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Introduction

Teaser

Invariant theory associates a simple mathematical object to a more
complex one. For instance, one can associate to a set E its number of
elements ♯E.

Invariant theory is frequently employed to establish impossibilities.
For instance, the Cantor-Bernstein theorem demonstrates that when the
cardinality of a set E is less than that of another set F (♯E < ♯F ), there
exists no injective map from F to E.

Another basic concept in invariant theory is the dimension dimV of
a finite-dimensional real vector space V . It can be shown that when
the dimensions of V and another vector space W are different (dimV ̸=
dimW ), there exists no homeomorphism between V and W (Brouwer’s
open mapping theorem).

However, to prove this theorem, a more sophisticated invariant is
required: to a topological manifold, one can associate a family of abelian
groups Hi(X) indexed by natural numbers, called homology groups, which
is invariant under homeomorphisms.

From a finite-dimensional vector space V endowed with an Euclidean
norm, one can construct a sphere S := (V ∖ {0})/∥ − ∥. It can then be
shown that Hi(S) = 0 unless i = 0 or i = dim(V )− 1 in which case it is
free of rank one. This result leads to Brouwer’s theorem.

Homology and cohomology theories provide invariants of abelian
nature (for instance, abelian groups) for objects of geometrical nature
(for example, manifolds). The purpose of homological algebra is to
elucidate the theory behind these invariants. It appears that the most
suitable setting for this study is category theory.
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It is common in mathematics to present an object by generators and relations.
For example, the field C of complex numbers may be seen as the R-algebra

generated by an element x satisfying x2 + 1 = 0. We may think of x = i but can
as well choose x = −i if we wish. In any case, we can write C = R[X]/(X2 + 1): it
means that there exists a surjection from the polynomial ring R[X] whose kernel
is the ideal generated by X2 + 1. More generally, any commutative algebra over a
commutative ring R may be written on the form R[{Xi}i∈I ]/(fj)j∈J .

Let us now consider the dihedral group Dn. This is the group generated by (a
rotation of order n) r and (a reflection) s subject to the relations rn = 1, s2 = 1 and
rsrs = 1. One usually writes for n ∈ N,

Dn = ⟨r, s | rn = 1, s2 = 1, rsrs = 1⟩ = ⟨R, S⟩/⟨Rn, S2, RSRS⟩.

It means that there exists a surjection from the free group generated by two elements
R, S whose kernel is the subgroup generated by Rn, S2, RSRS. This group in turn
is the target of a surjection from the free group on three elements X, Y, Z sending X
to Rn, Y to S2 and Z to RSRS. More generally, any group has a free presentation

F ′ ψ→ F
ϕ→ G→ 0 :

it means that both F and F ′ are free groups, im ψ = kerϕ and ϕ is surjective
(im ϕ = ker 0)).

We now consider the commutative group µn of nth roots unity for some fixed
integer n. If we choose a primitive nth root of unity ζ, then there exists a surjection
Z → µn sending k to ζk. Of course, Z is a free abelian group. But the kernel
nZ of our surjective map also is a free abelian group. This is a general fact: any
commutative group has a free (left) resolution

0→ P1
i→ P0

p→M → 0

(of length 2). It means that P0 and P1 are free abelian groups, i is injective
(im 0 = ker i), im i = ker p and p is surjective (im p = ker 0). One also calls P1 → P0

a free (left) replacement for M .
Before going any further, let us consider the effect of a “transformation” on a free

resolution. For example, for a fixed integer n, we may turn an abelian group M into
its quotient M/n and consequently, any morphism of abelian groups f : M → N
into the corresponding map f :M/n→ N/n. If we apply this transformation to the
resolution 0→ Z

n→ Z→ Z/nZ→ 0, then we get 0→ Z/nZ
0→ Z/nZ

∼→ Z/nZ→ 0
which is not a resolution anymore because the first map is not injective. The
point is that, if we are given M

f→ N
g→ P , it may happen that im f = ker g but

im f ̸= ker g. This is called a default of exactness. However, it should be noticed
that our transformation is compatible with composition: we have g ◦ f = g ◦ f . As a
consequence, the fact that im f ⊂ ker g will imply im f ⊂ ker g.

Let us now consider the case of a (left) R-module M where R is a ring. In order
to generalize the previous case (which is essentially the case R = Z), we need to
allow 1) direct summands of free modules, which are called projective modules and
2) longer, possibly infinite, projective (left) resolutions

· · · → P2
d2→ P1

d1→ P0
d0→M → 0,
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meaning that im dn+1 = ker dn (so that, in particular, im d0 = ker 0 = M which
means that d0 is surjective). And we shall call P• := · · · → P2

d2→ P1
d1→ P0 a

projective (left) replacement for M .
Again, a transformation will not preserve resolutions in general but it will

preserves chain complexes (that we will shortly define) as long as the transformation
is compatible with composition. A chain complex is a sequence of maps

K• := · · · → K2
d2→ K1

d1→ K0
d0→ K−1 → · · ·

satisfying im dn+1 ⊂ ker dn, or equivalently dn ◦ dn+1 = 0. In order to measure the
default of exactness, we may then introduce the homology groups

Hn(K•) := ker dn/im dn+1.

Let us briefly explain how these techniques can be used in topology. We shall
not enter the details at this point, but one may consider on any topological space
X, the notion of an abelian sheaf M : it is a compatible1 local2 family of abelian
groups Γ(U,M) for all open subsets U of X. As a baby example, one may consider
the sheaf CR of continuous maps with values in R so that Γ(U, CR) = C(U,R) or the
constant sheaf ZX given by

Γ(U,ZX) = C(U,Z) ≃ Zπ0(U).

It happens that there are not enough projective abelian sheaves in general. We need
to rely on the dual construction and introduce the notions of an injective abelian
sheaf as well as an injective (right) resolution

0→M → I0 → I1 → I2 → · · ·

(and injective (right) replacement). One also replaces chain complex with cochain
complex

K• := · · · → K−1 d−1→ K0 d0→ K1 d1→ K2 → · · ·

meaning dn ◦ dn−1 = 0 and homology with cohomology

Hn(K•) = ker dn/im dn−1.

On can show that if I• is an injective replacement for an abelian sheaf M , then

Hn(X,M) := Hn(Γ(X, I•))

depends only on M . This is the nth cohomology group of M . When X is locally
contractible, we recover the singular cohomology of X:

Hn(X,ZX) ≃ Hn
sing(X).

1There exists restrictions maps s 7→ s|V for s on U and V ⊂ U with (s|V )W = s|W and s|U = s.
2Given si on Ui such that si and sj coincide on Ui ∩ Uj , then there exists a unique s on

⋃
Ui

extending all si simultaneously.
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Sheaf cohomology however is a lot more flexible since it allows coefficients in any
abelian sheaf (and not merely abelian group) and this may even be extended to
cochain complexes of abelian sheaves. There also exists a relative version: given any
sheaf M on X and any continuous map f : X → Y , there exists cohomology sheaves
Rnf∗M on Y which may be used to compute the cohomology of M . There is no such
thing is singular cohomology.

It is also possible to apply these methods to differential geometry. On a differential
manifold X, there exists the de Rham complex:

Ω•
X := OX

d→ Ω1
X

d→ · · · d→ Ωn
X .

Poincaré lemma states that this is actually a (right) replacement for the constant
sheaf RX . The cohomology of the complex of global sections

Γ(X,Ω•
X) := Γ(X,OX)

d→ Γ(X,Ω1
X)

d→ · · · d→ Γ(X,Ωn
X)

is called de Rham cohomology. It happens actually that

Hn
dR(X) := Hn(Γ(X,Ω•

X)) ≃ Hn(X,Ω•
X) ≃ Hn(X,RX) ≃ Hn

sing(X,R),

showing that de Rham and singular cohomology coincide. In particular, a differential
invariant appears to be a topological invariant. This generalizes to a Riemann-Hilbert
correspondence between differential systems and local systems but this is another
story.

Throughout the course, there will be numerous exercises. Some of these exercises
will illustrate previous properties or defintions, while others will present general
results that are usually straightforward to prove. It’s important to ensure that you
can complete all these exercises but also write down full solutions occasionally.

We will use a smaller font to indicate optional material that can be skipped.
Many thanks to the students who helped make this course more readable.



Background

We briefly review some fundamental concepts from general mathematics as well as
specific developments that will be used throughout the course. Our main goal is to
refresh the reader’s memory with familiar definitions and standard properties, as well
as introduce some notation. We assume that the reader is proficient in elementary
logical operations, including quantifiers, and has mastered the induction process.
Additionally, we expect the reader to be familiar with the concepts of sets, elements,
inclusion, intersection, union, and (possibly infinite) product3 of sets. Also, we will
not revisit the definitions and basic properties of N, Z, Q, R, or C nor delve into
issues related to logic or set theory. Finally, we shall use von Neumann notation
n := {0, 1, . . . , n− 1}.

0.1 Relation
A (binary) relation R : X → Y is the data of two sets X, Y called respectively
domain and codomain, and another set R ⊂ X × Y called the graph of the relation.
We will write xRy instead of (x, y) ∈ R and call y the image of x (resp. x the
preimage of y).

There exists the notion of a (direct) image by R of a subset A of X which is
defined as4

R(A) := {y ∈ Y, ∃x ∈ X, xRy}.

We also set im(R) := R(X). We shall simply write R(x) := R({x}) and more
generally remove all embedded parenthesis when there is no risk of confusion.

3Let us however recall that the product
∏

i∈I Xi is the set of all families (xi)i∈I of terms xi ∈ Xi

for all i ∈ I and we shall write XI :=
∏

I X.
4To avoid confusion later, we should write R∗(A) in which case, we would write R∗(B) = R−1

∗ (B)
below.
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There exists an inverse relation R−1 : Y → X for R obtained by switching factors
so that

∀x ∈ X, y ∈ Y, yR−1x⇔ xRy.

If B ⊂ Y , then R−1(B) is called the inverse image of B by R.
One can make the product of relations

∏
i∈I Ri :

∏
i∈I Xi →

∏
i∈I Yi so that

(xi)i∈I

(∏
i∈I

Ri

)
(yi)i∈I ⇔ ∀i ∈ I, xiRiyi.

We may consider the conjunction R :=
⋂
i∈I Ri : X → Y of relations so that

∀x ∈ X, y ∈ Y, xRy ⇔ ∀i ∈ I, xRiy.

A relation R′ : X ′ → Y ′ is a restriction (resp. the restriction) of R to X ′ ⊂ X and
Y ′ ⊂ Y if

∀x ∈ X ′, y ∈ Y ′, xR′y ⇒ xRy (resp. ⇔ xRy).

We may also say that R′ is induced by R or that R is an extension of R′.
One can also compose a relation R : X → Y with a relation S : Y → Z by setting

x(S ◦R)z ⇔ ∃y ∈ Y, xRy and ySz.

A map f : X → Y is a relation satisfying

∀x ∈ X, ∃y ∈ Y, f({x}) = {y}.
We will then write f(x) = y or f : x 7→ y.

For a set X, we shall consider the set P(X) of subsets of X so that A ⊂ X ⇔ A ∈
P(X). If R : X → Y is any relation, then the direct and inverse images introduced
above are maps

R : P(X)→ P(Y ), A 7→ R(A) and R−1 : P(Y )→ P(X), B 7→ R−1(B)

and any of them uniquely determines the relation.
A map f : X → Y is said to be injective (resp. surjective, resp. bijective) if, for

all y ∈ Y , f−1(y) has at most (resp. at least, resp. exactly) one element. The map f
is bijective if and only if f−1 is a map.

We shall denote by F(X, Y ) (resp. S(X, Y )) the set of all maps (resp. bijective
maps) from X to Y and F(X) (resp. S(X)) when X = Y . There always exists a
bijection

F(X, Y ) ≃ Y X , f 7→ (f(x))x∈X .

It means that a map is essentially the same thing as a family. By the way, to any
set X, we can associate a family (x)x∈X corresponding to the map IdX and to any
family (xi)i∈I , corresponding to the map f : I → X, i 7→ xi, we can associate the set
im(f) = {xi}i∈I .

Also, there always exists a bijection (called currying)

F(X × Y, Z) ≃ F(X,F(Y, Z)), f 7→ (x 7→ (fx : y 7→ f(x, y))).

The maps fx are called partial maps. A map X × Y → Z is also called an operation
of X on Y with values in Z. This is the essentially the same thing as a map
X 7→ F(Y, Z).
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0.2 Relation in a set
A relation in a set X is a relation R : X → X. For example, the identity IdX , also
called equality, is the relation in X defined by xIdXy ⇔ x = y.

A relation in a set X is said to be
1. reflexive if ∀x ∈ X, xRx,
2. transitive if ∀x, y, z ∈ X, (xRy and yRz)⇒ xRz,
3. symmetric if ∀x, y ∈ X, xRy ⇒ yRx,
4. antisymmetric if ∀x, y ∈ X, (xRy and yRx)⇒ x = y,
5. total (or linear) if ∀x, y ∈ X, xRy or yRx,
All five properties are inherited by (the restriction to) any subset and satisfied

by the opposite relation. The first four properties are stable under conjunction.
Therefore, there always exists a smallest relation in X extending R and having one
or more of these properties (but not always the last one).

A preorder is a relation in X which is both reflexive and transitive. This is
called an equivalence relation (resp. a partial order) if, moreover, it is symmetric
(resp. antisymmetric). A set endowed with a partial order is called a poset but
we shall concentrate on preordered sets. A preorder ≤ on X ̸= ∅ is directed if
∀x, y ∈ X, ∃z ∈ X, x ≤ z and y ≤ z. A set endowed with a directed partial order is
called a directed set. An element x of a preordered set (X,≤) is said to be maximal
if ∀y ∈ X, x ≤ y ⇒ x = y (and minimal if it is maximal for the opposite preorder
≥).

An element x of a preordered set (X,≤) is an upper bound for a subset A ⊂ X
if ∀y ∈ A, y ≤ x. An upper bound for X itself is called a maximum (or greatest
element). There exists the opposite notions of lower bound and minimum. The
supremum (or join) sup(A) (resp. infimum (or meet) inf(A)) is the least upper
bound (greatest lower bound). An ordered set is said to be inductive if any totally
ordered subset has an upper bound. Zorn’s lemma states that any inductive set has
a maximal element.

If R is a relation on X and R̃ denotes the equivalence relation generated by
R, then the quotient of X by R is X/R := {R̃(x), x ∈ X} and R̃(x) is called an
equivalence class. There exists an obvious surjective map

π : X ↠ X/R, x 7→ R̃(x)

called the quotient map. A map f : X → Y is said to be compatible with relations R
and S in X and Y respectively if

∀x, x′ ∈ X, xRx′ ⇒ f(x)Sf(x′).

When this is the case, f provides a map f : X/R→ Y/S. And conversely when S is
an equivalence relation. When a map is compatible with partial orders, it is said to
be order preserving.

The direct image f(R) of a relation R on X by a relation f : X → Y is defined
by

∀y, y′ ∈ Y, yf(R)y′ ⇔ ∃x, x′ ∈ X, xRx′, xfy, x′fy′.

A direct image by f−1 is also called an inverse image. We shall only use this notion
in the case f is a map in which case f will be compatible with R and f(R) (and
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with f−1(S) and S if S is a relation on Y ). The inverse image under a map of
a preorder (resp. an equivalence relation) is still a preorder (resp. an equivalence
relation). In particular, the inverse image of equality on Y is an equivalence relation
on X. Conversely, if ∼ is an equivalence relation on X, then ∼ is the inverse image
of equality under the quotient map π : X ↠ X/ ∼. Finally, if ≤ is a preorder on a
set X, then the image of ≤ is a partial order on X/ ∼ where x ∼ y ⇔ x ≤ y and
y ≤ x.

A filter on a partially ordered set P is a non empty proper subset F ⊊ P such that
1. ∀x, y ∈ F ,∃z ∈ F , z ≤ x and z ≤ y,
2. ∀x ∈ F ,∀y ∈ X,x ≤ y ⇒ y ∈ F .

An ultrafilter is a maximal filter (for inclusion). If I is any set, then a filter on P(I) is also called a
filter on I (this may be confusing when I itself is endowed with some preorder).

0.3 Group
A magma is a set G endowed with an internal operation

G×G→ G, (g, h) 7→ gh

or, equivalently, a map

G→ F(G), g 7→ (h 7→ gh).

The notion of (non empty finite) product g1 . . . gn is defined by induction. Note that
P(G) then becomes also a magma for the rule AB := {gh, g ∈ A, h ∈ B}.

A homomorphism of magmas is a map φ : G→ G′ that preserves nonempty finite
products. The homomorphism φ is called an isomorphism if it is bijective. If G is a
magma, then the opposite magma is the magma Gop with the same elements as G
but multiplication (g, h) 7→ hg. A magma G is said to be commutative or abelian if
Gop = G. A magma is called a semigroup if multiplication is associative:

∀g, h, k ∈ G, (gh)k = g(hk).

A monoid is a semigroup which is unitary :

∃1 ∈ G,∀g ∈ G, 1g = g = g1.

By convention, the empty product is 1. A homomorphism of monoids is required
to preserve all finite products (including the empty product). A submonoid of a
monoid G is a subset which is stable under (all) finite products. Any intersection of
submonoids is a submonoid and we may always consider the submonoid generated by a
given subset. IfX is any set, then the set F(X) of all maps fromX to itself is a monoid
for composition. If X is any set and G is a monoid, then F(X,G) (or equivalently
GX) is a monoid for the termwise multiplication rule: ∀x ∈ X, (φψ)(x) = φ(x)ψ(x).
The subset G · X ⊂ F(X,G) of maps with finite support (the support of φ is
{x ∈ X,φ(x) ̸= 1}) is a submonoid (and similarly G(X) ⊂ GX). More generally,
given a family of monoids {Gi}i∈I , the subset ⊕i∈IGi ⊂

∏
i∈I Gi of families (gi)i∈I

that are almost always 1, is a submonoid.
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An element g of a monoid G is said to be regular (resp. invertible) if multiplication
by g is injective (resp. bijective) on both sides. A monoid is integral (resp. a group)
if all elements are regular (resp. invertible). A subgroup of a group G is a submonoid
which is a group. In general, we shall denote by G× the group of invertible elements of
a monoid G. Any group homomorphism φ : G→ H induces a bijection between the
set of subgroups of G containing the kernel kerφ := φ−1(1) and the set of subgroups
of H contained in the image imφ := φ(G). If M an N are two abelian groups,
then the set HomAb(M,N) of all homomorphisms form M to N is a subgroup of
F(M,N). We shall write EndAb(M) in the case M = N . A monoid isomorphic to
Z · I is called a free abelian group of rank I. A subgroup of a free abelian group is
also a free abelian group.

If G is a monoid, then a G-set is a set X endowed with a homomorphism of
monoids

G→ F(X), g 7→ (x 7→ gx).

It means that X is endowed with an action of G (an operation with values in X
itself) which is associative ((gh)x = g(hx)) and unitary (1.x = x). One may then
define the notions of a G-morphism between G-sets as well as a sub-G-set in the
usual way (exercise). If G is a group and X is a G-set, one may consider the quotient
X/G which is the set of orbits Gx := {gx, g ∈ G} as well as the quotient map

X → X/G, x 7→ Gx.

As a particular case, if H is a subgroup of a group G, then H acts by translation
on G and we may consider the quotients G/H as well as H\G := Gop/Hop. The
subgroup H is said to be normal in G if G/H = H\G.

An abelian group si said to be divisible if ∀a ∈ Q, ∀n ∈ N \ 0,∃x ∈ Q, a = nx. A
Q-vector space is divisible. A quotient of a divisible group is divisible.

0.4 Ring and module
A (unitary associative) ring is an (additive) abelian group A endowed with a monoid
structure that factors through a homomorphism of abelian groups

A→ EndAb(A) ⊂ F(A), a 7→ (b 7→ ab).

