p-adic confluence and twisted differential operators - ioint work with Adolfo Quirós -

joint work with Adolfo Quirós –(Oxford – 2017)

Bernard Le Stum

Université de Rennes 1

February 28, 2018

Contents

Introduction

The stragegy

Twisted differential operators

 η -convergence

Confluence

A result from André-Di Vizio

Let us denote by \mathcal{R} the Robba ring over a p-adic field K. Then, the tannakian formalism provides an equivalence (André using Christol-Mebkhout)

$$\{(F)-\text{differential equations over }\mathcal{R}\}\simeq \mathrm{Rep}(\mathbb{G}_a\times \mathrm{Gal}).$$

André and Di Visio showed that the same methods lead to

$$\{(F)-q-\text{difference equations over }\mathcal{R}\}\simeq \mathrm{Rep}(\mathbb{G}_\mathrm{a}\times \mathrm{Gal}).$$

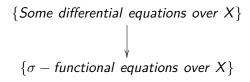
As a consequence, they obtain an equivalence ([AD04]):

$$\{(F) - differential \ equations \ over \ \mathcal{R}\}$$

$$\downarrow^{\simeq}$$
 $\{(F) - q - difference \ equations \ over \ \mathcal{R}\}.$

The approach of Pulita

Now, we let X be a curve over the p-adic field K endowed with an endomorphism σ . Then, Pulita builds in [Pul17] a functor



that extends somehow the correspondence of André-Di Visio. Actually, if x is a local parameter and $\sigma(x)=qx$, then there exists an equivalence

$$\{q-difference\ equations\}$$

$$\downarrow^{\simeq} \{\sigma-Functional\ equations\}.$$

Our explicit construction

Assume A is the ring of functions on an annulus $r_1 \le |x| \le r$. Call a differential A-module M $\eta\dagger$ -convergent if

$$\forall \eta' < \eta, \forall s \in M, \quad \lim_{k \to \infty} \frac{\eta'^k}{|k!|} |\partial_M^k(s)| = 0.$$

Assume that $q \in K$ is not a root of unity and $|1 - q|r < \eta \le r_1$.

Theorem (LS-Quirós)

There exists a fully faithful functor (here $\sigma(x) = qx$)

$$\{\eta \dagger - convergent \ (M, \partial_M)\} \rightarrow \{\sigma - module \ (M, \sigma_M)\}$$

given by

$$\sigma_M(s) = \sum_{k=0}^{\infty} \frac{(q-1)^k x^k}{k!} \partial_M^k(s) \quad (\sigma_M = q^{x \partial_M}).$$

An example (or two)

Example

1. From the differential equation y' - cy = 0, we get the functional equation

$$y(qx) = \exp((q-1)cx)y(x).$$

They both have the same solution $y = \exp(cx)$.

2. From the differential equation xy' - ay = 0, we obtain the functional equation

$$y(qx)=q^ay(x).$$

They both have the same solution $y = x^a$

3. More generally, any differential equation y' = a(x)y will give rise to a functional equation f(qx) = b(x)f(x) with the same (formal) solution.

Settings

We let K be an ultrametric field, R an affinoid K-algebra and A a twisted affinoid R-algebra: an affinoid R-algebra endowed with an endomorphism σ .

Example (Running)

K p-adic field,
$$R = K$$
, $A = K\{x/r, r_1/x\}$, $\sigma(x) = qx$, $\frac{r_1}{r} \le |q| \le 1$.

A twisted derivation $\partial_{A,\sigma}$ on A is an R-linear map such that

$$\forall f, g \in A, \partial_{A,\sigma}(fg) = f \partial_{A,\sigma}(g) + \sigma(g) \partial_{A,\sigma}(f).$$

Example (Running)

$$\partial_{A,\sigma}(x^n) = \frac{1-q^n}{1-q} x^{n-1} \quad \text{(or } \partial_{A,\sigma}(x^n) = \partial_A(x^n) = n x^{n-1} \text{ if } q = 1).$$

Twisted Weyl algebra

The *twisted Weyl algebra* of A (associated to $\partial_{A,\sigma}$) is the non-commutative R-algebra ([LQ18b])

$$D_{\sigma} := \left\{ \sum_{0 < k < < \infty} f_k \partial_{\sigma}^k, \quad f_k \in A \right\}$$

with the commutation rule $\partial_{\sigma} \circ f = \partial_{A,\sigma}(f) + \sigma(f)\partial_{\sigma}$.

