = \text{Id}_M$ and $f_n = 0$ otherwise. Now, we set $s_1 := \text{Id}_M$ and $s_n = 0$ otherwise. Since $f_0 = s_1 \circ d_0$ and $f_1 = d_0 \circ s_1$, we have

$$\forall n \in \mathbb{Z}, \quad f_n = s_{n+1} \circ d_n + d_{n-1} \circ s_n.$$

It means that there exists a homotopy $\text{Id}_M \simeq 0_M$ showing that M is trivial in the homotopy category or, equivalently, contractible.

Now, if the complex $\cdots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0 \rightarrow \cdots$ were contractible, there would then exist a homotopy between the identity and the zero map. Since the only morphism $\mathbb{Z}/2\mathbb{Z} \rightarrow \mathbb{Z}$ is the zero map, there would exist a morphism $s : \mathbb{Z} \rightarrow \mathbb{Z}$ such that $\text{Id}_{\mathbb{Z}} = d \circ s$ where d is multiplication by 2. This cannot happen.

2. Show that, in an abelian category, if

$$\begin{array}{ccccccc} K^\bullet & \longrightarrow & L^\bullet & \longrightarrow & M^\bullet & \longrightarrow & K^\bullet[1] \\ \downarrow u & & \downarrow v & & \downarrow w & & \downarrow u[1] \\ K'^\bullet & \longrightarrow & L'^\bullet & \longrightarrow & M'^\bullet & \longrightarrow & K'^\bullet[1] \end{array}$$

is a morphism of distinguished triangles and two among u , v and w are quasi-isomorphisms, then so is the third (and idem with a short exact sequences).

Solution: In both cases, there exists a morphism of long exact sequences

$$\begin{array}{ccccccccccc} \cdots & \longrightarrow & H^n(K^\bullet) & \longrightarrow & H^n(L^\bullet) & \longrightarrow & H^n(M^\bullet) & \longrightarrow & H^{n+1}(K^\bullet) & \longrightarrow & \cdots \\ & & \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\ \cdots & \longrightarrow & H^n(K'^\bullet) & \longrightarrow & H^n(L'^\bullet) & \longrightarrow & H^n(M'^\bullet) & \longrightarrow & H^{n+1}(K'^\bullet) & \longrightarrow & \cdots \end{array}$$

Any vertical morphism which is not an isomorphism by hypothesis is surrounded by two isomorphisms. It then follows from the five-lemma that this is actually also an isomorphism.

3. Assume that a functor $F : \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories is adjoint to a functor $G : \mathcal{B} \rightarrow \mathcal{A}$. Show that (and dual)

1. if F is exact then G preserves injectives,
2. if F is faithful exact and \mathcal{B} has enough injectives, then \mathcal{A} too has enough injectives.

Solution: We have an adjunction $\text{Hom}(FM, I) \simeq \text{Hom}(M, GI)$ showing that $h_{GI} = h_I \circ F$ is exact when I is injective and F is exact. It means that GI will be injective too.

If $M \in \mathcal{A}$, then there exists a monomorphism $FM \rightarrow I$ with I injective. Since G has an adjoint, it preserves all limits and we have a monomorphism $GFM \rightarrow GI$. If F is faithful, then the unit also is a monomorphism $M \rightarrow GFM$. By composition, we obtain a monomorphism $M \rightarrow GI$. To conclude, it is sufficient to recall what we just proved: GI is injective since F is exact.

By duality, if G is exact then F preserves projectives and if G is also faithful and \mathcal{A} has enough projectives, then \mathcal{B} too has enough projectives.

4. Show that $\text{Ext}^1(M, N) \simeq \text{Ext}(M, N)$ in an abelian category \mathcal{A} with enough injectives or projectives.

Solution: By duality, we may assume that there are enough injectives. Then, there exists a short exact sequence

$$0 \rightarrow N \rightarrow I \xrightarrow{\pi} C \rightarrow 0$$

with I injective. We know that $\text{Ext}^1(M, I) = \text{Ext}(M, I) = 0$. There exists therefore two right exact sequences

$$\text{Hom}(M, I) \xrightarrow{\pi^*} \text{Hom}(M, C) \rightarrow \text{Ext}(M, N) \rightarrow 0$$

and

$$\text{Hom}(M, I) \xrightarrow{\pi^*} \text{Hom}(M, C) \rightarrow \text{Ext}^1(M, N) \rightarrow 0$$

implying the expected identification.