Note that this extra condition simply means that distributivity holds on both sides:

∀a, b, c ∈ A, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

A ring homomorphism is a map which is a homomorphism for both operations
(isomorphism if it is bijective). A subring is a subset which is at the same time
a subgroup of (A,+) and a submonoid of (A,×). If M is an abelian group, then
EndAb(M) is a ring for composition.

If A is a ring, a (left) A-module is an abelian group M endowed with a ring
homomorphism A→ EndAb(M), a 7→ (x 7→ ax). One then defines the notions of an
A-linear map between A-modules as well as a sub-A-module and quotient A-module
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in the usual way (exercise). The kernel of a morphism of A-modules φ :M → N is
a sub-A-module and its cokernel is defined as coker φ := M/im φ. If I is any set,
then both AI and A · I have a structure of A-module and a free module of rank I is a
module isomorphic to A · I. One also defines the notion of submodule (S) generated
by a subset S and call an A-module M finite (type) if it is generated by a finite
subset. A (left) ideal a of A is a submodule of the A-module A. Be careful that, if a
is an ideal of A and M an A-module, then aM will denote the submodule generated
by the naive product and not merely the product itself. A right A-module is a (left)
Aop-module. The ring A is said to be commutative if the multiplicative monoid of A
is commutative, or equivalently if Aop = A. When a is an ideal in a commutative
ring A, there exists a unique structure of (commutative) ring on A/a making the
quotient map A→ A/a commutative.

When k is a field (meaning that k∖ {0} is a group), a k-module M is also called
vector space. More generally, if k is a commutative ring, then the set L(M,N) of
all k-linear maps from M to N is automatically a k-module and M∨ := L(M,k) is
called the dual of M . If M,N,P are k-modules, then a map M ×N → P is said to
be k-bilinear if all partial maps are k-linear. The set B(M,N ;P ) of all k-bilinear
maps is naturally a k-module and we have an isomorphism

B(M,N ;P ) ≃ L(M,L(N,P )), φ 7→ (y 7→ φ(x, y))

As an example, the action k × M → M is bilinear and corresponds to a linear
map k → L(M). A (unitary associative) k-algebra is a k-module A endowed with
a k-bilinear map A × A → A that turns A into a (unitary associative) ring. For
example, L(M) := L(M,M) is a k-algebra (for composition) and we shall write
GL(M) := L(M)×. One sets Mn(k) := L(kn) and GLn(k) := GL(kn).

If A is a ring, then the tensor product of a right A-module M with a left A-module
N is the quotient M ⊗A N of the free abelian group Z · (M ×N) by the following
relation:

1. ∀m ∈M,n, n′ ∈ N, (m,n+ n′) ∼ (m,n) + (m,n′),
2. ∀m,m′ ∈M,n ∈ N, (m+m′, n) ∼ (m,n) + (m′, n),
3. ∀a ∈ A,m ∈M,n ∈ N, (ma, n) ∼ (m, an).

We shall denote by m⊗ n the class of (m,n) in M ⊗A N . It should be noticed that

(M/M ′)⊗A N ≃ (M ⊗A N)/(M ′ ⊗A N)

if M ′ ⊂M is a submodule and that

(⊕i∈IMi)⊗A N ≃ ⊕i∈I(Mi ⊗A N)

if (Mi)i∈I is a family of right A-modules. Of course we have the same results on the
other side.

If k is a commutative ring and M,N are two k-modules, then M ⊗kN is endowed
with the structure of a k-module through a(m⊗ n) = am⊗ n. Composition with
the map

M ×N 7→M ⊗k N, (m,n) 7→ m× n
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provides an isomorphism

L(M ⊗k N,P ) ≃ B(M,N ;P )

for all k-module P . Note that we always have

M ⊗k N ≃ N ⊗kM, (M ⊗k N)⊗k P ≃M ⊗k (N ⊗k P ) and k⊗kM ≃M.

Also,

(k · E)⊗k (k · F ) ≃ k · (E × F )

when E,F are two sets.
If f : A → B is a ring homomorphism, then B becomes a right A-module via

ba = bf(a) and, if M is a left A-module, then B ⊗A M becomes a B-module via
b(b′ ⊗ s) = bb′ ⊗ s. If A and B are two k-algebras, then A⊗k B is endowed with a
structure of a k-algebra through (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

If k is a commutative algebra, then the nth tensor power of a k-module M is

Tn(M) :=M ⊗k · · · ⊗k M︸ ︷︷ ︸
n times

.

If M is a k-module, then there exists a bilinear map Ti(M) × Tj(M) → Ti+j(M)
and the composite map(

∞⊕
i=0

Ti(M)

)
×

(
∞⊕
j=0

Tj(M)

)
=

∞⊕
i,j=0

Ti(M)× Tj(M)→
∞⊕
n=0

Tn(M)

endows the tensor algebra T(M) :=
⊕∞

n=0T
n(M) with the structure of a ring.

The symmetric (resp. exterior) algebra of M is the quotient S(M) (resp. Λ(M))
:= T(M)/I where I is the ideal generated by x⊗ y− y⊗ x for x, y ∈M (resp. x⊗ x
for x ∈M). The module of nth symmetric (resp. exterior) powers of M is the image
Sn(M) (resp. Λn(M)) of Tn(M) in S(M) (resp. Λ(M)). We have S(M) =

⊕∞
n=0 S

n(M)
(resp. Λ(M)) =

⊕∞
n=0 Λ

n(M). Any k-linear map u :M → N produces in an obvious
way a k-linear map Tn(u) : Tn(M)→ Tn(N) (resp. Sn(u) : Sn(M)→ Sn(N), resp.
Λn(u) : Λn(M)→ Λn(N).

If M is free of rank n, then Λn(M) is free of rank 1 and the “canonical” map
k → L(Λn(M)) is therefore an isomorphism. The determinant is the composite map

det : L(M)
Λn

−→ L(Λn(M)) ≃ k.

On the other hand, there exists a general bilinear map

L(M,N)× P → L(M,N ⊗k P ), (f, p) 7→ (m 7→ f(m)⊗ p)

providing a k-linear map L(M,N)⊗k P → L(M,N ⊗k P ). This is an isomorphism
when P is free of finite rank. In particular, if M is a free module of finite rank, then
there exists an isomorphism M∨ ⊗k M ≃ L(M). Now, there exists a bilinear map

M∨ ×M → k, (φ,m) 7→ ⟨φ,m⟩ := φ(m)
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providing the trace map

tr : L(M) ≃M∨ ⊗k M → k

when M is free of finite rank.
If G is a monoid, then the composite map

k ·G× k ·G→ k ·G⊗k k ·G ≃ k · (G×G)→ k ·G

turns the free k-module k ·G into a k-algebra and this is functorial. The polynomial
ring over k on a set E is k[E] := k · G where G = N · E (free abelian monoid).
Actually, k[E] ≃ S(M) with M = k · E.

A lattice is a set X endowed with two internal operations ∨ and ∧ which are associative,
commutative and absorbant with respect to each other:

∀x, y ∈ X, x ∨ (x ∧ y) = x = x ∧ (x ∨ y).

It is said to be distributive if

∀x, y, z ∈ X, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

It is said to be bounded if both ∨ and ∧ are unitary (with units denoted 0 and 1 respectively).
Then, a complement for an x ∈ X is an ¬x ∈ X such that x∨¬x = 1 and x∧¬x = 0. A morphism
of (bounded) lattices is a homomorphism for both operations. The relation x ≤ y ⇔ x = x ∧ y is a
partial order on X. Conversely, a partial order such that any pair has a supremum and an infimum
defines a lattice by x ∨ y = sup(x, y) and x ∧ y = inf(x, y). A morphism of lattices is an order
preserving map that also preserves maxima and minima for pairs.

A boolean ring is a ring A such that all a ∈ A are idempotent : a2 = a. If we set a ∧ b = ab and
a∨ b = a+ b+ ab and ¬a = 1+ a, then A becomes a bounded distributive lattice with complements.
Conversely, if A is a bounded distributive lattice with complements, then it is a boolean ring.

0.5 Topology
A topology on a set X is a subset Open(X) ⊂ P(X) of the set of all subsets of X
which is stable under any union (and in particular the empty union) and any finite
intersection (and in particular empty intersection). A set X endowed with a topology
is called a topological space and a subset U ∈ Open(X) is said to be open. If there
exists an open subset U such that A ⊂ U ⊂ V ⊂ X, then V is called a neighborhood
of A. An U ⊂ X is open if and only if it is a neighborhood of all its points.

Topologies are stable under intersection inside P(X). In particular, we may
always consider the the topology generated by any set of subsets of X. A topology
is finer (resp. coarser) than another if it contains (resp. is contained in) the other: it
has more (resp. less) open subsets. There exists a topology on X which is finer (resp.
coarser) than any other: the discrete (resp. coarse) topology.

The complement of an open subset is said to be closed. There always exists a
smallest closed (resp. biggest open) subset Y (resp. Y̊ ) containing (resp. contained
in) a given subset Y which is called its closure (resp. its interior). A subset Y is
dense in X if Y = X.

If A ⊂ X, then a limit for a map (remember that this is the same thing as a
family) f : A→ Y at x ∈ A is a y ∈ Y such that, for all neighbourhood V of y in Y ,
there exists a neighborhood U of x in X such that f(A ∩ U) ⊂ V . We then write
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y = limx f (but we should write ∈ because the limit may not be unique). A map
f : X → Y is said to be continuous at x ∈ X if f(x) is a limit of f at x.

A map f : X → Y between two topological spaces is continuous (everywhere) if
and only if

f−1(Open(Y )) ⊂ Open(X).

We shall denote by C(X, Y ) the set of all continuous maps X → Y . On the other
hand, a map f is said to be open (resp. closed) if it sends open (resp. closed) subsets
to open (resp. closed) subsets. A subspace of a topological space X is a subset Y
endowed with the induced topology: Open(Y ) := i−1(Open(X)) where i : Y ↣ X
denotes the inclusion map. If Y is a quotient of a topological space and p : X ↠ Y
denotes the quotient map, then the quotient topology on Y is defined by

V ∈ Open(Y )⇔ p−1(V ) ∈ Open(X).

Unless otherwise specified, we will always implicitly endow a subset (resp. a quotient)
with the induced (resp. quotient) topology. A topological space has locally a property
P if any neighborhood V of a point x contains a neighborhood V ′ of x having
property P . We shall encounter the notion of a local homeomorphism f : X ′ → X.
It means that there exists for all x′ ∈ X ′, an open neighborhood U ′ of x′ (resp. U of
x := f(x′)) such that f induces a homeomorphism U ′ ≃ U .

A topological space X is said to be
• Fréchet if all points are closed,
• Hausdorff if any two distinct points have disjoint neighborhoods,
• normal if any two disjoint closed subsets have disjoint neighborhoods.

One also say T1 for Frechet, T2 for Hausdorff and T4 for normal Hausdorff (or
equivalently normal Frechet).

A covering of a topological space X is simply a set (or a family) E of subsets of X
such that X =

⋃
Y ∈E Y . A refinement of E is a subset E ′ ⊂ E. A topological space

X is said to be compact (resp. paracompact) if any open covering R of X has a finite
(resp. locally finite) refinement R′ ⊂ R which is also a covering of X. A paracompact
Hausdorff space is normal (and therefore T4). Actually, if X =

⋃
i∈I Ui is a locally

finite covering of a paracompact Hausdorff space, then there exists another covering
X =

⋃
j∈J Vj such that ∀j ∈ J,∃i ∈ I, V j ⊂ Ui.

A subset of a topological space X is said to be clopen if it is both open and
closed. The space X is said to be connected if only ∅ and X are clopen in X. The
connected components in X are the maximal non-empty connected subspaces. The
set of connected components of X is denoted by π0(X). The image of a connected
space by a continuous map is always connected. The closure of a connected subset is
connected. A connected component is closed (but not necessarily open). Connected
components are disjoints. A clopen subset is a union of connected components.

A semidistance on a set X is a map d : X × X → R satisfying d(x, x) = 0,
d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ E. It is a distance if
moreover d(x, y) = 0⇒ x = y. A set X endowed with a (semi) distance is called a
(semi) metric space. A subset U of X is said to be open if

∀x ∈ U,∃ϵ > 0,∀y ∈ X, d(x, y) ≤ ϵ⇒ y ∈ U.
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This turns X into a topological space and d is a distance if and only if X is Hausdorff.
A seminorm on a real vector space E is a map

E → R, x 7→ ∥x∥

satisfying

∥0∥ = 0, ∥λx∥ = |λ|∥x∥ and ∥x+ y∥ ≤ ∥x∥+ ∥y∥

for x, y ∈ E and λ ∈ R. It is a norm if moreover ∥x∥ = 0 ⇒ x = 0. Formula
d(x, y) := ∥y − x∥ defines a (semi) distance on E. In the case of finite dimensional
vector spaces, all norms are equivalent and all linear maps are continuous. Finally, if
f : A→ B is a map between subsets of finite dimensional vector spaces, we write
f(h) = o(h) (we should write ∈ instead of =) if there exists ϵ : A → R such that
∥f(h)∥ = ∥h∥ϵ(h) for h ∈ A and lim0 ϵ = 0.

0.6 Some algebraic topology

A homotopy is a continuous map s : X × [0, 1]→ Y . One then sets st(x) := s(x, t)
for x ∈ X and t ∈ [0, 1], says that s is a homotopy between s0 and s1 and writes
s : s0 ∼ s1. A continuous map f : X → Y is called a homotopy equivalence if there
exists a continuous map g : Y → X such that IdX ∼ g ◦ f and f ◦ g ∼ IdY . A
topological space said to be contractible if it is homotopy equivalent to a point.

For n ∈ N, the standard n-simplex 5 is the set

[n] := n+ 1 := {0, . . . , n}

endowed with its natural order: 0 ≤ 1 ≤ · · · ≤ n. For 0 ≤ i ≤ n, the (order
preserving) map

δni : [n− 1]→ [n] (resp. σni : [n+ 1]→ [n])

that forgets (resp. repeats) the i-th term is called the ith face (resp. degeneracy)
map. We have the following relations

δn+1
j ◦ δni = δn+1

i ◦ δnj−1 for 0 ≤ i < j ≤ n+ 1,

σnj ◦ σn+1
i = σni ◦ σn+1

j+1 for 0 ≤ i ≤ j ≤ n,

σnj ◦ δn+1
i =


δni ◦ σn−1

j−1 for 0 ≤ i < j ≤ n
Id[n] for 0 ≤ j ≤ i ≤ j + 1 ≤ n+ 1
δni−1 ◦ σn−1

j for 0 ≤ j < i− 1 ≤ n.

We now turn to the topological version. For n ∈ N, the standard topological
n-simplex is the subset:

|∆n| :=

{
(t0, . . . , tn) ∈ Rn+1

≥0 ,

n∑
i=0

ti = 1

}
.

5Sometimes also written ∆n.
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For 0 ≤ i ≤ n, the map ith face (resp. degeneracy) map is (same notation as above)

δni : |∆n−1| → |∆n|, (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti+1, . . . , tn−1) (resp.

σni : |∆n+1| → |∆n|, (t0, . . . , tn+1) 7→ (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1)).

All above formulas still hold. More generally, any order preserving map u : [m]→ [n]
yeilds an analogous map (written in the same way) u : |∆m| → |∆n|. More precisely,
when X ⊂ RN is a (convex) subset, and v0, . . . , vn ∈ X, one writes

[v0, . . . , vn] : |∆n| → X, (t0, . . . , tn) 7→
n∑
i=0

tivi.

If (e0, . . . , en) denotes the canonical basis of Rn+1, this is the unique linear map sending
ei to vi. Then the map induced by u on topological simplices is [eu(0), . . . , eu(n)].

A semisimplicial set

S : · · ·S2 S1 S0

is a family of maps din : Sn → Sn−1 for n > 0 satisfying

din ◦ d
j
n+1◦ = dj−1

n ◦ din+1 for 0 ≤ i < j ≤ n+ 1.

The augmentation map is the unique map ϵ : S0 → {1}. A simplicial set

S : · · ·S2 S1 S0

is the data of two families of maps din : Sn → Sn−1 for n > 0 and sin : Sn → Sn+1 for
n ≥ 0 with 0 ≤ i ≤ n satisfying

din ◦ d
j
n+1 = dj−1

n ◦ din+1 for 0 ≤ i < j ≤ n+ 1,

sin+1 ◦ sjn = sj+1
n+1 ◦ sin for 0 ≤ i ≤ j ≤ n,

din+1 ◦ sjn =


sj−1
n−1 ◦ din for 0 ≤ i < j ≤ n
IdSn for 0 ≤ j ≤ i ≤ j + 1 ≤ n+ 1

sjn−1 ◦ di−1
n for 0 ≤ j < i− 1 ≤ n.

If T is another (semi) simplicial set, then a map of (semi) simplicial sets f : S → Y
is a family of compatible maps fn : Sn → Tn.

When S is a (semi) simplicial set, we let Cn(S) := Z · Sn and, when M is an
abelian group, Cn(S,M) := F(Sn,M). The map din extends uniquely to a group
homomorphism (still written) din : Cn(S)→ Cn−1(S). On the other hand, the map
din+1 induces by composition a group homomorphism din : Cn(S,M)→ Cn+1(S,M).
In both cases, we shall be concerned with the alternating sum

dn :=
n−1∑
i=0

(−1)idin.

Note that the augmentation map provides a homomorphism e : C0(S)→ Z (sending
S0 to 1) and a homomorphism e :M → C0(S) (sending m to the constant map m).

If X is a topological space, there exists a simplicial set S•(X) with

Sn(X) := C(|∆n|, X), dni (σ) := σ ◦ δin, et sni (σ) := σ ◦ σin
and we shall write Cn(X) := Cn(S•(X)) as well as Cn(X,M) := Cn(S•(X),M).
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0.7 Some analytic geometry
Let U ⊂ E and V ⊂ F be open subsets of finite dimensional real vector spaces. A
map f : U → V is said to be differentiable at x ∈ U if there exists f ′(x) ∈ L(E,F )
such that

f(x+ h)− f(x)− f ′(x)(h) = o(h).

When f is everywhere differentiable, this defines a map f ′ : U → L(E,F ). One can
then define f (k) and the notion of a k-differentiable map by induction on k ∈ N. The
map f is said to be Ck-differentiable (resp. C∞-differentiable or smooth, resp. Can-
differentiable or analytic) if moreover f (k) is continuous (resp. if f is k-differentiable
for all k ∈ N, resp. and if moreover

f(x+ h) =
∞∑
k=0

1

k!
f (k)(x)(h, . . . , h)

in a neighborhood of any x ∈ U – seing f (k)(x) as a multilinear map). There exists
an obvious complex analog but any complex differentiable map is then automatically
Can and then said to be holomorphic in which case we may write Chol). Everything
below has an equivalent in this situation.

Let us fix some k ∈ {0, 1, . . . ,∞, an}.
A chart on a set X is a bijection φ : U

∼→ U ′ where U ⊂ X and U ′ is an open
subset of Rn for some n ∈ N. The components x1, . . . , xn of the composite map
U

∼→ U ′ ↣ Rn are called coordinates on U or local coordinates on X. A Ck-atlas
on X is a family of charts φi : Ui

∼→ U ′
i for i ∈ I such that X =

⋃
i∈I Ui and for all

i, j ∈ I, if we let Uij := Ui ∩ Uj, then U ′
ij := φi(Uij) is open and the map

φj|Uji
◦ φ−1

i|U ′
ij
: U ′

ij ≃ U ′
ji

is Ck-differentiable. Then, there exists a unique topology on X making each Ui open
and φi a homeomorphism. Any Ck-atlas is contained in a unique maximal Ck-atlas
and a Ck-differentiable manifold is a set X endowed with a maximal Ck-atlas. One
also makes the extra topological assumption that X is Hausdorff and countable at
infinity (a countable union of compact subsets) A map f : X → Y between Ck-
differentiable manifolds is said to be Ck-differentiable if for all charts φ : U

∼→ U ′ and
ψ : V

∼→ V ′ of X and Y respectively, if we set W := U ∩ f−1(V ), then W ′ = φ(W )
is open and the map

ψ ◦ f|W ◦ φ−1
|W ′ : W

′ → V ′

is Ck-differentiable. It is called a Ck-diffeomorphism it is bijective and f−1 also is
Ck-differentiable. We shall denote by Ck(X, Y ) the set of all Ck-differentiable maps
from X to Y and by O(X) the ring of Ck-differentiable maps f : X → R. Note
that, if f ∈ O(X) does not vanish, then 1/f ∈ O(X). Finally, Urysohn’s lemma
holds when k ≤ ∞: if Z1, Z2 ⊂ X are two disjoint closed subsets, then there exists a
Ck-differentiable map f on X such that f|Z1 = 1 and f|Z2 = 0.
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Again, there exists a complex analog of the above theory leading to the notion of
a complex manifold. This is however independent of k when k ̸= 0 in which case we
say holomorphic and write Chol (and Urysohn’s lemma then does not hold).