Convention: If D is an A-algebra, a D-module M will always be assumed to be *finite* over A.

A σ -differential A-module is a D_{σ} -module.

We will also need to introduce the ring $D_{\sigma}^{(\infty)}$ of twisted differential operators of *infinite* level (Grothendieck) ([LQ18a]) by comparison with D_{σ} which is a ring of twisted differential operators of level zero (Berthelot).

η †-convergence

If we assume that $\partial_{A,\sigma}$ is associated to a *twisted coordinate* x (see below), then there is a canonical map $D_{\sigma} \to D_{\sigma}^{(\infty)}$.

We will define η -convergence and η †-convergence for a $D_{\sigma}^{(\infty)}$ -module.

Our main result is the fact that the category of η^{\dagger} -convergent $D_{\sigma}^{(\infty)}$ -modules is essentially *independent* of the choice of σ . In particular, we may choose $\sigma = \mathrm{Id}_A$ as well (and drop σ from the notations).

Example (Running)

If q not a root of unity and and $|1-q|r<\eta\leq r_1$, then there exists an equivalence between $\eta\dagger$ -convergent q-difference equations and $\eta\dagger$ -convergent differential equations.

Twisted operators of finite level

We will then introduce the rings $D_{\sigma}^{(\eta)}$ and $D_{\sigma}^{\eta\dagger}$ of twisted differential operators of (multiplicative) level η and $\eta\dagger$.

We will see that the category of $\eta\dagger$ -convergent σ -differential A-modules is equivalent to the category of $D_{\sigma}^{\eta\dagger}$ -modules (this is not true with η instead of $\eta\dagger$).

We will show that when x is both a *twisted coordinate* (see below) for two different endomorphisms σ and τ of A, then there exists a canonical (deformation) isomorphisms

$$D_{\sigma}^{(\eta)} \simeq D_{\tau}^{(\eta)}$$
 and $D_{\sigma}^{\eta\dagger} \simeq D_{\tau}^{\eta\dagger}$.

This will provide us with the equivalence between $\eta\dagger$ -convergent differential modules with respect to σ and τ .

Twisted coordinate

We let

$$P := A \widehat{\otimes}_R A$$
 and $I := \ker(P \to A, f \otimes g \mapsto fg).$

We still denote by σ the endomorphism $\sigma \otimes_R \mathrm{Id}_A$ of P and let

$$I^{(n+1)} := I\sigma(I) \cdots \sigma^n(I) \subset P, \quad P_{(n)} := P/I^{(n+1)}, \quad \widehat{P}_{\sigma} := \varprojlim P_{(n)}.$$

We call $x \in A$ a twisted coordinate if P_n is free on $1, \xi, \dots \xi^{(n)}$ where $\xi : 1 \otimes x - x \otimes 1$ and $\xi^{(k+1)} := \xi \sigma(\xi) \cdots \sigma^k(\xi)$.

There always exists a universal twisted derivation

$$d_{\sigma}: A \to \Omega^{1}_{\sigma}:= I/I^{(2)}, \quad f \mapsto \overline{1 \otimes f - f \otimes 1}.$$

If x is a twisted coordinate, then Ω^1_{σ} is free on $\mathrm{d}x$ and there exists a unique twisted derivation on A such that $\partial_{A,\sigma}(x)=1$.

Twisted differential operators

The ring of twisted differential operators (of infinite level) ([LQ18a]) is

$$D_{\sigma}^{(\infty)} := \bigcup_{n} \operatorname{Hom}_{A}(P_{(n)}, A) \subset \operatorname{End}_{R}(A).$$

Ring multiplication may also be obtained by duality from comultiplication

$$\delta: P \to P \widehat{\otimes}_{A}' P, \quad f \otimes g \mapsto (f \otimes 1) \otimes' (1 \otimes g),$$

where A acts on the right (resp. left) hand side through the canonical map (resp. the Taylor map)

$$A \rightarrow P, f \mapsto f \otimes 1 \pmod{\text{resp. } \theta : A \rightarrow P, f \mapsto 1 \otimes f}$$
.