There also exists an unconditional proof by showing directly that the map

$$\text{Ext}(M, N) \rightarrow \text{Ext}^1(M, N), \quad E \mapsto \begin{pmatrix} [N \rightarrow E][1] \\ \downarrow \text{q-is} \\ M \end{pmatrix} \rightarrow N[1]$$

is an isomorphism of groups. Details are left to the reader but surjectivity is proved as follows: a quasi-isomorphism $K^\bullet \rightarrow M$ provides an extension $0 \rightarrow B^0 \rightarrow Z^0 \rightarrow M \rightarrow 0$, a morphism $K^\bullet \rightarrow N[1]$ provides a morphism $\phi : B^0 \rightarrow N$ and we can then set $E = \varphi_* Z^0$.

It is also possible to mix both approaches by sending E to the image of Id_M under the connecting map $\text{Hom}(M, M) \rightarrow \text{Ext}^1(M, N)$ coming from E .

5. Assume G is a group and $k = \mathbb{Z}$. Compute $H^1(G, M)$ when

1. the action of G on M is trivial,
2. $M = \mathbb{Z}$ with the non-trivial action of $\mu_2 := \{1, -1\}$.

Solution: If the action of G on M is trivial, then

$$\begin{aligned} Z(G, M) &= \{f : G \rightarrow M \mid \forall g, h \in G, f(gh) = f(g) + f(h)\} = \text{Hom}_{\text{Grp}}(G, M) \\ \text{and } B(G, M) &:= \{f : G \rightarrow M, g \mapsto 0\} = 0 \end{aligned}$$

so that

$$H^1(G, M) \simeq Z(G, M)/B(G, M) = \text{Hom}_{\text{Grp}}(G, M).$$

If μ_2 acts non-trivially on \mathbb{Z} , then a crossed morphism is a map $f : \mu_2 \rightarrow \mathbb{Z}$ satisfying

$$\begin{aligned} f(1) &= f(1) + f(1) & f(-1) &= f(1) + f(-1), \\ f(-1) &= f(-1) - f(1), & f(1) &= f(-1) - f(-1). \end{aligned}$$

This blows down to $f(1) = 0$ and there exists therefore an isomorphism

$$Z(\mu_2, \mathbb{Z}) \simeq \mathbb{Z}, \quad f \mapsto f(-1).$$

A crossed homomorphism is principal if and only if there exists $n \in \mathbb{Z}$ such that $f(-1) = -2n$ so that

$$B(\mu_2, \mathbb{Z}) \simeq 2\mathbb{Z}, \quad f \mapsto f(-1)$$

and finally $H^1(\mu_2, \mathbb{Z}) \simeq Z(\mu_2, \mathbb{Z})/B(\mu_2, \mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z}$.

6. Show that

$$\text{Tor}_k(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \simeq \begin{cases} \mathbb{Z}/d\mathbb{Z} & \text{if } k = 0, 1 \\ 0 & \text{otherwise} \end{cases}$$

with $d = m \wedge n$ (for $m, n \geq 1$).

Solution: Recall first that $\text{Tor}_k(\mathbb{Z}, M) = 0$ for $k \neq 0$ and $\text{Tor}_0(\mathbb{Z}, M) = \mathbb{Z} \otimes M \simeq M$. Then the short exact sequence

$$0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \rightarrow 0$$

provides an exact sequence

$$0 \rightarrow \text{Tor}_1(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \rightarrow \mathbb{Z}/n\mathbb{Z} \xrightarrow{m} \mathbb{Z}/n\mathbb{Z} \rightarrow \text{Tor}_0(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \rightarrow 0$$

and $\text{Tor}_k(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) = 0$ for $k \neq 0, 1$. It is therefore sufficient to recall the exact sequence

$$0 \rightarrow \mathbb{Z}/d\mathbb{Z} \xrightarrow{n'} \mathbb{Z}/n\mathbb{Z} \xrightarrow{m} \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/d\mathbb{Z} \rightarrow 0$$

where $n = dn'$. Alternatively, one can compute directly the homology of the complex

$$\mathbb{Z}/n\mathbb{Z} \otimes^L \mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/n\mathbb{Z} \otimes [\mathbb{Z} \xrightarrow{m} \mathbb{Z}][1] \simeq [\mathbb{Z}/n\mathbb{Z} \xrightarrow{m} \mathbb{Z}/n\mathbb{Z}][1].$$