A vector bundle on a Ck-differentiable manifold X is a Ck-differentiable map
p : E ↠ X endowed with the structure of a vector space on each fiber Ex := p−1(x)
such that there exists a covering of X by open subsets and for each such open subset
U , a Ck-diffeomorphism E|U := p−1(U) ≃ U × Rn inducing an isomorphism of vector
spaces Ex ≃ {x} × Rn for all x ∈ U . As a set, E is simply the disjoint union of the
vector spaces Ex for x ∈ X (but they vary smoothly). A first example is given by
the trivial vector bundle X × V if V is a finite dimensional vector space. It may be
convenient to write OX := X × R.

A morphism of vector bundles is a Ck-differentiable map u : E → F inducing a
linear map ux : Ex → Fx for all x ∈ X. We shall denote by Hom(E,F ) the set of all
morphisms of vector bundles from E to F . One defines a subbundle as well as an
isomorphism of vector bundles in the usual way. One can generalize the definitions
of E ⊕ F , L(E,F ) (and in particular L(E) and E∨) and E ⊗ F from vector spaces
to vector bundles so that they specialize to fibers (for example (E ⊕ F )x = Ex ⊕ Fx).
One can also extend the notions of tensor, symmetric and exterior powers and define
Tn(E), Sn(E) and Λn(E) when E is a vector bundle. A section of a vector bundle
E on an open subset U of X is a Ck-differentiable map s : U → E such that the
composite p ◦ s is merely the inclusion U ↣ X. The set E(U) (or Γ(U,E)) of all
sections of E on U is an O(U)-module (note that OX(U) ≃ O(U) showing that our
notations are compatible). Finally, if E,F are two vector bundles on X then there
exists a bijection

Hom(E,F ) ≃ Γ(X,L(E,F )), u 7→ (x 7→ ux ∈ L(Ex, Fx) = L(E,F )x) .

We assume from now on that k ̸= 0 (and henceforth say topological manifold in
the case k = 0).

A curve on a Ck-manifold X is a Ck-differentiable map γ : I → X defined on
an open neighborhood I of 0 ∈ R. Two curves γ1, γ2 are said to be tangent if there
exists a chart φ : U

∼→ U ′ of X such that6

γ1(0) = γ2(0) ∈ U and (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0).

This is an equivalence relation on the set of all curves γ on X and the set TX of
equivalence classes [γ] is the tangent bundle: there exists an obvious map

p : TX → X, [γ] 7→ γ(0)

and if φ : U
∼→ U ′ is a chart of X, a bijection

TX|U ≃ U × Rn, [γ] 7→ (γ(0), (φ ◦ γ)′(0)).

Any morphism f : X → Y provides a morphism of vector bundles

Tf : TX → X×Y TY, [γ] 7→ (γ(0), [f ◦ γ])
6After replacing γi by its restriction to γ−1

i (U).
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(on charts, it corresponds to (x, h) 7→ (x, f ′(x)(h)).
We assume from now on that k =∞ or k = an (or k = hol in the complex case).
A differential form of degree p on X is a section of the vector bundle Ωp

X :=
Λp(TX)∨ and we may sometimes simply write Ωp. The maps Ωp

X × Ωq
X → Ωp+q

X

coming from the ring structure of exterior powers provide maps

Ωp(X)× Ωq(X)→ Ωp+q(X), (ω, η) 7→ ω ∧ η.

There exists an R-linear map

d : O(X) = Ck(X,R) T→ Hom(TX,OX) ≃ Ω1(X).

If x1, . . . , xn are coordinates on U ⊂ X, then Ω1(U) is a free O(U)-module with basis
dx1, . . . , dxn and (by definition)

df|U =:
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn.

The map d extends uniquely to maps d : Ωp(X)→ Ωp+1(X) for all p = 1, . . . , n− 1
such that

d(ω ∧ η) = d(ω) ∧ η + (−1)pω ∧ dη (1)

for ω ∈ Ωp(X) and η ∈ Ωq(X). The sequence of maps

O(X)
d→ Ω1(X)

d→ · · · d→ Ωn(X)

is called the de Rham complex of X.

0.8 Some algebraic geometry
All rings are assumed to be commutative.

If a is an ideal in a ring A, then its radical is
√
a = {f ∈ A, ∃n ∈ N, fn ∈ a}.

An f ∈
√

(0) is then said to be nilpotent. The ring A is said to be reduced if 0
is the only nilpotent element. It is called a domain (resp. a field) if A ∖ {0} is a
multiplicative sub-monoid (resp. group). If a is an ideal in a ring A and M is an
A-module, then then A/a becomes a ring and M/aM an A/a module. The ideal a
is said to be radical (resp. prime, resp. maximal) if A/a is reduced (resp. a domain,
resp. a field). The ring A is called a local ring if there exists a unique maximal ideal
m in which case k := A/m is called the residue field of A.

If S ⊂ A is a multiplicative submonoid andM is anA-module, then the localization
of M at S is

S−1M = (M × S)/ ∼ with (a, s) ∼ (b, t)⇔ ∃u ∈ S, u(ta− sb) = 0.

The set S−1A is actually a ring and S−1M an S−1A-module. If S is generated by G,
then there exists isomorphisms

S−1A ≃ A[{Ts}s∈G]/(sTs − 1)s∈G and S−1M ≃ S−1A⊗AM.
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As a special case, if f ∈ A (resp. p ⊂ A is a prime ideal), then the localization of
M at f (resp. p) is Mf (resp. Mp) := S−1M where S is the submonoid generated by
f (resp. S = A ∖ p). If A is a domain, then Frac(A) := A(0) is called the fraction
field of A. In general, when p is a prime ideal of A, Ap is a local ring with maximal
ideal pAp.

The (prime) spectrum of A is the set X := Spec(A) of prime ideals of A. Unless
otherwise specified, everything below also holds when X = Spm(A) is the set of
maximal ideals (the maximal spectrum). If p ∈ X, we let κ(p) := Frac(A/p). If
f ∈ A, we shall denote by f(p) the image of f in κ(p):

A A/p κ(p)

f f f(p)

so that f(p) = 0⇔ f ∈ p. If S ⊂ A, we may consider the zero locus

V(S) := {p ∈ X / ∀f ∈ S, f(p) = 0}

of S, so that p ∈ V(S)⇔ S ⊂ p. We always have

V(∅) = X, V(A) = ∅, V(ST ) = V(S)∪V(T ) and V

(⋃
i∈I

Si

)
=
⋂
i∈I

V(Si).

We define the Zariski topology on X by requiring a set to be closed if and only if it
is the zero locus of some S ⊂ A.

On the other hand, if E ⊂ X, then we set

I(E) := {f ∈ A / ∀p ∈ E, f(p) = 0}.

The maps S 7→ V(S) et E 7→ I(E) induce inverse bijections between radical ideals of
A and closed subsets of X. More precisely,

∀S ⊂ A, I(V(S)) =
√

(S) and ∀E ⊂ X, V(I(E)) = E.

A basis for the Zariski topology of X is given by the special domains

D(f) := {p ∈ X / f(p) ̸= 0}

for f ∈ A and we have D(f) ∩D(g) = D(fg). One easily checks that X is compact
(but not Hausdorff in general).

If φ : A → B is a ring homomorphism and Y := Spec(B), then there exists7 a
continuous map u := φ−1 : Y → X. If a is an ideal of A (resp. f ∈ A), then the
“canonical” map A→ A/a (resp. A→ A[1/f ]) provides a homeomorphism

Spec(A/a) ≃ V(a) (resp. Spec(A[1/f ]) ≃ D(f)).

If R→ A is a morphism of commutative rings and I = ker(A⊗R A→ A), then
ΩA/R := I/I2 is the module of relative differential forms of A/R. The R-linear map
A → A ⊗ A, f 7→ 1 ⊗ f − f ⊗ 1 induces an R-linear map d : A → ΩA/R. If we set
Ωp
A/R := ΛpΩA/R, then d extends through formula (1) in order to give the de Rham

complex Ω•
A/R of A/R.

7This is not true in general for maximal ideals.





1. Categories and functors

For those who might worry about set-theoretic issues (see [Shu08] for example),
we shall stay in a fixed universe (some large set, see definition 1.1.1 of [KS06] for
example). We shall then call set only those sets that belong (∈) to our universe1 and
rename collection (or call it large) a set that is only contained (⊂) in our universe.

1.1 Category
1.1.1 Definition/Examples

Definition 1.1.1 A categorya consists in the following data:
1. a collection C of objects,
2. for all X, Y ∈ C, a set Hom(X, Y ) of morphisms,
3. for all X ∈ C, an identity morphism IdX ∈ End(X) := Hom(X,X),
4. for all X, Y, Z ∈ C, a composition rule

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z), (f, g) 7→ g ◦ f

such that
(a) IdY ◦ f = f = f ◦ IdX ,
(b) if h ∈ Hom(Z, T ), then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

aSome authors allow collections (and not merely sets) of morphisms in the definition of a
category and call locally small category what we named a category.

The category is said to be small if all its objects (or equivalently all its morphisms)
form a set and not merely a collection and finite if there exists only a finite number of
morphisms (and consequently of objects). It is called discrete if the only morphisms
are the identities. It is empty if there is no objects at all (and no morphisms).

1They are usually called small sets but we do not want to keep this epithet everywere.
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We will usually write f : X → Y instead of f ∈ Hom(X, Y ) and call X (resp.
Y ) the domain (resp. le codomain) of f . Note that IdX is uniquely determined by
the conditions (4a). A morphism from X to itself is called an endomorphism. In
practice, we shall simply say that the collection C is a category2 but we must not
forget that it involves some extra structure: morphisms and composition. One may
write Ob(C) (resp. Mor(C)) for the collection of all objects (resp. all morphisms) of
C and HomC(X, Y ) (with a subscript C) for the set of morphisms from X to Y .

Examples 1. If G is a monoid, one can then consider the category G with a
unique object •, End(•) := G and composition given by multiplication on Gop

(g ◦ f = fg). This way, we get essentially all categories with a unique object.
2. If ≤ is a preorder on a set X, we will then denote by X the category whose

objects are the elements x ∈ X and morphisms are couples (x, y) for x ≤ y
(composition is then uniquely defined). This way, we get essentially all the
small categories whose Hom have at most one element.

3. As a particular case, one will always endow an unordered set with the minimal
(also called trivial) preorder “=” and consider any set as a category (small
category with no morphisms besides identites). This way, we get all small
discrete categories.

4. We shall consider the category n associated to the (trivial) set n := {0, 1, . . . , n−
1} (with only identities as morphisms). But we shall also consider the category
[n] associated to the set [n] := {0, . . . , n} with respect to usual order 0 ≤ 1 ≤
. . . ≤ n. For example, [0] = 1 is the category that has exactly one object
and one morphism, [1] is a category with two distinct objects and a unique
morphism between them (plus the identities).

5. If X is a topological space, then Open(X) is ordered by inclusion and we shall
denote by Open(X) the corresponding category.

6. There exists a (small) category ∆ with positive integers [n] := n+1 = {0, . . . , n}
as objects and order preserving maps as morphisms.

7. We shall denote by Set the (large) category whose objects are sets and mor-
phisms are maps between them. We shall write F(X, Y ) for the set of all maps
between two sets.

8. In the same way, we shall consider the (large) category Top whose objects
are topological spaces and morphisms are continuous maps. We shall write
C(X, Y ) for the set of continuous maps between two topological spaces.

9. Finally, we will denote by Ab the (large) category whose objects are abelian
groups and morphisms are homomorphisms.

Exercise 1.1.2 Define the categories Ord, Mon, Grp, Ring, CRing, G-Set (resp.
Set-G), A-Mod (resp. Mod-A) and k-Alg of preordered sets, monoids, groups,
rings, commutative rings, left (resp. right) G-sets, left (resp. right) A-modules
and k-algebras.

The opposite category to a category C is the category Cop with the same objects as
C but HomCop(X, Y ) = HomC(Y,X) (and composition going in the reverse direction).

2As one usually denotes a group by G without explicitly mentioning the multiplication rule.
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We have (Cop)op = C. The product C × C ′ of two categories C and C ′ is made into a
category in the obvious way: everything is done termwise. This extends to arbitrary
products

∏
i∈I Ci (families of objects and families of morphisms). If C is a category,

then the category Mor(C) of morphisms of C is defined as follows: an object is a
morphism of C and a morphism between f : X → Y and g : X ′ → Y ′ is a pair of
morphisms in C, φ : X → X ′ and ψ : Y → Y ′, such that g ◦ φ = ψ ◦ f :

X Y

X ′ Y ′.

f

φ ψ

f ′

Also, if X ∈ C, then the category X\C of objects of C under X is defined as follows:
an object of X\C is a morphism f : X → Y and a morphism from f : X → Y to
g : X → Z is a morphism h : Y → Z such that h ◦ f = g:

Y

X

Z.

h

f

g

Also, C/X := (X\Cop)op is the category of objects of C over X. This is our first
example of dual construction.

Exercise 1.1.3 Show that, if G is a monoid, then the set of objects of Mor(G) is
G and that, if X is a preordered set, then the set of objects of Mor(X) is the
graph Γ of the relation.

Exercise 1.1.4 Make C/X explicit when X is an object of a category C.

1.1.2 Isomorphism
Definition 1.1.5 In a category C,

1. a section (resp. a retraction) of a morphism f : X → Y is a morphism
g : Y → X such that f ◦ g = IdY (resp. IdX = g ◦ f):

X Y
f

g

(resp. X Y
f

g

).

2. an isomorphism is a morphism that has at the same time a section and a
retraction. When there exists an isomorphism X

∼→ Y , one says that X and
Y are isomorphic and writes X ≃ Y . An isomorphism between X and itself
is called an automorphism.

One denotes by Isom(X, Y ) the set of all isomorphisms X ∼→ Y and by Aut(X)
the group of all automorphisms of X.

Sections and retractions may also be called rigth and left inverses respectively.
Clearly, f is a section of g if and only if g is a retraction of f . Also retraction (resp.
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section) in C is the same thing as a section (resp. retraction) in Cop (they are dual
notions).

Examples 1. A map f : X → Y (between sets) has a section (resp. retraction)
if and only if it is surjective (resp. injective unless X = ∅).

2. A retract A of a topological space X is a subspace such that the inclusion map
A↣ X has a retraction.

3. A direct summand M ′ of a module M is a submodule such that the inclusion
map M ′ ↣M has a retraction.

Proposition 1.1.6 If f is an isomorphism, then it has a unique section and a unique
retraction and they are the same.

Proof. If IdY = f ◦ g and h ◦ f = IdX , then

h = h ◦ IdY = h ◦ f ◦ g = IdX ◦ g = g. ■

The unique section/retraction of an isomorphism f is called its inverse and
denoted by f−1.

Exercise 1.1.7 What is an isomorphism in Set, in Top, in Ab, etc. ? In G if G is
a monoid ? In X if X is a preordered set ?

1.1.3 Subcategory
Definition 1.1.8 A subcategory of a category C is the data of

1. a subcollection C ′ ⊂ C,
2. for all X, Y ∈ C ′, a subset HomC′(X, Y ) ⊂ HomC(X, Y ), such that

(a) if X ∈ C ′, then IdX ∈ EndC′(X) := HomC′(X,X),
(b) if X, Y, Z ∈ C ′, f ∈ HomC′(X, Y ) and g ∈ HomC′(Y, Z), then g ◦ f ∈

HomC′(X,Z).
It is a full subcategory if actually

∀X, Y ∈ C ′, HomC′(X, Y ) = HomC(X, Y ).

A subcategory becomes a category with the induced composition. A full subcate-
gory is uniquely determined by its objects. The subcategory is said to be wide if
Ob(C ′) = Ob(C).

Examples 1. Ab is a full subcategory of Grp which itself is a full subcategory
of Mon (which itself is a non-full subcategory of the category of semigroups or
magmas for example).

2. If X is a topological space, then Open(X) is a subcategory of Set which is not
full.

3. Top is not a subcategory of Set and neither is Ab (but see the notion of a
faithful functor below).

4. If X is any topological space, then an espace étalé over X is a local homeomor-
phism X ′ → X. They form a full subcategory Et(X) ⊂ Top/X .

5. ∆ is a full subcategory of Ord.
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6. We may consider the wide subcategory ∆inj of ∆ with the same objects but
only order preserving injective maps as morphism.

7. Conversely, we may consider ∆ (resp. ∆inj) as a full subcategory of ∆+ (resp.
∆+

inj) which is defined by adding [−1] = ∅.

If C is a category, we can consider the relation “→” on the collection C given by

X → Y ⇔ Hom(X,Y ) ̸= ∅

as well as the quotient3

π0(C) := C/→ .

Definition 1.1.9 A connected component of C is an element of π0(C). The category C is said to
be connected if there exists a unique connected component.

The relation “→” is not an equivalence relation: actually, X and Y will be connected to each
other (in the same connected component) when there exists a zigzag of morphisms

X = X0 → X1 ← X2 → · · · ← Xn−1 → Xn = Y.

The category C is the disjoint union of its connected components that will all be viewed as full
subcategories of C.

Examples 1. The categories Set, Ab, Top, etc. are all connected.
2. If a set X is endowed with a preorder relation R, then π0(X) = X/R and a connected

component is the same thing as an equivalence class.

1.2 Functor
1.2.1 Definition/Examples

Definition 1.2.1 1. A (covariant) functor F : C → C ′ between two categories
is the data for all X ∈ C of F (X) ∈ C ′ and for all f : X → Y of F (f) :
F (X) → F (Y ), in such a way that we always have F (IdX) = IdF (X) and
F (g ◦ f) = F (g) ◦ F (f).

2. If G : C ′ → C ′′ is another functor, then their composite is the functor G ◦ F
given by (G ◦ F )(X) = G(F (X)) and (G ◦ F )(f) = G(F (f)).

We will denote by Hom(C, C ′) the collection of all functors C → C ′. We will often
describe the functors by their action on the objects and let the reader guess what
happens for morphisms.

There always exists an identity functor IdC : C → C that doesn’t change anything.
Also, a category C ′ is a subcategory of C if and only if all objects (resp. morphisms)
of C ′ are objects (resp. morphisms) of C and inclusion is functorial. A functor
F : C → C ′ is called an isomorphism it there exists a functor G such that IdC = G◦F
and F ◦G = IdC′ (but this is not a very interesting notion). A functor F : Cop → C ′
is also called a contravariant functor from C to C ′. Any functor F : C → C ′ provides
a functor F op : Cop → C ′op and this construction is “functorial” : IdCop = Idop

C and
(G ◦ F )op = Gop ◦ F op.

3A very large set.
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Examples 1. There exists a functor that forgets topology (and continuity)
Top → Set (underlying set). In the other direction, there exits a functor
X 7→ Xdisc (resp. X 7→ Xcoarse) that endow a set X with the discrete (resp.
coarse) topology.

2. There also exists a (contravariant) functor

Topop → Ord, X 7→ Open(X), f 7→ f−1.

3. There exists a functor that forgets the algebraic structure Ab→ Set (underlying
set) and, in the other direction, a functor X 7→ Z ·X (or Z(X)) which sends a
set to the free free abelian group generated by X.