Concretely

We fix from now on a twisted coordinate x on A. We have

$$\widehat{P}_{\sigma} = A[[\xi]]_{\sigma} := \varprojlim A[\xi]/\xi^{(n)}$$
 and

$$\mathrm{D}_{\sigma}^{(\infty)} = \left\{ \sum_{0 \leq k < < \infty} f_k \partial_{\sigma}^{[k]}, \quad f_k \in A \right\},$$

where $(\partial_{\sigma}^{[k]})_{k\in\mathbb{N}}$ denotes the dual basis to $(\xi^{(n)})_{n\in\mathbb{N}}$.

Example (Running)

If q is not a root of unity (or q=1), then $\operatorname{D}_{\sigma}^{(\infty)}\simeq\operatorname{D}_{\sigma}$ with

$$\partial_{\sigma}^{[k]} = \frac{(1-q)^k}{\prod_{i=1}^k (1-q^i)} \partial_{\sigma}^k \quad \text{(and } \partial^{[k]} = \frac{1}{k!} \partial^k \text{ if } q = 1).$$

η -convergence

If M is a $\mathrm{D}_{\sigma}^{(\infty)}$ -module and $\eta\in\mathbb{R}$, we call M η -convergent (resp. η^{\dagger} -convergent) if

$$\forall s \in M, \quad \|\partial_{\sigma}^{[k]}(s)\|\eta^k \to 0 \text{ when } k \to +\infty$$

(resp. M is η' -convergent whenever $\eta' < \eta$).

Example

 $\mathcal{X}=\mathrm{Spf}(A)$: smooth affine formal K° -scheme with an étale coordinate x, \mathcal{M} : coherent $\mathcal{O}_{\mathcal{X}_K}$ -module and $M:=\Gamma(\mathcal{X}_K,\mathcal{M})$. A connection on \mathcal{M} is convergent (in the sense of rigid cohomology) if and only if it is $1\dagger$ -convergent on M with respect to $\sigma=\mathrm{Id}_A$.

Example (Running)

The ring A itself is $r_1\dagger$ -convergent (the Robba ring is $1\dagger$ -convergent).

The twisted Taylor map

The *x-radius* of σ is $\rho := ||x - \sigma(x)||$ (for a fixed contractive norm).

Example (Runnnig)

We have $\rho = |1 - q|r$.

If A is η -convergent with $\eta \geq \rho$, then there exists a commutative diagram

$$A \xrightarrow{\theta} P \longrightarrow \widehat{P}_{\sigma}$$

$$\downarrow^{\theta_{\eta}} \qquad \qquad \parallel$$

$$A\{\xi/\eta\} \hookrightarrow A[[\xi]]_{\sigma}$$

with
$$A \xrightarrow{\theta_{\eta}} A\{\xi/\eta\} := \left\{ \sum_{n \geq 0} f_n \xi^n, \|f_n\| \eta^n \to 0 \right\}$$

$$f \longmapsto \sum_{k=0}^{\infty} \partial_{\sigma}^{[k]}(f) \xi^{(k)}.$$

Twisted differential operators again

We set $D_{\sigma}^{(\eta)} := \operatorname{Hom}_{A-\operatorname{cont}}(A\{\xi/\eta\}, A)$ and $D_{\sigma}^{(\eta\dagger)} := \varinjlim_{\eta' < \eta} D_{\sigma}^{(\eta')}$. They are endowed with a ring structure that comes by duality from

$$\delta_{\eta}: A\{\xi/\eta\} \to A\{\xi/\eta\} \widehat{\otimes}'_{A} A\{\xi/\eta\}, \quad \xi \mapsto 1 \otimes' \xi - \xi \otimes' 1,$$

where A acts on the right (resp. left) hand side through the canonical map (resp. the twisted Taylor map). Concretely

$$D_{\sigma}^{(\eta)} = \left\{ \sum_{k=0}^{\infty} f_k \partial_{\sigma}^{[k]}, \quad \exists C > 0, \forall k \in \mathbb{N}, \|f_k\| \le C \eta^k \right\} \quad \text{and}$$
$$D_{\sigma}^{(\eta\dagger)} = \left\{ \sum_{k=0}^{\infty} f_k \partial_{\sigma}^{[k]}, \quad \exists \eta' < \eta, \frac{\|f_k\|}{\eta'^k} \to 0 \right\}$$

Example

If $\mathcal{X} = \mathrm{Spf}(\mathcal{A})$ as above and $\sigma = \mathrm{Id}_{\mathcal{A}}$, we have $\Gamma(\mathcal{X}, \mathcal{D}_{\mathcal{X}\mathbb{O}}^{\dagger}) = \mathrm{D}_{\sigma}^{(1\dagger)}$.