4. There exists an inclusion functor Grp ↣ Mon and two functors G 7→ G× and

G 7→ Ggr := ⟨xg, g ∈ G / xgh = xgxh, g, h ∈ G, x1 = 1⟩

in the reverse direction.
5. Small categories and functors between them form a category that we shall

denote Cat and there exists functors

Mon→ Cat, G 7→ G and Ord→ Cat, X 7→ X.

6. A (contravariant) functor F : Cop → D is also called a presheaf on C with
values in D. If X is a topological space, then a presheaf F on Open(X) with
values in Set (also called a presheaf of sets on X) is the following data:
(a) a set F (U) of sections on any open subset U of X, and
(b) restriction maps F (U)→ F (V ), s 7→ s|V for V ⊂ U satisfying (s|V )|W =

s|W when W ⊂ V and s|U = s.

Exercise 1.2.2 What is a functor G→ H between categories associated to monoids
? What is a functor X→ Y between categories associated to preordered sets ?

Exercise 1.2.3 What are the analogs of the “free abelian group” functor X 7→ Z ·X
for the categories Mon, Grp, A-Mod and k-Alg ?

Hint. We only describe the first one. The free monoid generated by a set X is
G := {g : n→ X,n ∈ N} endowed with

gh : n+m→ X, i 7→
{
g(i) if i < n
h(i− n) otherwise.

In other words, X represents the alphabet, G denotes the set of words formed using
this alphabet, and the operation is concatenation. ■

Exercise 1.2.4 Show that, besides the inclusion functor Ab ↣ Grp, there exists
an abelianization functor G 7→ Gab = G/[G,G] in the other direction. Show that
the center is not functorial in the sense that a group homomorphism φ : G→ H
does not necessarily induce a morphism of abelian groups Z(G)→ Z(H).
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Exercise 1.2.5 Show that the categories Z-Mod and Ab are isomorphic. Same
thing with the categories Z-Alg and Ring, and, more generally, k-Alg and a full
subcategory of k\Ring (the image of k must be in the center).

Exercise 1.2.6 Show that the image of a section (resp. a retraction, resp. an
inverse) by a functor is a section (resp. a retraction, resp. an inverse).

If we are given two categories C and C ′, then the projections C × C ′ on C and
C ′ are functorial. The same holds for the obvious partial functors C ′ ↣ C × C ′ or
C ↣ C × C ′ associated to a fixed object X ∈ C or X ′ ∈ C ′. If C is any categoy, then
there exists domain and codomain functors Mor(C) ⇒ C as well as forgetful functors
X\C → C and C/X → C.

Exercise 1.2.7 Let us denote by Op(C) ⊂Mor(C) the subcategory whose objects
are morphisms with codomain identical to the domain and morphisms have same
component on domain and codomain (objects with operator). Show that, if k is a
commutative ring, then Op(k-Mod) is isomorphic to k[t]-Mod.

Solution. If E is a k[t]-module, then it is a k-module by restriction of scalars and the
map u : E → E, x 7→ tx is k-linear. Conversely, if E is a k-module and u ∈ L(E),
then there exists a unique morphism of k-algebras k[t] → L(E), t 7→ u. This defines
the structure of a k[t]-module on E. Concretely, fx := f(u)(x) for f ∈ k[t] and
x ∈ E. Thus, we have an explicit bijection on objects and we turn now to morphisms.
First of all, functoriality is automatic. Now, if we are given a morphism of k[t]-
modules φ : E → F and we denote by u ∈ L(E) and v ∈ L(F ) the corresponding
endomorphisms, then we have (φ ◦ u)(x) = φ(tx) = tφ(x) = (v ◦ φ)(x) for x ∈ E so
that φ ◦ u = v ◦ φ. It remains to show that, any k-linear map φ : E → F satisfying
φ ◦ u = v ◦ φ is a morphism of k[t]-modules. We give ourselves f ∈ k[t] and x ∈ E
and we need to prove that φ(fx) = fφ(x), or equivalently φ(f(u)(x)) = f(v)(φ(x)).
In other words, we have to show that φ ◦ f(u) = f(v) ◦ φ. By linearity, we may
assume that f = tn for some n ∈ N and the assertion reduces to φ ◦ un = vn ◦ φ
which is easily obtained by induction. ■

If C is any category, then there exists a very important functor

Hom : Cop × C → Set, (X, Y ) 7→ HomC(X, Y )

that sends a couple (f, g) of morphisms to the map φ 7→ g ◦ φ ◦ f . If we compose
with partial functors, we get the (fundamental) functors

hXC : C → Set, Y 7→ HomC(X, Y )

and

hCY := hYCop : Cop → Set, X 7→ HomC(X, Y ).

When there is no ambiguity, we shall drop the reference to C and simply write hX
and hY . We may also write g∗(φ) := hg(φ) = g ◦ φ and f ∗(φ) = hf (φ) = φ ◦ f .
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1.2.2 Natural transformation
Definition 1.2.8 1. If F,G : C → C ′ are two functors, then a natural transfor-

mation α : F ⇒ G is a collection of morphisms αX : F (X)→ G(X) for all
X ∈ C such that, for all f : X → Y , we have αY ◦ F (f) = G(f) ◦ αX :

F (X) F (Y )

G(X) G(Y ).

F (f)

αX αY

G(f)

We shall say natural isomorphism and write F ≃ G if all αX are isomor-
phisms.

2. If β : G ⇒ H is another natural transformation, then their composition
β ◦ α : F ⇒ H is the natural transformation defined by (β ◦ α)X = βX ◦ αX
for X ∈ C.

We shall denote by Hom(F,G) the collection of all natural transformations form
F to G. If C is a small category, then the functors F : C → C ′ make a (large) category
Hom(C, C ′) with natural transformations as morphisms. One can check that the
isomorphisms are then exactly the natural isomorphisms defined above.

Examples 1. With

F : CRing Grp

k GLn(k)
and

G : CRing Grp

k k×,

there exists a natural transformation α : F → G by considering

αk = det
k

: GLn(k)→ k×.

This is a natural isomorphism for n = 1.
2. If C is any category, then there exists isomorphisms of categories

Hom(0, C) ≃ 1, Hom(1, C) ≃ C,

Hom(2, C) ≃ C × C and Hom([1], C) ≃Mor(C).
3. If G is a monoid, then there exists an isomorphism Hom(G,Set) ≃ G-Set.
4. Presheaves on a small category C with values in a category D form a category
Ĉ(D) := Hom(Cop,D) simply denoted Ĉ in the case D = Set. In the case
of presheaves of sets on a topological space X, a morphism α : F → G is
given by a family of maps αU : F (U) → G(U) for U open in X satisfying
αV (s|V ) = (αU(s))|V whenever V ⊂ U and s ∈ F(U).

Exercise 1.2.9 Show that
1. if C is a small category, then there exists an isomorphism of categories

Hom(C,D)op ≃ Hom(Cop,Dop),
2. if C and C ′ are two small categories, then there exists an isomorphism of
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categories

Hom(C × C ′,D) ≃ Hom(C,Hom(C ′,D)).
By composition, if C is a small category, then any functor G : D → D′ induces a

functor

Hom(C,D)→ Hom(C,D′), F 7→ G ◦ F.

Also, if D is any category, then any functor G : C → C ′ beween small categories
induces a functor

Hom(C ′,D)→ Hom(C,D), F 7→ F ◦G.

Exercise 1.2.10 Show that, there exists a functor

Catop ×Cat→ Cat, (C,D) 7→ Hom(C,D).

Definition 1.2.11 Assume given two functors S : S → C and T : T → C with same target
C. An object in the comma category (S ↓ T ) is a triple (X ∈ S, Y ∈ T , f : S(X)→ T (Y )). A
morphism (X,Y, f) → (X ′, Y ′, f ′) is a pair of morphisms u : X → X ′, v : Y → Y ′ such that
F (v) ◦ f = f ◦ F (u).

Examples 1. In case C = 1, we have (S ↓ T ) ≃ S × T .
2. We have (S ↓ T )op ≃ (T op ↓ Sop).
3. (IdC ↓ IdC) ≃Mor(C) ≃ Hom([1], C).
4. (IdC ↓ 1

X→ C) ≃ C/X and (1
X→ C ↓ IdC) ≃ X\C.

5. One may aslo write C/T := (IdC ↓ T ) and S\C := (S ↓ IdC).
6. Or S/X := (S ↓ 1 X→ C) and X\T := (1

X→ C ↓ T )

Recall that the notion of a simplicial set was introduced in section 0.6.
Exercise 1.2.12 Show that the category SSet of simplicial sets is isomorphic to
the category ∆̂ of presheaves of sets on ∆. Analog with semi-simplicial sets and
∆̂inj.

Hint. This is based on the following observations:
1. Any morphism in ∆ splits as a surjective morphism followed by an injective

morphism,
2. any injective (resp. surjective) morphism [n] ↪→ [m+ 1] with n ≤ m factors

through an injective (resp. surjective) morphism [m] → [m+1] ([n] → [n−1]),
3. an injective (resp. surjective) morphism [m] → [m+ 1] (resp. [n] → [n− 1])

is the same thing as a face (resp. degeneracy) map. ■

It is straightforwards to generalize the notion of a simplicial set:
Definition 1.2.13 A simplicial object of a category D is a presheaf

X• : ∆
op → D, [n] 7→ Xn.

Dually, a cosimplicial object is a functor X• : ∆→ D, [n] 7→ Xn.
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Exercise 1.2.14 Show that there exists a cosimplicial object |∆•| of Top sending
[n] to |∆n| and u : [n] → [m] to the unique linear map sending ei to eu(i) if
(e0, . . . , en) denotes the usual basis of Rn+1.

Exercise 1.2.15 Show that the simplicial set S•(X) associated to a topological
space X corresponds to hX ◦|∆•| under SSet ≃ ∆̂ and that this provides a functor
Top→ ∆̂ sending a topological space X to its associated simplical set S•(X).

If C is a small category, then the nerve of C is the simplicial set C• where Cn is
the set of couples

((Xi)
n
i=0, (fi ∈ Hom(Xi−1, Xi)

n
i=1)

depicted as X0
f1→ X1

f2→ . . .
fn→ Xn and such a couple is sent by u = [m]→ [n] to

((Xu(i))
m
i=0, (fu(i) ◦ fu(i)−1 ◦ · · · ◦ fu(i−1) ∈ Hom(Xu(i)−1, Xu(i))

m
i=1)

(with the convention that the empty composition is the identity).
Exercise 1.2.16 Show that C• is indeed a simplicial set and that we obtain a
functor Cat→ ∆̂. Give an explicit description in low degree.

Proof. We only do the explicit description: C0 = C is the set of objects X, C1 is the
set of morphisms X → Y , C2 is the set of pairs of morphisms X → Y → Z. One has

s0(X) = IdX ,

{
d0(X

f→ Y ) = Y

d1(X
f→ Y ) = X,

{
s0(X

f→ Y ) = X
IdX→ X

f→ Y

s1(X
f→ Y ) = X

f→ Y
IdY→ Y,

d0(X
f→ Y

g→ Z) = Y
g→ Z

d1(X
f→ Y

g→ Z) = X
g◦f→ Z

d2(X
f→ Y

g→ Z) = X
f→ Y,


s0(X

f→ Y
g→ Z) = X

IdX→ X
f→ Y

g→ Z

s1(X
f→ Y

g→ Z) = X
f→ Y

IdY→ Y
g→ Z

s2(X
f→ Y

g→ Z) = X
f→ Y

g→ Z
IdZ→ Z.

■

1.2.3 Equivalence
Definition 1.2.17 A functor F : C → C ′ is said to be

1. faithful (resp. full, resp. fully faithful) if for all X, Y ∈ C, the map

Hom(X, Y )→ Hom(F (X), F (Y )), f 7→ F (f)

is injective (resp. surjective, resp. bijective).
2. essentially surjective if for all X ′ ∈ C ′, there exists X ∈ C such that
X ′ ≃ F (X).

3. an equivalence of categories if there exists G : C ′ → C such that IdC ≃ G ◦F
and F ◦G ≃ IdC′ (and G is then called a quasi-inverse).

One can also define the essential image of a functor F as the collection of all
X ′ ∈ C ′ such that there exists X ∈ C with X ′ ≃ F (X). The functor F is then
essentially surjective when the essential image is equal to C ′.
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The inclusion of a (full) subcategory is a (fully) faithful functor that we shall call
an embedding. An isomorphism of categories is an equivalence (but not conversely).
We shall use the notation C ≃ C ′ for the wider notion of equivalence (and not merely
isomorphism) of categories. One sometimes says that two categories C and C ′ are
anti-equivalent if Cop ≃ C ′.

Exercise 1.2.18 Show that the forgetful functors Top→ Set and Ab→ Set are
faithful but not fully faithful.

Exercise 1.2.19 Show that there exists a fully faithful functor

Mon ↣ Cat, G 7→ G, (resp. Ord ↣ Cat, X 7→ X).

What is the essential image ?

Exercise 1.2.20 Show that there exists a fully faithful functor Cat ↣ ∆̂.

Exercise 1.2.21 Show that if F ≃ F ′, then F is faithful (resp. full, resp. fully
faithful, essentially surjective, an equivalence) if and only if F ′ is.

Theorem 1.2.22 A functor is an equivalence of categories if and only if it is fully
faithful and essentially surjective.

Proof. To show that the condition is necessary, we first remark that our functor
F : C → C ′ will be essentially surjective since we will always have X ′ ≃ F (X) with
X := G(X ′) if G is a quasi-inverse for F . Then, we consider the following sequence
of maps

Hom(X, Y )
F→ Hom(F (X), F (Y ))

G→ Hom(G(F (X)), G(F (Y )))
F→ Hom(F (G(F (X))), F (G(F (Y ))))

Since G ◦F (resp. F ◦G) is fully faithful, the composition of the first (resp. last) two
arrows is bijective. It follows that all arrows are actually bijections and, in particular,
F is fully faithful.

To show that the condition is sufficient, we choose for all X ′ ∈ C ′ an object
X ∈ C and an isomorphism βX′ : F (X) ≃ X ′. We set G(X ′) := X so that
βX′ : F (G(X ′)) ≃ X ′. Since F is fully faithful, there exists for each f ′ : X ′ → Y ′

in C ′ a unique f : G(X ′) → G(Y ′) such that F (f) = β−1
Y ′ ◦ f ′ ◦ βX′ . We then set

G(f ′) = f so that βY ◦ F (G(f ′)) = f ′ ◦ βX′ One easily checks that G is a functor
and we obtain by construction a natural isomorphism β : F ◦G ≃ IdC′ . In particular,
if X ∈ C, then there exists a natural isomorphism βF (X) : F (G(F (X))) ≃ F (X) and,
since F is fully faithful, there exists a unique morphism αX : X ≃ (G ◦ F )(X) such
that F (αX) = β−1

F (X). One easily checks that α is indeed a natural isomorphism. ■

Exercise 1.2.23 Show that if X is a preordered set and Y denotes its ordered
quotient, then the categories X and Y are equivalent.
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Exercise 1.2.24 Show that, if A is a ring, then Mat(A) := N, endowed with
Hom(m,n) = Mn×m(A) and multiplication of matrices, is a small category. Show
that if A is a field k, then Mat(k) is equivalent, but not isomorphic, to the category
of finite dimensional k-vector spaces (which is large).

1.2.4 Universal property
Definition 1.2.25 Given a functor F : C → Set, an object X ∈ C and s ∈ F (X),
we say that (X, s) is universal for F or that it represents F if

∀Y ∈ C,∀t ∈ F (Y ),∃!f : X → Y, F (f)(s) = t. (1.1)

This may be pictured as follows:

X F (X) s

Y F (Y ) t.

∃!f F (f)

We may also say that “the couple (X ∈ C, s ∈ F (X)) is universal among all
couples (Y ∈ C, t ∈ F (Y ))”, or that “s ∈ F (X) is universal for t ∈ F (Y )” or that “X
represents F ” (not mentioning s explicitlty).

Examples 1. (Z, 1) represents the forgetful functor Grp→ Set.
2. If k is a commutative ring then (k[t], t) represents the forgetful functor k-Alg→

Set (universal property of polynomials).
3. (Z, 0) represents the constant functor Ring ↠ 1 ↣ Set (Z is initial for rings).
4. The real line R (together with IdR) represents the (contravariant) functor

O : X 7→ Ck(X,R)

on Ck-manifolds.
5. The inclusion Y ↣ X of a subspace into a topological space is universal for

continuous maps f : Z → X such that f(Z) ⊂ Y (contravariant F ).

Exercise 1.2.26 Show that, if F is represented by both X and X ′, then X ≃ X ′.
More precisely, show that if both (X, s) and (X ′, s′) are universal for F , then
there exists a unique isomorphism f : X ≃ X ′ such that F (f)(s) = s′.

Exercise 1.2.27 Show that usual forgetful functors are representable.

Exercise 1.2.28 Show that M ⊗k N is universal for (the functor that sends P to
the set of) bilinear maps M ×N → P .

Exercise 1.2.29 Let k be a commutative ring and f1, . . . , fr ∈ k[t1, . . . , tn]. Show
that the functor that sends a commutative k-algebra A (make the morphisms
explicit) to the set

S(A) := {(a1, . . . , an) ∈ An / f1(a1, . . . , an) = · · · = fr(a1, . . . , an) = 0}



1.2 Functor 37

of all solutions with values in A, is representable.

Lemma 1.2.30 — Yoneda. If F : C → Set is any functor and X ∈ C, then there
exists a natural bijection

Hom(hX , F ) ≃ F (X), α 7→ αX(IdX).

With a contravariant functor F : Cop → Set, it simply reads Hom(hX , F ) ≃ F (X).

Proof. Given s ∈ F (X), if Y ∈ C and f : X → Y , then we set αY (f) := F (f)(s).
This defines a map αY : Hom(X, Y )→ F (Y ) and we shall show that this is natural,
meaning that

αZ ◦ hX(g) = F (g) ◦ αY

if g : Y → Z. Indeed, we do have

(αZ ◦ hX(g))(f) = αZ(h
X(g)(f)) = αZ(g ◦ f) = F (g ◦ f)(s)

= (F (g) ◦ F (f))(s) = (F (g)(F (f)(s)) = F (g)(αY (f)) = (F (g) ◦ αY )(f).

It only remains to check that we did define a natural inverse as well as the naturality
(exercise). ■

Proposition 1.2.31 A functor F : C → Set is represented by X ∈ C if and only if
hX ≃ F .

Proof. We may simply apply Yoneda lemma: the condition means that there exists
a natural transformation α : hX → F which is an isomorphism. This α corresponds
to some s ∈ F (X) and property 1.1 exactly means that αY is always bijective since,
necessarily, F (f)(s) = αY (f). ■

In other words, F is represented by X if and only if there exists a natural bijection
Hom(X, Y ) ≃ F (Y ). For a contravariant functor F : Cop → Set, the condition reads
Hom(Y,X) ≃ F (Y ) or, equivalently, hX ≃ F .

Exercise 1.2.32 Show that if C is a small category, then there exists a fully faithful
Yoneda functor

ょ : C ↣ Ĉ, X 7→ hX .

Solution. If X, Y ∈ C, then Yoneda’s lemma on Cop shows that the map

Hom(hX , hY ) ≃ hY (X) = Hom(X, Y ), α 7→ αX(IdX)

is bijective. It is therefore sufficient to notice that, for f : X → Y , we have
hXf (IdX) = f ◦ IdX = f . ■
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1.3 Limit

1.3.1 Diagram, cone and limit
Definition 1.3.1 Let I be a small category and C any category. A commutative
diagram of shape I in C is a functor D : I → C.

A commutative diagram on I in C is therefore the data of an object Xi for all
i ∈ I and a morphism fα : Xi → Xj for all α : i → j satisfying fIdi = IdXi

and
fβ◦α = fβ ◦ fα:

Xi Xj

Xk.

fα

fβ◦α

fβ

We shall denote such a diagram as (fα : Xi → Xj) or (Xi, fα), and the category of all
commutative diagrams on I in C by CI := Hom(I, C). A morphism (Xi, fα)→ (Yi, gα)
is simply a family of morphisms ui : Xi → Yi satisfying gα ◦ ui = uj ◦ fα for all
α : i→ j.

A commutative diagram is said to be empty, discrete or finite when I has this
property. In particular, a discrete diagram is the same thing as a family of objects.

By composition, any functor λ : I → J between small categories will provide a
functor λ∗ : CJ → CI between diagrams (and this is functorial). As a particular case,
the unique functor I → 1 induces the constant diagram functor

C ≃ C1 → CI , X 7→ X.

Definition 1.3.2 A cone for a diagram D in C is an object X ∈ C together with a
morphism X → D.

In more down to earth terms, a cone for (Xi, fα) is an object X together with
a family of structural morphisms pi : X → Xi satisfying pj = fα ◦ pi whenever
α : i→ j:

Xi

X

Xj.

fα

pi

pj

The cone is said to be empty, discrete or finite when the diagram has this property.
The dual notion is that of a cocone.

Definition 1.3.3 A limit X of a commutative diagram D of shape I in C is a
universal cone for D.
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In other words, X is a limit for D if and only if X is a cone for D and, given any
cone Y for D, there exists a unique morphism f : Y → X making commutative the
diagram

Y X

D.

f

Formally, it means that the composite (contravariant) functor hD ◦ is represented
by X. Equivalently, there exists a natural isomorphism

HomCI (Y ,D) ≃ HomC(Y,X)

in Y ∈ C.
In down to earth terms, a commutative diagram (Xi, fα) has X as a limit if

and only if we are given for each i ∈ I a morphism pi : X → Xi such that for all
α : i→ j, we have pj = fα ◦ pi with the following universal property: if we are given
some Y ∈ C endowed for all i ∈ I with a morphism gi : Y → Xi such that for each
u : i→ j, we have gj = fα ◦ gi, then there exists a unique morphism g : Y → X such
that for all i ∈ I, we have gi = pi ◦ g:

Xi

Y X

Xj.

fα
g

gi

gj

pi

pj

(1.2)

A limit is unique up to a unique isomorphism and we may sometimes say the
limit and write X = lim←−D or X = lim←−I D. This should however been understood in
the sense that X (together with all structural maps) is a limit of D. A limit X of a
diagram D in Cop is also called a colimit in C and we shall write X = lim−→D. Some
authors call a limit (resp. colimit) an inverse (resp. a direct) limit, a projective (resp.
an inductive) limit or a left (resp. a right) limit. We have the following important
formulas:

Hom(Y ,D) ≃ Hom(Y, lim←−D) et Hom(lim−→D, Y ) ≃ Hom(D, Y ).

When we write a limit or a colimit, we implicitly assume that it exists.
Exercise 1.3.4 Write down a diagram for the colimit as in (1.2).

Exercise 1.3.5 Show that in an preordered set, a limit (resp. colimit) is a least
upper bound or inf or join (resp. greatest lower bound or sup or meet). What
about cone and cocone ?
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Exercise 1.3.6 Show that, if D → D′ is a morphism of diagrams of shape I in C
with respective limits X and X ′, then there exists a unique morphism X → X ′

making commutative the diagram

D D′

X X ′

Definition 1.3.7 A functor λ : J → I between small categories is said to be finala if the comma
category i\λ is non empty connected whenever i ∈ I.

aThis used to be called cofinal.

For the sake of completeness, recall that an object of i\λ is a couple (j, α) with j ∈ J and
α : i→ λ(j). A morphism (j, α)→ (j′, α′) is a morphism β : j → j′ in J such that λ(β) ◦ α = α′.

We may also say that J is final in I via λ. The dual notion is that of an initial functor (λop is
final). An order preserving map λ : I → J is a between two preordered sets is said to be final/initial
if the corresponding functor is

Examples 1. I → 1 is final if and only if I is non empty connected.
2. A functor 1→ C, 0 7→ X is final if and only if X is a final object (see below) of C.
3. A subset of N is final (for the usual order) if and only if it is infinite.
4. Assume J ⊂ I and we can complete (on the right) any of the following diagrams:

i j and

j

i j′′

j′

(it means that

∀i ∈ I, ∃j ∈ J, ∃α : i→ j and

∀i ∈ I, ∀j, j′ ∈ J, ∀α : i→ j, α′ : i→ j′,

∃j′′ ∈ J, ∃γ : i→ j′′, β′ : j′′ → j, β′ : j′′ → j′, β ◦ γ = α, β′ ◦ γ = α′).

Then J is final in I.

Exercise 1.3.8 Show that, if X is a metric space and V denotes the set of neighborhoods of
x ∈ X, then the map

R>0 → V, ϵ 7→ B(x, ϵ)

is initiala.
aThis maybe seen as the origin of the surge of ϵ in analysis.

We may always replace the shape of a diagram along a final (or initial) functor:

Proposition 1.3.9 The following are equivalent (and dual):
1. the functor λ : J → I is final,
2. if D is a diagram of shape I, then lim−→λ∗(D) = lim−→D.

Proof. To do. ■
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1.3.2 Specific limits
Definition 1.3.10 A empty limit in C is called a final object and denoted by 1C.
Dually, we get the notion of an initial object 0C.

If X ∈ C, there exists a unique morphism X → 1C (resp. 0C → X).

Examples 1. In Set, the initial object is ∅ and 1 is a final object (defined up to
a unique bijection).

2. Same thing in Top.
3. In Ab, {0} is both a final and an initial object.

In general, cones for a diagram D in C form a category C/D and a limit of D is
the same thing as a final object of C/D.

Definition 1.3.11 A discrete limit is called a product and denoted by
∏

i∈I Xi. The
dual notion is that of a coproduct denoted by

∐
i∈I Xi.

If X =
∏

i∈I Xi, then there exists structural maps pi : X → Xi. It is equivalent
to give a morphism f : Y → X or its components fi := pi ◦ f and we shall then write
f = (fi)i∈I (and dual).

When there are only a finite number of objects X1, . . . , Xn, we shall write
X1 × · · · ×Xn (resp. X1 ⊔ · · · ⊔Xn). When all Xi are equal to the same X, we shall
write XI (resp. X(I)). Note that a final object is nothing else but the empty product
(and dual).

Examples 1. In Set, the cartesian product is a product and the disjoint union
is a coproduct.

2. In Top, this is the same thing with the coarser (resp. finer) topology making
the projections (resp. injections) continuous.

3. In Ab, the cartesian product with termwise addition is a product and the
direct sum is a coproduct4 (product equals coproduct when I is finite).

The morphism δ = (IdX , IdX) : X → X × X is called the diagonal morphism.
The morphism τ = (p2, p1) : X × Y → Y × X is called the flip morphism. The
morphism (p1, p2, p1, p3) : X × Y × Z → X × Y × X × Z (resp. (p1, p3, p2, p3)) is
called the left (resp. right) distribution morphism.

Exercise 1.3.12 Show that there exists “canonical” isomorphisms (and dual)
1. X × 1C ≃ X for X ∈ C,
2. X × Y ≃ Y ×X for X, Y ∈ C and
3. (X × Y )× Z ≃ X × (Y × Z) for X, Y, Z ∈ C.

Solution. We only do the last one. There exists obvious morphisms p1 : (X×Y )×Z →
X × Y → X, p2 : (X × Y )× Z → X × Y → Y and p3 : (X × Y )× Z → Z defining
a cone for the discrete diagram (X, Y, Z). Conversely, given such a cone (f1 : T →
X, f2 : T → Y, f3 : T → Z), there exists a unique morphism f ′ : T → X × Y whose
components are f1 and f2. Then, there exists a unique morphism f : T → (X×Y )×Z

4Be careful that what is called free product is a coproduct in the category of (non abelian)
groups.
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whose components are f ′ and f3. In other words, there exists a unique morphism
satisfying pi ◦ f = fi for i = 1, 2, 3. This shows that (X × Y ) × Z is a limit for
(X, Y, Z). Following the same lines, on sees that X × (Y × Z) also is a limit for this
diagram. They are therefore isomorphic. ■

Definition 1.3.13 A category is said to be cartesian if all finite products exist.

Exercise 1.3.14 Show that, if C is a cartesian category, then there exists a functor

C → ∆̂(C) := Hom(∆op, C), X 7→ X•

where Xn := Xn+1 and u : [m] → [n] is sent to the unique morphism Xn+1 →
Xm+1 whose i-th component is the j-th projection with j := u(i− 1)

Definition 1.3.15 A limit X of a diagram (X1
f1→ X0

f2← X2) is called a fibered
product of X1 and X2 over X0 and denoted by X1 ×X0 X2. We shall then also say
that the diagram

X X1

X2 X0

p1

p2
⌜

f1

f2

(1.3)

is cartesian or that p2 is the pullback of f1 along f2 (and p1 is the pullback of
f2 along f1). Dually, there exists the notions of a fibered coproduct denoted by
X1 ⊔X0 X2 associated to a diagram (X1

f1← X0
f2→ X2), a cocartesian square and a

pushout.

Thus, by definition, diagram (1.3) is cartesian if, given g1 : Y → X1 and
g2 : Y → X2 such that f1 ◦ g1 = f2 ◦ g2, there exists a unique g : Y → X such that
p1 ◦ g = g1 and p2 ◦ g = p2. Note that a product of two objects is nothing but a
fibered product over a final object (and dual). Conversely, a fibered product as in
the definition is the same thing as the product in C/X0 (and dual).

Examples 1. In Set, we have

X1 ×X0 X2 = {(x1, x2) / f1(x1) = f2(x2)} ⊂ X1 ×X2

and

X1 ⊔X0 X2 = (X1 ⊔X2)/ ∼

where ∼ is the relation f1(x0) ∼ f2(x0) when x0 ∈ X0.
2. In Top, this is the same thing with the induced (resp. quotient) topology.
3. In Ab we have with (M1

f1→M0
f2←M2)

M1 ×M0 M2 = ker(M1 ⊕M2 →M0, (x1, x2) 7→ f(x2)− f(x1))

and with (M1
f1←M0

f2→M2)

M1 ⊔M0 M2 = coker(M0 →M1 ⊕M2 →M0, x0 7→ (f1(x0), f2(x0)).
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Exercise 1.3.16 Show that the fibered coproduct in the category of commutative
rings is tensor product.

Exercise 1.3.17 Show thata, in a diagram

Y2 Y1 Y0

X2 X1 X0,

⌜

if the right hand square is cartesian, then the left hand square is cartesian if and
only if the full rectangle is cartesian.

aThis is an illustration of the more general proposition 1.3.42 below.

Definition 1.3.18 A limit X of a pair Y ⇒ Z is called a kernel (or equalizer) and
denoted by X = ker(f, g). We shall also say that the sequence

X Y Zi
f

g
(1.4)

is left exact. Dually, there exists the notion of a cokernel (or coequalizer) coker (f, g)
and right exact sequence.

Thus, by definition, diagram (1.4) is left exact if, given h : T → Y such that
f ◦ h = g ◦ h, there exists a unique k : T → X such that h = i ◦ k.

Examples 1. In Set, we have

ker(f, g) = {y ∈ Y / f(y) = g(y)} and coker (f, g) = Z/ ∼

where ∼ is the relation f(y) ∼ g(y) for y ∈ Y .
2. Same thing in Top with induced and quotient topology respectively.
3. In Ab, ker(f, g) = ker(g − f) (and dual) .

Exercise 1.3.19 Show that if C is a small category, then Op(C) is the kernel of
the domain and codomain functors Mor(C) ⇒ C in Cat.

Exercise 1.3.20 Make explicit specific limits (final object, products, fibered product
and kernel) and colimits (initial object, coproduct, fibered coproduct and cokernel)
in Mon, Grp, G-Set, A-Mod or Cat.

1.3.3 Monomorphism/epimorphism
These notions are usually introduced before that of limits/colimits but are better
understood as particular instances of limits/colimits.

Definition 1.3.21 A morphism i : X → Y is called a
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1. a monomorphism if the diagram

X X

X Y,

i

i

(1.5)

is cartesian and we shall then write i : X ↣ Y .
2. a regular monomorphism if there exists an exact sequence X i→ Y ⇒ Z.
3. a split monomorphism if it has a retraction.

The dual notion is that of a (regular, split) epimorphism and we shall then write
Y ↠ X.

Examples 1. A morphism in Set (resp. Ab, resp. Top) is a monomorphism/epimorphism
if and only if it is injective/surjective.

2. A regular monomorphism/epimorphism in Top is a homeomorphism with a
subspace/from a quotient map.

3. The inclusion map Q ↣ R is at the same time a monomorphism and an
epimorphism in the category of Hausdorff topological spaces.

4. Same for the inclusion map Z ↣ Q in the category of rings.

Proposition 1.3.22 The following are equivalent (and dual):
1. The morphism i : X → Y is a monomorphism,
2. if f, g : Z → X satisfy i ◦ f = i ◦ g, then f = g,
3. for all Z ∈ C, the map i∗ : Hom(Z, Y )→ Hom(Z,X) is injective,
4. any commutative diagram

Y ′ Y ′

X Y

j

i

(1.6)

is cartesian.

Proof. By definition, the morphism i is a monomorphism if and only if, given
f, g : Z → X satisfying i ◦ f = i ◦ g, there exists a unique h such that f = g = h.
This is clearly the same thing as the second assertion which in turn is an explicit
form of the third one. Assume now that we are given a commutative diagram
(1.6) as well as two morphisms f, g : Z → X ′ satisfying i ◦ j ◦ f = i ◦ g. If i is a
monomorphism, then j ◦ f = g and the diagram is therefore cartesian. Finally, in the
last assertion, if we put i on the right hand side, then we fall back onto the definition
of a monomorphism. ■

Exercise 1.3.23 Show that a split monomorphism is a regular monomorphism and
that a regular monomorphism is a monomorphism (and dual).
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Solution. Assume i : X → Y is a split monomorphism. By definition, it admits a
retraction r : Y → X (so that r ◦ i = IdX) and we will prove that the diagram

X Y Yi i◦r

IdY

is left exact. If we are given a morphism f : Z → Y such that i ◦ r ◦ f = f , and we
set g = r ◦ f : Z → X, then i ◦ g = f . Assume conversely, that g satisfies i ◦ g = f .
Then, g = r ◦ i ◦ g = r ◦ f which shows uniqueness.

Assume now that i : X → Y is a regular monomorphism so that there exists a
left exact diagram

X Y Y.i u

v

We give ourselves g1, g2 : Z → X such that i ◦ g1 = i ◦ g2 and we denote this common
map by f so that f = i ◦ gk for k = 1, 2. We have u ◦ f = u ◦ i ◦ gk = v ◦ i ◦ gk = v ◦ f .
Therefore, there exists a unique g : Z → X such that f = g ◦ i. It follows that g = gk
and then g1 = g2.

By duality, a split epimorphism is a regular epimorphism and a regular epimor-
phism is an epimorphism. ■

Exercise 1.3.24 Show that a morphism f : X → Y is a monomorphism (resp. an
epimorphism) if and only if the induced functor C/X → C/Y (resp. Y \C → X\C) is
fully faithful.

Solution. If we denote the morphism by i : X → Y , then an object in C/X is a
morphism f : Z → X and the induced functor sends f to the composite i◦f : Z → Y .
A morphism between f : Z → X and f ′ : Z ′ → X is a morphism g : Z → Z ′ such
that f ′ ◦ g = f . It is sent to the same morphism g but the condition now reads
i ◦ f ′ ◦ g = i ◦ f . To make it clear, we have

HomC/X (f, f
′) ⊂ HomC/Y (i ◦ f, i ◦ f

′) ⊂ HomC(Z,Z
′).

The induced functor is fully faithful when the first inclusion is an equality. It means
that condition “i ◦ f ′ ◦ g = i ◦ f ⇒ f ′ ◦ g = f ” is always satisfied. By definition,
this is automatic when i is a monomorphism. Conversely, the condition in the case
Z = Z ′ and g = IdZ will tell us that i is a monomorphism.

By duality, π : X → Y is an epimorphism in C if and only it is a monomorphism
(from Y to X) in Cop if and only if Cop/Y → C

op
/X is fully faithful, or equivalently since

it boils down to the same condition, if and only if Y \C = (Cop/Y )op → (Cop/X)op = X\C is
fully faithful. ■

Exercise 1.3.25 Show thata if both f : X → Y and g : Y → Z are monomorphisms,
then so is g ◦ f (and dual). Show that, conversely, if g ◦ f is a monomorphism,
then so is f (and dual).

aBe careful that this is not the case for regular monomorphisms in general.
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Exercise 1.3.26 Show that a regular epimorphism which is also a monomorphism
is automatically an isomorphism (and dual).

Exercise 1.3.27 Show that, if we are given f, g : X → Y and i : Y ↣ Z is a
monomorphism, thena ker(i ◦ f, i ◦ g) = ker(f, g) (and dual). Analog for fibered
products (and dual) ?

aIf one of them exists, then so does the other and. . .

Exercise 1.3.28 Show that, if we are given a commutative diagram of monomor-
phisms

X1 X2

Y

then, the upper arrows are inverse isomorphisms to each other (and dual).

Exercise 1.3.29 Show that, in a cartesian diagram

X ′ Y ′

X Y

f ′

⌜

f

if f is a monomorphism, then f ′ also is monomorphism (and dual).

Exercise 1.3.30 Show that if i : X ↣ Y is an injective map and the diagram of
sets

X Y

Y Z

i

i

is cocartesian, then it is also cartesian.

Recall that we always implicitly assume that all limits and colimits that we write
do exist. For safety, the reader can assume up to the end of the section that all finite
limits and all finite colimits exist.

Definition 1.3.31 The (regular) image of a morphism f : X → Y is

im(f) := ker(Y ⇒ Y ⊔X Y ).

The dual notion is that of a (regular) coimage

coim(f) := coker(X ×Y X ⇒ X).

Examples 1. We already know im(f) in Set and coim(f) = X/ ∼ with x ∼
x′ ⇔ f(x) = f(x′).
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2. In Top, this is the same thing with induced and quotient topology respectively.
3. In Ab also, we know im(f) for f :M → N and we have coim(f) =M/ ker(f).

Exercise 1.3.32 Show that, if f : X → Y is an epimorphism, then im(f) = Y
(and dual).

Proposition 1.3.33 The factorization f : X → im(f) ↣ Y is universal for fac-
torizations of a morphism f : X → Y through a regular monomorphisms (and
dual).

Proof. We have to show that, when Y ′ ↣ Y is a regular monomorphism, then any
commutative diagram may be uniquely completed as follows:

X Y ′ Y

im f

By definition, there exists a left exact sequence Y ′ → Y ⇒ T and we may then
contemplate the commutative diagram

Y ′ Y T

X im f Y Y ⊔X Y.

■

If we remove the regular condition in proposition 1.3.33, we then obtain the
definition of a “non-regular” image. In general, there always exists a factorization of
a morphism f : X → Y as follows:

X ×Y X X Y Y ⊔X Y

coim(f) im(f).

f

Definition 1.3.34 A morphism f is said to be strict if coim(f) ≃ im(f).

Example Any morphism is strict in Set or Ab5 but not in Top.

Exercise 1.3.35 Show that a strict epimorphism is regular (and dual).

Hint. Use exercise 1.3.26. ■

5This is Noether’s first isomorphism.
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Definition 1.3.36 A category is said to be balanced if a morphism which is at the
same time a monomorphism and an epimorphism is automatically an isomorphism.

Note that the converse is always true.

Example The categories Set and Ab are balanced but Top and Ring are not.

Proposition 1.3.37 Assume C is balanced.
1. A strict morphism factors uniquely up to an isomorphism as an epimorphism

followed by a monomorphism,
2. A strict monomorphism is automatically regular (and dual).

Proof. Factorization is clear since a strict morphism f : X → Y splits as f : X ↠
coim(f) = im(f) ↣ Y . Conversely, any such decomposition fits into a commutative
diagram6

X ×Y X X Z Y Y ⊔X Y

coim(f) im(f).