Deformation

Theorem

Assume x is a twisted coordinate for both σ and τ , that A is η -convergent (for σ or τ or both) and that $\eta \geq \rho(\sigma), \rho(\tau)$. Then there exists a canonical isomorphism

$$D_{\sigma}^{(\eta)} \simeq D_{\tau}^{(\eta)} \quad \text{(resp. } D_{\sigma}^{(\eta\dagger)} \simeq D_{\tau}^{(\eta\dagger)} \text{)}.$$

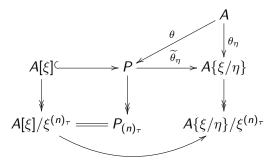
Before we give a proof, notice that this isomorphism is explicit in the sense that

$$\partial_{\sigma} = \sum_{k=1}^{\infty} \left(\prod_{i=1}^{k-1} \left(\sigma(x) - \tau^{i}(x) \right) \right) \partial_{\tau}^{[k]}$$

for example.

Proof.

The point is to show that the twisted Taylor map is the same for σ and τ . If θ_{η} denotes the twisted Taylor map of radius η with respect to σ , then there exists a commutative diagram



where $\widetilde{\theta}_{\eta}$ is the A-linearization of θ_{η} . The explicit formulas are obtained by duality from the base change $\xi^{(n)_{\tau}} \leftrightarrow \xi^{(n)_{\sigma}}$ in $A\{\xi/\eta\}$.

Confluence

One can check that the categories of $D^{\eta\dagger}_\sigma\text{-modules}$ and $\eta\dagger\text{-convergent}\ D^{(\infty)}_\sigma\text{-modules}$ are isomorphic (this is wrong without the $\dagger).$ It follows that:

Corollary

The categories of $\eta\dagger$ -convergent $D_{\tau}^{(\infty)}$ -modules and $\eta\dagger$ -convergent $D_{\sigma}^{(\infty)}$ -modules are canonically equivalent.

Finally, σ itself is a twisted differential operator of order one:

$$\sigma = 1 - (x - \sigma(x))\partial_{A,\sigma}.$$

One obtains a functor from η^{\dagger} -convergent $D_{\tau}^{(\infty)}$ -modules to σ -modules. In the case $\tau = \mathrm{Id}_{A}$, we recover the original statement.

Yves André and Lucia Di Vizio. "q-difference equations and p-adic local monodromy". In: Astérisque 296 (2004). Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I, pages 55–111.

Bernard Le Stum and Adolfo Quirós. "Formal confluence of quantum differential operators". In: *Pacific Journal of Mathematics* 292.2 (Feb. 2018).

Bernard Le Stum and Adolfo Quirós. "Twisted calculus". In: Communications in Algebra (2018).

Andrea Pulita. "Infinitesimal deformation of p-adic differential equations on Berkovich curves". In: *Math. Ann.* 368.1-2 (2017), pages 111–164.

Extra slide: fomulas

Back to the running example. Remember that

$$\sigma_M(s) = \theta_\eta(s)(qx - x) := \sum_{k=0}^\infty \frac{(q-1)^k x^k}{k!} \partial_M^k(s).$$

It just means that $\sigma = \sum_{k=0}^{\infty} \frac{(q-1)^k x^k}{k!} \partial^k \in D^{(\eta)}$.

One can also show that

$$\sigma_M(s) = (q^{x\partial_M})(s) := \sum_{k=0}^{\infty} \log(q)^k (x\partial_M)^k (s)$$

because

$$\sum_{k=0}^{\infty} \log(q)^k (x\partial)^k (x^n) = \sum_{k=0}^{\infty} \log(q)^k n^k x^n = q^n x^n.$$