This implies that coim(f) ≃ Z ≃ im(f) when the category is balanced. The other
assertion is a consequence of exercise 1.3.32. ■

1.3.4 Constructions of limits

Lemma 1.3.38 We give ourselves a commutative diagram (Xi, fα) and we assume
that both X ′ :=

∏
iXi and X ′′ :=

∏
α:i→j Xj exist. Denote by p (resp. q) the

morphism X ′ → X ′′ induced by the projections pj onto the codomain (resp. the
composites of the projection pi onto the domain and fα). Then, X = lim←−(Xi, fα)
if and only if there exists a left exact sequence

X X ′ X ′′.
p

q

In particular, X ↣ X ′ is then a regular monomorphism.

Hint. By definition, a cone for our diagram is object Y together with a family of
morphisms gi : Y → Xi satisfying gj = fα ◦ gi whenever α : i→ j. This is the same
thing as a morphism g : Y → X ′ satisfying p◦g = q ◦g. Same cones, same limits. ■

Example If (fα : Xi → Xj) is a commutative diagram of sets, then

lim←−Xi =
{
(xi) ∈

∏
Xi,∀α : i→ j, fα(xi) = xj

}
and

lim−→Xi =
∐

Xi/ ∼

6Be careful that we cannot use the universal property of image or coimage here because it is not
assumed that the monomorphism nor epimorphism is regular in the factorization.
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where ∼ denotes the (smallest equivalence relation) such that by xi ∼ xj whenever
fα(xi) = xj.

Exercise 1.3.39 Assume given f, g : X → Y such that Y × Y exists. Show that
ker(f, g) exists if and only if there exists a cartesian diagram

Z X

Y Y × Y

⌜
(f,g)

δ

in which case Z = ker(f, g).

Proposition 1.3.40 Let C be a category.
1. If all (finite) products and all kernels exist, then all (finite) limits exist (and

dual).
2. If all fibered products exist and there is a final object, then all finite limits

exist (and dual).

Proof. Immediate consequence of exercises 1.3.38 and 1.3.39. ■

When all (finite) limits exist, then C is said to be (finitely) complete. The dual
terminology is cocomplete. When both properties hold, we say bicomplete. Be careful
that a complete (or cocomplete) small category is automatically (associated to) a
preorder:

|Mor(C)| ≥
∣∣Hom(X, Y Mor(C))

∣∣ = |Hom(X, Y )||Mor(C)| ⇒ |Hom(X, Y )| ≤ 1.

Exercise 1.3.41 Show that Set, Top, Ab, etc. are bicomplete.

The next statement is a consequence of coming corollary 1.4.15:

Proposition 1.3.42 If all limits of shape I exist in C, then all limits of shape I exist
in CJ and, if D ∈ (CJ)I ≃ CI×J , then

1. ∀j ∈ J,

(
lim←−
I

D

)
(j) = lim←−

I

D(−, j) and

2. lim←−
J

(
lim←−
I

D

)
≃ lim←−

I×J
D ≃ lim←−

I

(
lim←−
J

D

)
.

And dually for colimits.

Proof. Let us write D′
j := lim←−I D(−, j) ∈ C for j ∈ J . Any morphism j → k in

J will provide a compatible family of morphism D(i, j) → D(i, k) for i ∈ I, and
taking limits on I, a morphism D′

j → D′
k. This is functorial and provides D′ ∈ CJ .

By construction, this is a cone on D: there exists morphisms D′
j → D(i, j) for all

(i, j) ∈ I × J providing a morphism D′ → D in CI×J . If we are given another cone
E → D with E ∈ CJ , then there exists for each j, a morphism

Ej := lim←−
I

E(−, j)→ lim←−
I

D(−, j) = D′
j.
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Again, they are compatible and provide E → D′. This shows that D′ = lim←−I D. The
first assertion then follows directly from the definition of D′ and it remains to show
that lim←−J D

′ ≃ lim←−I×J D. We give ourselves a cone X → D with X ∈ C. It induces a
cone X → D(−, j) in CI for all j ∈ J and taking limits on I, a morphism X → D′

j.
Again, they are compatible on J and combine (uniquely) into a morphism X → D′ in
CJ . Taking limits, we obtain X → lim←−J D

′ showing that this is a universal cone. ■

This assertion essentially says that limits and colimits (of diagrams) are computed
termwise.

Note that there also exists a morphism

lim−→
J

(
lim←−
I

D

)
−→ lim←−

I

(
lim−→
J

D

)

which is not an isomorphism in general.
Definition 1.3.43 Given a cocone D → Y , we shall say that the colimit of D is
stable under pullback along Y ′ → Y if

lim−→(D ×Y Y ′) ≃
(
lim−→D

)
×Y Y ′.

The dual notion is that of limit being stable under pushout.
Exercise 1.3.44 Show that colimits of sets are stable under pullback.

Solution. Using exercise 1.3.38, it is sufficient to consider the cases of a coproduct
or a cokernel.

If X :=
∐

i∈I Xi is a disjoint union of sets and we are given two maps f : X → Y
and g : Z → Y , then clearly∐

i∈I

(Xi ×Y Z) = X ×Y Z.

Actually, on both sides, an élément is a couple (x, z) with x ∈ X, z ∈ Z and
f(x) = g(z).

We consider now a pair of maps u, v : X ′ → X, a cocone which is another
pair of maps f ′ : X ′ → Y, f : X → Y satisfying f ◦ u = f ◦ v = f ′ and finally a
map g : Z → Y . We have coker (u, v) = X/R̃ where R̃ is the equivalence relation
generated by u(x′)Rv(x′) whenever x′ ∈ X ′. Since f ◦ u = f ◦ v, the map f factors
through the surjection X ↠ X/R̃, x 7→ x and provides f : X/R̃→ Y . We can then
consider the canonical map

Π : X ×Y Z → X/R̃×Y Z, (x, z) 7→ (x, z).

It is well defined and surjective: this follows from the fact that, since f(x) = f(x),
we have

∀x ∈ X, z ∈ Z, (x, z) ∈ X ×Y Z ⇔ (x, z) ∈ X/R̃×Y Z.
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The equivalence relation S̃ on X ×Y Z generated by (u(x′), z)S(v(x′), z) whenever
(x′, z) ∈ X ′ ×Y Z is given by

(x1, z1)S̃(x2, z2)⇔ x1R̃x2 and z1 = z2.

Thus, Π provides a bijection

coker (U, V ) = (X ×Y Z)/S̃ ≃ X/R̃×Y Z = coker (u, v)×Y Z.

■

As a particular example, epimorphisms are stable under pullback if, given any
cartesian diagram

X ′ Y ′

X Y,

f ′

⌜

f

if f is an epimorphism, then f ′ also is an epimorphism.

Examples 1. Epimorphisms are stable under pull back in Set, Ab or Top (and
dual).

2. This is not the case in Haus or Ring :

∅ R ∖ Q

Q R

⌜
and

Q Q[s]

Q[t] Q[t, s]/(ts− 1).

⌜

3. Be careful that, in the category of sets, we have

lim−→
I×J

(Xi×Yj) =

(
lim−→
I

Xi

)
×

(
lim−→
J

Yj

)
but lim−→I

(Xi×Yi) ̸=
(
lim−→I

Xi

)
×
(
lim−→I

Yi

)
in general.

1.3.5 Preservation of limit
Recall that any functor F : C → D provides by composition a functor

F I : CI → DI , D 7→ F I(D) := F ◦D.

We shall usually simply write F instead of F I so that F (Xi, fα) = (F (Xi), F (fα)).
Definition 1.3.45 If D is a commutative diagram in C, then a functor F : C → D
is said to preserve (or commute with) the limit of D, if

F (lim←−D) ≃ lim←−F (D).

Of course, it is assumed here that the limit of D exists and it implies that the
limit of F (D) also does. There exists an obvious analog for colimits. Be careful that
a (contravariant) functor F : Cop → D preserves a limit when it turns a colimit in C
into limit in D.
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Definition 1.3.46 A functor is said to be left exact (resp. right exact) if it preserves
all finite limits (resp. colimits). Il is said to be exact if it is both left and right
exacta.

aWe should say exact, coexact and biexact respectively but we will follow the mainstream
terminology.

A functor that preserves all limits (resp. colimits) is sometimes said to be con-
tinuous (resp. cocontinuous) but this may conflict with the vocabulary of topos
theory.

Examples 1. The forgetful functor Top→ Set preserves all limits and colimits.
2. The functor Set→ Top that endows a set with the discrete topology is exact

and preserves all colimits. It does not preserve infinite limits however: with
n = {0, 1, . . . , n− 1,∞} (disccrete), we have lim←−n ≃ N = N∪{∞} infinite and
compact (not discrete).

3. The functor Set→ Top that endows a set with the coarse topology preserves
all limits but is not exact: we have 1 ⊔ 1 = 2.

4. The forgetful functor Ab→ Set preserves all limits and the free abelian group
functor Set→ Ab preserves all colimits.

5. The functors hX and hX preserve all limits. Be careful that the second one is
contravariant: it turns colimits into limits.

6. The forgetful functor A-Mod→ Ab preserves all limits and colimits.
7. For fixed M ∈Mod-A, the functor

A-Mod→ Ab, N 7→M ⊗A N

preserves all colimits.

Exercise 1.3.47 Show that, if F is left exact, then F preserves (regular, strict)
monomorphisms (and dual).

Exercise 1.3.48 Show that, if C is a small category and all limits of shape I exist
in D, then all limits of shape I also exist in the category Ĉ(D) of presheaves and
they are preserved by the functor

Ĉ(D)→ D, F 7→ F (X)

for fixed X ∈ C (and dual).

Hint. This is a variant of proposition 1.3.42. ■

Exercise 1.3.49 Show that a representable functor F : C → Set preserves all
limitsa.

aThere exists no dual statement and the notion of a limit plays a special role.

Solution. We may assume that F = hX with X ∈ C. It is then sufficient to check
that if D is a commutative diagram in C, then we have a sequence of bijections

hX(lim←−D) ≃ Hom(X, lim←−D) ≃ Hom(X,D)
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≃ Hom({0}, hX(D)) ≃ Hom({0}, lim←−h
X(D)) ≃ lim←−h

X(D).

Only the middle one needs to be checked by hand: if we write D =: (Xi, fα), then,
giving a morphism {0} → hX(D) is equivalent to give a compatible family of maps
{0} → Hom(X,Xi), or in other words, to give for each i ∈ I, a morphism gi : X → Xi

such that fα ◦ gi = gj, or finaly a morphism X → D. ■

Proposition 1.3.50 1. The following are equivalent:
(a) The functor F preserves all limits,
(b) F preserves all products and all kernels.

2. The following are equivalent:
(a) The functor F is left exact,
(b) F preserves all finite products and all kernels,
(c) F preserves all fibered products and the final object.

Analogs for colimits.

Proof. Immediate consequence of exercises 1.3.38 and 1.3.39. ■

Definition 1.3.51 1. A functor F : C → D is said to reflect the limit of a diagram D in C
if any cone X → D satisfying F (X) ≃ lim←−F (D) also satisfies X ≃ lim←−D.

2. The functor F is said to be conservative if a morphism f of C is automatically an
isomorphism when F (f) is an isomorphism.

One defines dually the property of reflecting colimits. Also, one says that a functor reflects
monomorphisms (resp. epimorphisms, resp. isomorphisms) if a morphism f of C is automatically a
monomorphism (resp. an epimorphism, resp. an isomorphism) when F (f) is so. Thus, the functor
F is conservative if and only if it reflects isomorphisms if and only if it reflects limits of diagrams of
shape 1.

Examples 1. A functor that reflects fibered products reflects monomorphisms (and dual)
2. The forgetful functor Ab→ Set reflects limits but the forgetful functor Top→ Set does not.

Exercise 1.3.52 Show that
1. a fully faithful functor reflects all limits and colimits,
2. a conservative functor reflects all limits and colimits that it preserves,
3. a faithful functor reflects all monomorphisms and epimorphisms.

Exercise 1.3.53 Show that if C is balanced, then any faithful functor F : C → D is conservative.

1.3.6 Filtered colimit
Definition 1.3.54 A small category I is said to be filtered if any finite diagram in
I has a cocone.

A filtered diagram is a diagram I → C with I filtered. A filtered colimit is a
colimit of a filtered diagram (and dual).

Example The category associated to a preordered set is filtered if and only if the
preordered set is directed (any finite subset has an upper bound).
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Exercise 1.3.55 Show that a small category I is filtered if and only if
1. I ̸= ∅,
2. ∀i, j ∈ I,∃k ∈ I, i→ k, j → k,
3. ∀u, v : i→ j,∃k ∈ I, c : j → k / c ◦ u = c ◦ v.

In the computation of colimits, one may always replace a filtered category with a
directed set:

Proposition 1.3.56 If I is a filtered category, then there exists a directed set J and
a functor u : J → I such that, for all diagram D : I → C, if lim−→(D ◦ u) exists, then
lim−→D exists and lim−→(D ◦ u) ≃ lim−→D.

Proof. To do (hard). ■

Exercise 1.3.57 Show that
1. a set (resp. a small category) is the filtered colimit of its finite subsets (resp.

finite subcategories),
2. a category with finite colimits (resp. finite coproducts) and filtered colimits

has all colimits (resp. all coproducts).
3. a functor that preserves finite colimits (resp. finite coproducts) and filtered

colimits preserves all colimits (resp. coproducts).

Filtered colimits of sets are exact:

Proposition 1.3.58 If I is a filtered category, J is a finite category and D is a
diagram of sets of shape I × J , then

lim−→
I

lim←−
J

D ≃ lim←−
J

lim−→
I

D

Proof. According to proposition 1.3.56, we may assume that I is a directed set.
Moreover, thanks to proposition 1.3.50 it is sufficient to treat the cases of a final
object, a product of two objects or a kernel. We shall use the fact that colimits of
diagrams are computed termwise (proposition 1.3.42). In particular, the case of a
final object is trivial (colimit of a constant diagram). We consider now two families
of morphisms (fij : Xi → Xj) and (gij : Yi → Yj) defined for i < j with fjk ◦fij = fik
and gjk ◦ gij = gik when i < j < k. Since I is directed, we have

lim−→Xi =
∐

Xi/ ∼ with xi ∼ xj ⇔ ∃k ≥ i, j, fik(xi) = fjk(xj)

for xi ∈ Xi and xj ∈ Xj . We shall denote by xi the class of xi ∈ Xi and use analogous
notations for all diagrams of shape I. By considering colimits on the projections, we
have the obvious morphisms

lim−→(Xi × Yi)→ lim−→Xi and lim−→(Xi × Yi)→ lim−→Yi.

The universal property of products provides us with a map

lim−→(Xi × Yi)→ lim−→Xi × lim−→Yi, (xi, yi) 7→ (xi, yi)
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and we have to show that it is bijective. Assume that (xi, yi) = (x′j, y
′
j). As

explained above, there exists k ≥ i, j such that fik(xi) = fjk(x
′
j) and ℓ ≥ i, j

such that giℓ(yi) = gjℓ(y
′
j). Since I is directed, there exists m ≥ k, ℓ and we will

have (fim(xi), gim(yi)) = (fjm(x
′
j), gjm(y

′
j)) so that (xi, yi) = (x′j, y

′
j). This shows

injectivity. Surjectivity is proven in the same way. This takes care of the product of
two sets and we will now treat the case of kernels. We give ourselves two families of
maps (φi, ψi : Xi → Yi) compatible with all fij ’s and gij ’s. The universal property of
kernels provides us with a map

lim−→ ker(φi, ψi)→ ker(lim−→φi, lim−→ψi).

Injectivity and surjectivity are then shown as before, using the explicit description
of filtered colimits of sets. ■

Exercise 1.3.59 Show that filtered colimits are exact in Ab, Top, etc. and that
they are preserved by the forgetful functors to Set (one may show the second
assertion first).

Exercise 1.3.60 Show that Ab satisfies AB6 extra condition: filtered colimits
commute with arbitrary products:∏

j∈J

lim−→
ij∈Ij

Mij ≃ lim−→∏
j∈J Ij

∏
j∈J

Mij

when each Ij is filtered.

Definition 1.3.61 An ind-object “ lim−→Xi” of a category C is a filtered diagram (Xi)i∈I . They
form a category Ind(C) with

Hom(“ lim−→Xi”, “ lim−→Yj”) = lim←−
i∈I

lim−→
j∈J

Hom(Xi, Yj).

The dual notion is that of a pro-object “ lim←−Xi”and they form a category Pro(C) := Ind(Cop)op.

One gets an equivalent category by considering only directed sets instead of filtered categories.

Example The category of profinite sets (pro-objects of the category of finite sets) is equivalent to
the category of totally disconnected compact Hausdorff spaces.

Exercise 1.3.62 Show that the obvious functor C ↣ Ind(C) is fully faithful, exact and preserves
all limits.

1.4 Adjointness

1.4.1 Definition
Definition 1.4.1 A functor F : C → C ′ is said to be adjoint to a functor G : C ′ → C
if there exists a natural isomorphism

∀X ∈ C, X ′ ∈ C ′, ΦX,X′ : Hom(F (X), X ′) ≃ Hom(X,G(X ′)).
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One sometimes writes F ⊣ G or F : C ⇆ C ′ : G for short. The dual notion is that
of a coadjoint so that G is coadjoint to F if and only if F is adjoint to G. It may be
useful to write down explicitly what it means for ΦX,X′ and its inverse to be natural:
given g : Y → X, g′ : X ′ → Y ′, then

∀f : F (X)→ X ′, ΦY,Y ′(g′ ◦ f ◦ F (g)) = G(g′) ◦ ΦX,X′(f) ◦ g and

∀f ′ : X ′ → G(X), Φ−1
Y,Y ′(G(g

′) ◦ f ◦ g) = g′ ◦ Φ−1
X,X′(f) ◦ F (g).

Examples 1. The forgetful functor Top → Set has both an adjoint (discrete
topology) and a coadjoint (coarse topology):

C(Xdisc, Y ) ≃ F(X, Y ) et F(X, Y ) ≃ C(X, Y coarse).

2. The forgetful functor Ab→ Set has an adjoint (free abelian group):

Hom(Z ·X,M) ≃ F(X,M).

3. The inclusion Grp ↣ Mon has both an adjoint and a coadjoint: for a group
G and a monoid H, we have

Hom(Hgr, G) ≃ Hom(H,G) et Hom(G,H) ≃ Hom(G,H×).

Exercise 1.4.2 Show that most forgetful and inclusion functors we have already
met have an adjoint (and sometimes a coadjoint) and make them explicit.

Exercise 1.4.3 Show that the adjoint to the forgetful functor k-Alg→ k-Mod is
the tensor algebra functor M 7→ T(M). Same thing with S(M) when we restrict
to commutative algebras.

Exercise 1.4.4 Sow that, if f : A→ B is a morphism of rings, then the forgetful
functor B-Mod → A-Mod has both an adjoint M 7→ B ⊗A M and a coadjoint
M 7→ HomA(B,M).

Exercise 1.4.5 Show that (for fixed Y ) the functor X 7→ X × Y from Set to itself
is adjoint to the functor Z 7→ F(Y, Z):

F(X × Y, Z) ≃ F(X,F(Y, Z)).

This is called Currying. Write down the analogous statements for Cat and Ab.

Exercise 1.4.6 Show that if both F1 and F2 are adjoint to G, then F1 ≃ F2 (and
dual).

Solution. Both F1(X) and F2(X) represent the same functor X ′ 7→ Hom(X,G(X ′))
and there exists therefore an isomorphism F1(X) ≃ F2(X) which is easily seen to be
natural. ■
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Exercise 1.4.7 Show that if F1 : C ⇆ C ′ : G1 and F2 : C ′ ⇆ C ′′ : G2 then,
F2 ◦ F1 : C ⇆ C ′′ : G1 ◦G2.

1.4.2 Unit and counit

Proposition 1.4.8 A functor F : C → C ′ is adjoint to G : C ′ → C if and only if
there exists α : IdC ⇒ G ◦ F and β : F ◦G⇒ IdC′ such that βF ◦ F (α) = IdF and
G(β) ◦ αG = IdG.

The condition means that the diagrams

F (X) F (G(F (X))
F (αX)

βF (X)

and G(F (G(X ′)) G(X ′)
G(βX′ )

αG(X′)

are always commutative.

Proof. Assume first that there exists a natural isomorphism

ΦX,X′ : Hom(F (X), X ′) ≃ Hom(X,G(X ′)).

We may then set

αX := ΦX,F (X)(IdF (X)) and βX′ := Φ−1
G(X′),X′(IdG(X′)).

Then, we have

βF (X) ◦ F (αX) = Φ−1
G(F (X)),F (X)(IdG(F (X))) ◦ F (ΦX,F (X)(IdF (X)))

= Φ−1
X,F (X)(ΦX,F (X)(IdF (X)))

= IdF (X)

and dually.
Conversely, given f : F (X)→ X ′, we set ΦX,X′(f) = G(f) ◦αX and define dually

for f ′ : X → G(X ′), ΨX,X′(f ′) := βX′ ◦ F (f ′). We shall then have

(ΨX,X′ ◦ ΦX,X′)(f) = βX′ ◦ F (G(f)) ◦ F (αX) = f ◦ βF (X) ◦ F (αX) = f

and symmetrically by duality. ■

Definition 1.4.9 The natural transformations α and β are then called unit and
counit for the adjunction.

Examples 1. In the case of topological spaces and sets, for the discrete/forget
(resp. forget/coarse) adjunction, we get the identity for both unit and counit,
the counit (resp. unit) being the canonical continuous map Xdisc → X (resp.
X → Xcoarse).

2. In the case of abelian groups and sets, for the free/forget adjunction, we have
unit E ↣ Z · E, x 7→ 1 · x and counit Z ·M ↠M,

∑
ai · xi 7→

∑
aixi.

3. In the case of groups and monoids, for the gr/forget (resp. forget/×) adjunction,
we get inclusion G↣ Ggr and identity (resp. identity and inclusion G↣ G×)
for unit and counit respectively.
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Proposition 1.4.10 If F is adjoint to G with unit α and counit β, then F is
faithful (resp. fully faithful) if and only if αX is always a monomorphism (resp. an
isomorphism). And dually.

Proof. For X, Y ∈ C, there exists a commutative diagram

Hom(Y,X)

Hom(F (Y ), F (X)) Hom(Y,G(F (X))).

F αX∗

∼

This follows from from the fact that α is a natural transformation so that

ΦY,F (X)(F (f)) = G(F (f)) ◦ αY = αX ◦ f.

Thus we see that the map F is injective (resp. bijective) for all X, Y in C if and
only tif this is the case for αX∗, which means that αX is a monomorphism (resp. an
isomorphism) for all X ∈ C.

Now, we have Gop is adjoint to F op and the unit for this adjunction is βop.
Moreover, βop

X′ is a monomorphism (resp. an isomorphism) if and only if βX′ is an
epimorphism (resp. an isomorphism). Therefore, G is faithful (resp. fully faithful) if
and only if Gop is faithful (resp. fully faithful) if and only if βX′ is an epimorphism
(resp. an isomorphism) for all X ′. ■

Exercise 1.4.11 Describe unit and counit in all the examples studied so far. Deduce
in each case faithfulness or full faithfulness of the functors.

Exercise 1.4.12 Show that, if a small category C has (self) coproducts, then all
representable functors F on C have an adjoint.

Hint. We may assume that F = hX , consider the functor

Set→ C, I 7→ X(I) =
∐
I

X

define unit I → Hom(X,X(I)) and counit X(Hom(X,Y )) → Y and check the properties.
■

1.4.3 Adjoint and limit

Proposition 1.4.13 All limits of shape I exist in a category C if and only if the
functor X 7→ X has a coadjoint which is then given bya D 7→ lim←−D.

aOnce a specific choice of the limit is made for each diagram D.

Proof. We have indeed a natural isomorphism in X given by

Hom(X,D) ≃ Hom(X, lim←−D)

and it follows from exercise 1.3.6 that it is also natural in D. ■
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Exercise 1.4.14 Show that any adjunction between two functors F and G extends
to an adjunction on diagrams of a given shape I:

Hom(F (D), E) ≃ Hom(D,G(E)).

Corollary 1.4.15 A functor that has an adjoint preserves all limits (and dual).

Proof. We have to show that, if G has an adjoint F and D is a diagram, then
G(lim←−D) ≃ lim←−G(D). This follows by adjunction from F (X) = F (X). ■

As a consequence, we recover the result from proposition 1.3.42: limits commute
with limits (and dual).

Example As we already noticed, the forgetful functor Top → Set preserves all
limits and all colimits, the forgetful functor Ab→ Set preserves all limits and the
inclusion functor Mon ↣ Grp preserves all limits and colimits.

Theorem 1.4.15 has a partial converse:

Theorem 1.4.16 — Freyd adjunction theorem. If C ′ be a complete category and
G : C ′ → C a functor that preserves all limits and satisfies the solution-set condition
below, then it has an adjoint (and dual).

Solution-set condition: given any X in C, there exists a set of morphisms X →
G(Yi) such that any morphism X → G(Y ) factors through some G(Yi).

Proof. (Sketch) It is sufficient to set

F (X) := lim←−
X→G(Yi)

Yi. ■

Theorem 1.4.17 Assume F : C → C ′ is adjoint to a fully faithful functor G. If D′ is
a diagram in C ′ and X = lim←−G(D

′), then X ′ := F (X) = lim←−D
′ and X ≃ G(X ′).

Proof. To do (corollary 5.6.6 of [Riehl16]). ■

1.4.4 Reflective subcategory
Definition 1.4.18 A full subcategory C′ ⊂ C is said to be reflective if the inclusion functor has
an adjoint, called reflection. The dual terminology is coreflective.

In other words, a functor F : C → C′ is a reflection if there exists a natural bijection

Hom(F (X), X ′) ≃ Hom(X,X ′)

when X ′ ∈ C′. It means that there exists a natural morphism X → F (X) with the following
universal property:

X X ′.

F (X)

∀f

∃!f
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Examples 1. The category of preordered sets is a reflective subcategory of the category of
partially ordered sets.

2. The category of abelian groups is a reflective subcategory of the category of all groups.
3. The category of groups is both a reflective and a coreflective subcategory of the category of

all monoids.
4. The category of compact Hausdorff spaces is a reflective subcategory of the category of all

topological spaces.
5. The category of sets is isomorphic to the reflective (resp. coreflective) subcategory of discrete

(resp. chaotic) topological spaces.

Exercise 1.4.19 Show that if C′ is a reflective subcategory of C, then any diagram D′ in C′
that has a limit (resp. a colimit) in C has a limit (resp. a colimit) in C′. Show also that C′ is
stable under limits that exist in C. Finally, show that, if a colimit in C of objects of C′ is an
object of C′, then this is a colimit in C′.

Exercise 1.4.20 Show that, if C′ is a full subcategory of C, then a functor F : C → C′ is a
reflection if and only if there exists a natural morphism αX : X → F (X) for X ∈ C such that
αX is an isomorphism when X ∈ C′.

Solution. The subcategory C′ is reflective with reflection F if and only if there exists a natural
morphism αX : X → F (X) for X ∈ C and a natural isomorphism βX : F (X) ≃ X when X ∈ C′
such that βF (X) ◦ F (αX) = IdF (X) when X ∈ C and βX ◦ αX = idX when X ∈ C′. This is clearly
equivalent to our condition with βX := α−1

X . ■

Exercise 1.4.21 Show that, if filtered colimits exist in C, then C is a reflective subcategory of
Ind(C) with adjoint “ lim−→Xi” 7→ lim−→Xi.

1.4.5 Kan extension
Definition 1.4.22 Let p : C → C′ be a functor between small categories. The (left) Kan
extension of a functor F : C → D along p is a functor p!F which is universal for all functors
G : C′ → D and natural transformations F ⇒ p−1G := G ◦ p.

In other words, p!F represents the functor G 7→ Hom(F,G ◦ p) on the category Hom(C′,D).
It means that p!F : C′ → D is endowed with a natural transformation α : F ⇒ p−1p!F such that,
given any natural transformation γ : F ⇒ p−1G, there exists a unique natural transformation
γ̃ : p!F ⇒ G such that γ = p−1(γ̃) ◦ α:

C D

C′ (not commutative)

F

p p!F⇒G and

F p−1G.

p−1p!F

There exists the dual notion of a right Kan extension p∗F with γ : p−1G⇒ F this time.

Examples 1. A diagram D : I → C has colimit X if and only if the constant functor
1→ C, 0 7→ X is the Kan extenstion of D along the projection I → 1:

I C

1

D

X→Y
and

D Y .

X

2. A functor F : C → D between small categories has a coadjoint G if and only if the Kan
extension of IdC along F exists and F ◦ F!IdC = F !F , in which case G = F!IdC :

C C D

D ,

F

F

G

F◦G

IdC G′ ◦ F

G ◦ F

and

F H ◦ F.

F ◦G ◦ F
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Proposition 1.4.23 Let p : C → C′ be functor between small categories. Then the functor

p−1 : Hom(C′,D)→ Hom(C,D), G 7→ G ◦ p.

has an adjoint p! if and only if all Kan extensions along p with values in D exist (and dual).

Proof. Follows immediately from the definition. ■

Proposition 1.4.24 If all colimits exist in D, then the Kan extension of F : C → D along
p : C → C′ always exists (and dual).

Proof. (Sketch) We set

(p!F )(X ′) := lim−→
p(X)→X′

F (X)

and check. ■

Exercise 1.4.25 Show that if C is small, all colimits exist in D and F : C ↣ C′ is fully faithful,
then (the above diagram commutes:) F ≃ p!F ◦ p (and dual).

Exercise 1.4.26 Show that, if g : C → C′ is a functor between small categories and all colimits
exist in D, then the functor

ĝ−1 : Ĉ′(D)→ Ĉ(D), T ′ 7→ T ′ ◦ g.

has an adjoint ĝ! (resp. a coadjoint ĝ∗) : Ĉ → Ĉ′.

Solution. Follows from propositions 1.4.23 and 1.4.24. ■

1.5 Miscellaneous
1.5.1 Algebraic structure

Definition 1.5.1 Let C be a cartesian category. A monoid of C is an object G
endowed with a multiplication morphism µ : G×G→ G and a unit morphisma

ϵ : 1→ G making commutative the following diagrams:

G×G×G G×G

G×G G

µ×IdG

IdG×µ µ

µ

and

G G×G

G×G G

ϵ×IdG

IdG×ϵ µ

µ

(under the identification 1×G ≃ G ≃ G× 1). A morphism of monoids G→ G′

of C is a morphism f : G→ G′ in C making the following commutative:

G×G G′ ×G′

G G′

f×f ′

µ µ′

f

and
G G′.

1

f

ϵ ϵ′
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It is a group if there exists an inversion morphism ι : G→ G making commutative

G G×G

1

G×G G.

(ι,IdG)

(IdG,ι) µ

ϵ

µ

Il is abelian if Gop = G where Gop denotes the monoid obtained by exchanging
factors in G×G (composing µ with the flip morphism).

aAutomatically unique.

Monoids (resp. groups, resp. abelian groups) of C make a category Mon(C) (resp.
Grp(C), resp. Ab(C)). We shall mostly concentrate on abelian groups.

Examples 1. An group of the category Set is nothing but a usual group.
2. An group of Top is a topological group (with continuous multiplication and

continuous inversion).
3. A group in the category of smooth manifolds is a Lie group.
4. An abelian group in the category of abelian groups is an abelian group (!).

Exercise 1.5.2 Show that k[t] (resp. k[t]t) endowed with t 7→ t⊗ 1 + 1⊗ t (resp.
t 7→ t⊗t) is an abelian group of the category opposite to the category of k-algebras
(it is called a bialgebra).

Solution. Commutativity is clear in both cases and makes it faster to check the other
properties. In order to prove associativity, we compute

((Id⊗ µ) ◦ µ)(t) = (Id⊗ µ)(t⊗ 1 + 1⊗ t)
= t⊗ µ(1) + 1⊗ µ(t)
= t⊗ 1⊗ 1 + 1⊗ (t⊗ 1 + 1⊗ t)
= t⊗ 1⊗ 1 + 1⊗ t⊗ 1 + 1⊗ 1⊗ t.

By symmetry, we see that

((Id⊗ µ) ◦ µ)(t) = (µ⊗ Id) ◦ µ)(t).

In the same way, we have

((Id⊗ ν) ◦ ν)(t) = t⊗ t⊗ t = (ν ⊗ Id) ◦ ν)(t).

The unit is ϵ : k[t] → k, t 7→ 0 (resp. η : k[t]t → k, t 7→ 1) as the following shows:

((ϵ⊗ Id) ◦µ)(t) = (ϵ⊗ Id)(t⊗ 1+1⊗ t) = ϵ(t)× 1+ ϵ(1)× t = 0× 1+1× t = t.

(resp. (η ⊗ Id) ◦ ν)(t) = (η ⊗ Id)(t⊗ t) = η(t)× t = 1× t = t).
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Finally, the inverse is given by i : t 7→ −t (resp. j : t 7→ t−1): if we to compose µ
(resp. ν) with the map

k[t]⊗k k[t] k[t]

f ⊗ g f(−t)g(t)

resp.
k[t]t ⊗k k[t]t k[t]t

f ⊗ g f(t−1)g(t)

 ,

then we get the constant map 0 (resp. 1). ■

Exercise 1.5.3 Show that, if all limits exist in C, then the same holds in Ab(C)
and they are preserved by the forgetful functor Ab(C)→ C.

Exercise 1.5.4 Let F : C → C ′ be a functor between cartesian categories. Show
that

1. if F preserves finite products, then F induces a functor still written F :
Ab(C)→ Ab(C ′),

2. if moreover, F preserves all limits of C, then it preserves all limits of Ab(C).

The category of abelian groups in a category of presheaves of sets can be identified
with the category of presheaves of abelian groups:

Exercise 1.5.5 Show that if C is a small category, then there exists an isomorphism
of categories Ĉ(Ab) ≃ Ab(Ĉ).

Solution. For fixed X ∈ C, the functor Ĉ → Set, F 7→ F (X) preserves finite products
(actually all limits and colimits: see for example exercise 1.3.48 below). Therefore,
ifM∈ Ab(Ĉ) and X ∈ C, thenM(X) is a usual abelian group and this is clearly
functorial. Conversely, ifM∈ Ĉ(Ab), then the obvious family of maps

µX :M(X)×M(X)→M(X), ϵX : {0} →M(X) and ιX :M(X)→M(X)

define a structure of abelian group on the underlying presheaf of sets ofM. These
two constructions are clearly inverse to each other. ■

Exercise 1.5.6 Show that if C is a small cartesian category, then there exists a
fully faithful functor Ab(C) ↣ Ĉ(Ab).

Definition 1.5.7 Let C be a cartesian category.
1. Let (G, µ) be a monoid of C with unit ϵ. An action of G on an object E of C

is a morphism ρ : G× E → E making commutative the following diagrams:

G×G× E G× E

G× E G

µ×IdE

IdG×ρ µ

µ

and

E G× E

E.

ϵ×IdG

µ

2. A ring of C is an object A endowed with a structure of abelian group (given
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by µ) and a structure of monoid (given by ν) making commutative

A× A× A A× A
A

A× A× A× A A× A

IdA×µ
ν

ν×ν µ

with left distribution on the left as well as the analogous diagram for right
distribution:

A× A× A A× A
A.

A× A× A× A A× A

µ×IdM

ν

ν×ν µ

3. Let (A, µ, ν) be a ring of C. An A-module is an abelian group (M,µ) of C
endowed with an action ρ of (A, ν) making commutative both

A×M ×M A×M
M

A×M × A×M M ×M

IdA×µ
ρ

ρ×ρ µ

and

A× A×M A×M
M.

A×M × A×M M ×M

µ×IdM
ρ

ρ×ρ µ

They form a category G-Set(C) (resp. Ring(C), resp. A-Mod(C)).

Example We consider the category Ck-Man of Ck-differentiable manifolds and Ck-
differentiable maps (works with k = 0, 1, . . . ,∞, an and even hol). A group in
this category is a Ck-differentiable manifold G endowed with a group structure
such that both multiplication µ : G × G → G and inversion i : G → G are Ck-
differentiable. A Gop-object is a Ck-differentiable manifold X endowed with a right
action X ×G→ X which is Ck-differentiable. For example, the trivial action is the
(second) projection. Assume that X is endowed with the trivial action and consider
the category Gop-Ck-Man/X of G-objects π : Y → X over X. Such an object restricts
any open subset U of X by setting Y|U := π−1(U) and considering Y|U → U together
with Y|U ×G→ Y|U . Such an object is said to be trivial if it is isomorphic to the first
projection X ×G→ X endowed with IdX × µ : X ×G×G 7→ X ×G. It is called a
G-torsor or a principal G-bundle if it is locally trivial : there exists a covering of X
by open subsets U such that YU is trivial. We can consider the full subcategory of all
G-torsors over X. It is an example of a groupoid : any morphism is an isomorphism.

Exercise 1.5.8 Define the category k-Alg(C) of k-algebras of a cartesian category
C when k is a commutative ring of C.
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Exercise 1.5.9 Show that k[t] endowed with t 7→ t⊗ 1 + 1⊗ t and t 7→ t⊗ t is a
commutative ring of the category opposite to the category of k-algebras.

1.5.2 Projective/Injective
Definition 1.5.10 An object X of a category C is said to be projective if hX
preserves epimorphisms.

The dual notion is that of an injective object: hX sends monomorphisms to
epimorphisms. Thus X is projective (resp. injective) if whenever Z ↠ Y is an
epimorphism (resp. Y ↣ Z is a monomorphism), then the corresponding map

Hom(X,Z) ↠ Hom(X, Y ) (resp. Hom(Z,X) ↠ Hom(Y,X))

is surjective. In other words, X is projective (resp. injective) when any diagram

Z

X Y

(resp.

Z

Y X)

can be completed with the dotted arrow.

Examples 1. In Set, all objects (resp. non empty objects) are projective (resp.
injective).

2. In Ab, projective objects are free abelian groups and injective objects are
divisible groups (proposition 1.5.14 below).

3. In R-Mod, projective objects are direct factors of free R-modules (Z/2 is
projective – but not free – over Z/6).

4. If E is a fiber bundle on a compact manifold X, then E(X) is a projective
O(X)-module (requires an argument).

5. The projective objects of the category of compact Hausdorff spaces are the
Stonean (meaning extremally disconnected7) compact Hausdorff spaces.

Exercise 1.5.11 Show that a coproduct of projectives is projective (and dual).

Exercise 1.5.12 Show that if X is projective, then
1. any epimorphism Y ↠ X is split,
2. if a Y ↣ X (resp. X ↠ Y ) is a split monomorphism (resp epimorphism),

then Y also is projective (and dual).

Proposition 1.5.13 When epimorphisms are stable under pullback, an object X is
projective if and only if any epimorphism Y ↠ X is split (and dual).

Proof. Pulling back an epimorphism Z ↠ Y along a morphism X → Y provides an
epimorphism X ×Y Z ↠ X that has a section X → X ×Y Z that we can compose

7Closure of open is open.
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with the projection X ×Y Z → Z to get a lifting X → Z of the original map X → Y
along the epimorphism Z ↠ Y :

X ×Y Z Z

X Y.

■

Proposition 1.5.14 An abelian group Q is injective if and only if it is divisible.

Proof. Assume Q injective. If a ∈ Q and n > 0, then the map Z→ Q, 1 7→ a extends
along the injective map Z

n
↣ Z to a map 1 7→ b with b = na. Contradiction.

Assume conversely that Q is divisible and we are given a morphism f :M → Q
and an injective map M ↣ N . By Zorn’s lemma, there exists a maximal subgroup
M ′ of N such that f extends to M ′. We may assume M ′ = M . If a /∈ M , then
M ∩ ⟨a⟩ = ⟨na⟩. In Q, we can write f(na) = nx and extend f to M + ⟨a⟩ by sending
a to x (works also for n = 0). ■

Definition 1.5.15 A category C is said to have enough projectives if, given any
X ∈ C, there exists a projective Y and an epimorphism Y ↠ X (and dual).

Thus C has enough injectives if there always exists a monomorphism X ↣ Y
with Y injective.

Examples 1. The category Set has enough projectives and injectives.
2. The category R-Mod has enough projectives and injectives (we shall prove this

last statement later).
3. The category of compact Hausdorff spaces has enough projectives.

Exercise 1.5.16 Show that
1. if each Xi is projective, then (Xi)i∈I is projective in C :=

∏
i∈I Ci,

2. if each Ci has enough projectives, so does C.

We shall extend later the next statement to A-modules.

Proposition 1.5.17 The category of abelian groups has enough injectives.

Proof. We write M = F/N with F free and consider the embedding M ↪→ FQ/N with
FQ := Q⊗Z F (Q-vector space is divisible and quotient of divisible is divisible). ■

Definition 1.5.18 An object X of a category C is said to be compactly presented (or compact)
if hX preserves filtered colimits.

In other words,

lim−→Hom(X,Yi) ≃ Hom(X, lim−→Yi)

when (Yi) is filtered. It means that any morphism X → lim−→Yi factors through some Yi.

Examples 1. A set is compactly presented if and only if it is finite.
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2. A topological space is compactly presented if and only if it is finite discrete.
3. An abelian group is compaclty presented (resp. compactly presented projective) if and only

if it is finitely generated (resp. free of finite rank).
4. An open subset U of a topological space X is compact (in the usual sense) if and only if U

is a compactly presented object of Open(X).

Definition 1.5.19 A set S ⊂ C is a set of generators (or separators) for a category C if the
functor

∏
G∈S hG is faithfula. When S = {G}, we say that G is a generator.

aOn should say separators (resp. generators) when the functor is faithful (resp. conservative)

In down to earth terms, it means that if f1 ̸= f2 : X → Y , then there exists g : G→ X with
G ∈ S such that f1 ◦ g ̸= f2 ◦ g.

Examples 1. 1 := {0} is a generator for Set.
2. A is a generator for A-Mod.
3. If C is a category, then {hX , X ∈ C} is a set of generators for Ĉ.

Exercise 1.5.20 Show that, if C has all coproducts, then S is a set of generators if and only if
there exists for all X ∈ C an epimorphism

∐
i∈I Gi ↠ X with Gi ∈ S.

Proof. For the converse, choose∐
G∈S,f :G→X

G ↠ X. ■

1.5.3 Localization
In this sketchy section, we sweep set theoretical questions under the rug.

Definition 1.5.21 The localization of a (small) category C with respect to a collection
of morphisms W of C is a category W−1C which is universal for functors C → D
sending W to isomorphisms in D.

It means that there exists a functor γ : C → W−1C sending W to isomorphisms
such that, given any category D, the functor

γ∗ : Hom(W−1C,D)→ Hom(C,D)

induces an equivalence with the full subcategory of functors sending W is isomor-
phisms.

Exercise 1.5.22 An isogeny is a homomorphism of abelian groups f : M → N
such that

1. ∀y ∈ N,∀n ∈ Z ∖ 0,∃x ∈M, f(nx) = y,
2. ∀x ∈M, f(x) = 0⇒ ∃n ∈ Z ∖ 0, nx = 0.

Show that, if W is the collection of all isogenies, then W−1Ab ≃ Q-Vec (:=
Q-Mod).

Exercise 1.5.23 The category of topological spaces up to homotopy has topological
spaces as objects but sets of morphisms [X, Y ] := C(X, Y )/ ∼ and composition
induced by usual composition. Show that it is equivalent to W−1Top if W denotes
the collection of homotopy equivalences.
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Proposition 1.5.24 The localization W−1C of a (small) category C with respect to
a set of morphisms W always exists.

Proof. (Sketch) We may assume that W contains all isomorphisms in C. Then, the
objects of W−1C are the objects of C and morphisms8 are finite chains

X = X0
W← X1 → X2

W← · · · → Xn−1
W← Xn → Xn+1 = Y

up to some equivalence. ■

Definition 1.5.25 A category C admits right calculus of fractions with respect to a
set of morphisms W if

1. W contains all identities and is stable under composition,
2. given any f : X → Y in C and φ : Y ′ → Y in W , there always exists
f ′ : X ′ → Y ′ and φ′ : X ′ → X in W with φ ◦ f ′ = f ◦ φ′,

3. given any f, g : X → Y ′ in C and ψ : Y ′ → Y in W such that ψ ◦ f = ψ ◦ g,
there exists φ : X ′ → X in W such that f ◦ φ = g ◦ φ.

Proposition 1.5.26 If a (small) category C admits right calculus of fraction with
respect to W , then W−1C is the category having the same objects as C and

HomW−1C(X, Y ) = lim−→
X′→X∈W

HomC(X
′, Y ).

Proof. (Sketch) By definition, morphisms and composition are described, up to
equivalence, by the following diagram

X ′′

X ′ Y ′

X Y Z.

W

W W

It is then a matter of checking the various properties. ■

Exercise 1.5.27 Show that if C admits right calculus of fraction with respect to
W , then the localization functor Q : C → W−1C is exact.

8They form a collection and not merely a set.
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In the same way as general categories are modeled on the category of sets, there exist
the notion of an abelian category that is modeled on the category of abelian groups.

2.1 Additive structure

2.1.1 Preadditive category
Definition 2.1.1 A pre-additive category (also called Ab-categorya or ringoid) is a
category P endowed with a factorization of the Hom functor:

Hom : Pop × P //

((

Set

Ab.

OO

aThis is a particular instance of the notion of an enriched category.

In other words, P is preadditive if and only if, for all M,N ∈ P , Hom(M,N) is
(endowed with the structure of) an abelian group and for all M,N,P ∈ P , the map

Hom(M,N)× Hom(N,P ) Hom(M,P )

(f, g) g ◦ f

is bilinear (check). In other words, distributivity holds. We shall denote by 0MN :
M → N (or 0M :M →M) for the zero morphism but we may as well write 0 := 0MN .
If M ∈ P , then End(M) is now a ring and not merely a monoid and we may as well
write 1 := 1M := IdM (which should not be confused with the final morphism).
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A preadditive category is not a usual category satisfying some specific property
but a usual category endowed with some extra structure. Unlike the case of an
abelian group versus a set for instance, there is no practical reason to distinguish
between the two since, as we shall see, this additional structure is unique when the
category is cartesian.

Examples 1. The category Ab of abelian groups is preadditive.
2. More generally, if A is a ring, then the category A-Mod of left A-modules is

preadditive.
3. If C is a small category, then the category Ĉ(Ab) of presheaves of abelian

groups on C is preadditive.
4. If C is any cartesian category, then the category Ab(C) of abelian groups of C

is preadditive. Idem for the category A-Mod(C) of A-modules of C (over some
ring A of C).

5. As a particular case, the category AbTop, AbHaus or AbCHaus of topological
(resp. Hausdorff, resp. compact Hausdorff) abelian groups are preadditive.

6. The category A with only one object, whose morphisms are the elements of a
ring A and composition is given by multiplication (g ◦ f = fg) is preadditive.
Any preadditive category with exactly one object has this form.

7. The category MatA whose morphisms are matrices with coefficients in A (and
natural numbers as objects) is preadditive.

8. The category Vect(X) of vector bundles on a manifold X is preadditive.
9. The categories Set, Top, Grp or Ring are not preadditive.

Exercise 2.1.2 Show that, if P is a preadditive category, then Pop is preadditive
too.

Proposition 2.1.3 If C is a small category and P is a preadditive category, then
Hom(C,P) is preadditive.

Proof. Given two natural transformations α, β : F → G, on simply sets (α + β)X =
αX + βX for X ∈ C. Details are left to the reader. For example, if f : X → Y is a
morphism in C, then distributivity in P implies

(α + β)Y ◦ F (f) = αY ◦ F (f) + βY ◦ F (f)
= G(f) ◦ αX +G(f) ◦ αX = G(f) ◦ (α + β)X . ■

It follows that the category Ĉ(P) := Hom(Cop,P) of presheaves on a small
category C with values in a preadditive category P is also is preadditive. Or else, if
I is a small category, then the category PI := Hom(I,P) of diagrams of shape I in
P is preadditive.

Definition 2.1.4 A preadditive subcategory of a preadditive category P is a subcate-
gory P ′ such that for all M,N ∈ P , HomP ′(M,N) is a subgroup of HomP(M,N).

A preadditive subcategory is preadditive. A full subcategory of a preadditive
category is automatically a preadditive category.
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If M ∈ P , we will now write

hM : P → Ab and hM : Pop → Ab

(replacing henceforth Set with Ab).

Exercise 2.1.5 Show that hM : P → Ab still preserves all limits and is in particular
left exact (and dual).

Definition 2.1.6 A functor F : P → Q between two preadditive categories is
additive if for all M,N ∈ P , the map

Hom(M,N)→ Hom(F (M), F (N)), f 7→ F (f)

is a group homomorphism.

Examples 1. A subcategory P ′ of a preadditive category P is a preadditive
subcategory if and only if there exists the structure of a preadditive category
on P ′ turning the inclusion into an additive functor.

2. If P is any preadditive category, then the functors hM and hM are additive.
3. If A is a ring and M is a right A-module, then the functor N 7→ M ⊗A N is

additive.
4. If f : A→ B is a ring homomorphism, then the forgetful functor B-Mod→
A-Mod as well as its adjoint M 7→ B ⊗AM and coadjoint M 7→ HomA(B,N)
are all additive.

We shall denote by Hom+(P ,Q) the collection of all additive functors.

Exercise 2.1.7 Show that ifA,B are two rings, then HomRing(A,B) ≃ Hom+(A,B).

Proposition 2.1.8 Let F : P → Q be an additive functor. Then,
1. if G : D → E is additive, so is G ◦ F ,
2. F op : Pop → Qop also is additive,
3. if I a small category, F I : PI → QI also is additive.

Proof. Clear. ■

If P is a small preadditive category and Q is a preadditive category, then additive
functors form a (full) preadditive subcategory Hom+(P ,Q) of Hom(P ,Q). We shall
write

P-Mod := Hom+(P ,Ab) (resp. Mod−P = Pop-Mod)

and call them left (resp. right) P-modules (this is the additive analog to Ĉ).
Exercise 2.1.9 Show that A-Mod ≃ A-Mod.

Exercise 2.1.10 Prove the additive Yoneda lemma: if P is a smalla preadditive
category, M ∈ P and F ∈ P-Mod, then there exists a natural isomorphism of
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abelian groups Hom(hM , F ) ≃ F (M) (and dual).
aThe statement generalizes to large categories.

2.1.2 Additive category
Definition 2.1.11 An initial object in a preadditive category P is called a zero
object and denoted by 0. A coproduct of a family (Mi)i∈I is called a direct sum
and denoted by

⊕
i∈IMi.

Proposition 2.1.12 Let P be a preadditive category. Then, for M,M1, . . . ,Mn in
P , the following are equivalent

1. M ≃M1 × · · · ×Mn,
2. M ≃M1 ⊕ · · · ⊕Mn,
3. there exists pk : M ↠ Mk and ik : Mk ↣ M for k = 1, . . . , n, such that
pk ◦ ik = IdMk

, pℓ ◦ ik = 0MkMℓ
when k ̸= ℓ = 1, . . . , n and

∑n
k=1 ik ◦pk = IdM .

Moreover, the maps pk : M → Mk (resp. ik : Mk → M) are the structural
morphisms for the product (resp. direct sum).

Proof. Since (3) is autodual and (2) is dual to (1), it is sufficient to prove that
(1)⇒ (3)⇒ (2).

1. (1) ⇒ (3) : We already got the structural morphisms pk and the existence
of the morphisms ik satisfying the commutation rules then come from the
universal property of the product. It only remains to check the last equality
which formally follows from pℓ ◦ (

∑n
k=1 ik ◦ pk) = pℓ for ℓ = 1, . . . , n.

2. (3) ⇒ (2) : If we are given fk : Mk → N for k = 1, . . . , n, we then set
f =

∑n
ℓ=1 fℓ ◦ pℓ. We will have for k = 1, . . . , n, f ◦ ik =

∑n
ℓ=1 fℓ ◦ pℓ ◦ ik = fk.

Assume conversely that f :M → N satisfies f ◦ ik = fk for k = 1, . . . , n. We
will then have

n∑
ℓ=1

fℓ ◦ pℓ =
n∑
ℓ=1

f ◦ iℓ ◦ pℓ = f ◦
n∑
ℓ=1

iℓ ◦ pℓ = f. ■

Examples 1. (n = 0) A final object M is the same thing as a zero object
(meaning an initial object) and characterized by IdM = 0M or equivalently
End(M) = 1 = {0}.

2. (n = 2) A product M of two objects M1 and M2 is the same thing as a direct
sum (meaning a coproduct) and characterized by the existence of p1 :M ↠M1,
p2 :M ↠M2, i1 :M1 ↣M and i2 :M2 ↣M such that{

p1 ◦ i1 = IdM1 ,
p2 ◦ i2 = IdM2

,

{
p2 ◦ i1 = 0M1M2 ,
p1 ◦ i2 = 0M2M1

and i1◦p1+i2◦p2 = IdM . (2.1)

Definition 2.1.13 An additive category is a cartesian preadditive category.

It means that the preadditive category admits finite products and this is equivalent
to admitting finite direct sums in which case they are the same. Equivalently, by
induction, it admits a final (resp. zero) object and products (resp. direct sums) of
two objects.
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In an additive category the natural morphism
⊕

i∈IMi →
∏

i∈IMi is an iso-
morphism when I is finite (but not otherwise) and we shall mostly use the first
notation.

Examples 1. The categories Ab, A-Mod, MatA and Vect(X) are additive.
2. If C is a small (resp. a cartesian) category, then Ĉ(Ab) (resp. Ab(C) or
A-Mod(C)) is additive.

3. If P is a small preadditive category, then P-Mod is additive.
4. If A is a non-zero ring, then the category A is not an additive category.

Exercise 2.1.14 Show that, if P is an additive category, then Pop is additive too.
Show also that, if I is a small category, then PI is additive.

Lemma 2.1.15 In an additive category, if M =
⊕m

k=1Mk and N =
⊕n

j=1Nj, then

Hom(M,N) ≃
⊕

1≤j≤n,1≤k≤m

Hom(Mk, Nj).

Proof. Follows from universal properties of direct sum which is at the same time a
product and a coproduct. ■

We shall use matrix notation and write f = [fjk] with fjk = pj ◦ f ◦ ik :Mk → Nj .
Composition is then reduced to matrix multiplication:

Exercise 2.1.16 Show that, if we are given two morphisms f = M → N and
g : N → P in an additive category, and decompositions M =

⊕m
k=1Mk and

N =
⊕n

j=1Nj and P =
⊕p

i=1Np, then g ◦ f = [hik] with hik =
∑

j gij ◦ fjk.

Example 1. In the case M = M1 ⊕M2, we have IdM =

[
1 0
0 1

]
, i1 =

[
1
0

]
,

i2 =

[
0
1

]
, p1 =

[
1 0

]
and p2 =

[
0 1

]
and we can check identities 2.1 by

matrix operations, the last one reading[
1
0

] [
1 0

]
+

[
0
1

] [
0 1

]
=

[
1 0
0 1

]
.

2. If p1, p2 = M ⊕M ↠ M and i1, i2 = M ↣ M ⊕M denote the structural
morphisms, and ∆ denotes the diagonal morphism (p1 ◦∆ = p2 ◦∆ = IdM),
then

∆ =

[
1
1

]
= i1 + i2 (and dually ∇ =

[
1 1

]
= p1 + p2).

Proposition 2.1.17 If P is an additive category, then the preadditive structure is
unique.

Proof. If f1, f2 :M → N , then

f1 + f2 =
[
1 1

] [ f1
f2

]
. (2.2)
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Exercise 2.1.18 Show that the forgetful functor Ab(P)→ P is an isomorphism
when P is additive.

Solution. If an object M of P is endowed with an abelian group law
[
f g

]
:

M ⊕M →M , then the neutral element for this law is necessarily the unique map
0 : 0→M and the following diagram is therefore required to commute:

M M ⊕M

M ⊕M M.

[ 01 ]

[ 10 ]
1

[f g]

[f g]

If follows that f = g = 1 and the law is therefore the codiagonal morphism ∇. One
easily checks that, conversely, ∇ defines an abelian group structure on M and that
this is functorial. This provides an inverse to the forgetful functor. ■

Exercise 2.1.19 Show that a category P is additive if and only if there exists a
(not unique) cartesian category C such that Ab(C) ≃ P .

Definition 2.1.20 An additive subcategory of an additive category is a preadditive
subcategory which is additive.

Exercise 2.1.21 Show that
1. a subcategory P ′ of an additive category P is an additive subcategory if

and only if it is stable under finite direct sums: if M1, . . . ,Mn ∈ P ′, then⊕n
k=1Mk ∈ P ′.

2. a functor F : P → Q between additive categories is additive if and only
if it preserves finite direct sums: if M1, . . . ,Mn ∈ P, then F (

⊕n
k=1Mk) =⊕n

k=1 F (Mk).

Exercise 2.1.22 Let Q be an additive category. Show that, if a fully faithful
functor P ↣ Q has an adjoint or a coadjoint, then P also is additive.

Exercise 2.1.23 Show that, if P is a small preadditive category and Q is additive,
then Hom+(P ,Q) is additive.

Proposition 2.1.24 If a functor F between two additive categories is adjoint to a
functor G, then both functors are additive and there exists a natural isomorphism
of abelian groups

Hom(FM,N) ≃ Hom(M,GN). (2.3)

Proof. Since an adjoint (resp. coadjoint) preserves all colimits (resp. all limits), it
preserves finite direct sums and is therefore additive. Now, given two morphisms
f, g : FM → N , we have

f =
[
1 0

] [ f
g

]
, g =

[
0 1

] [ f
g

]
and f + g =

[
1 1

] [ f
g

]
.
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Thus, if we denote by Φ the natural isomorphism (2.3), we shall have first

Φ(f) =
[
1 0

]
Φ

([
f
g

])
and Φ(g) =

[
0 1

]
Φ

([
f
g

])
from which we derive

Φ

([
f
g

])
=

[
Φ(f)
Φ(g)

]
.

It follows that

Φ(f + g) =
[
1 1

]
Φ

([
f
g

])
=
[
1 1

] [ Φ(f)
Φ(g)

]
= Φ(f) + Φ(g). ■

2.1.3 Preabelian category
We fix an additive category P .

Definition 2.1.25 The kernel of a morphism f :M → N is ker f := ker(f, 0) if it
exists. The dual notion is that of a cokernel coker f .

Be careful that the kernel actually comes with a morphism i : ker f ↣M and is
only defined up to isomorphism (and dual). It has the following universal property:
f ◦ i = 0 and given any g : M ′ → M such that f ◦ g = 0, there exists a unique
morphism g :M → ker f such that i ◦ g = g (and dual):

ker f M N

M ′

i f

g
g

0 (and
M N coker f.)

N ′

f

0

p

g

g

Definition 2.1.25 has a kind of converse in the sense that ker(f, g) = ker(g− f) when
f, g :M → N (and dual).

Definition 2.1.26 A preabelian category is an additive category with all kernels
and cokernels.

Equivalently, it is a preaddtive category which is finitely bicomplete. Up to the
end of the section, you can assume that P is preabelian or else follow our convention
to implicitly assume that a limit or a colimit exists when we write it down.

Proposition 2.1.27 If f :M → N is a morphism, then
1. f is a monomorphism if and only if ker f = 0 (and dual),
2. f = 0 if and only if ker f =M (and dual),
3. f is a monomorphism and f = 0 if and only if M = 0 (and dual).

Proof. If f is a monomorphism and g :M ′ →M satisfies f ◦ g = 0 (= f ◦ 0), then
g = 0 and therefore, g factorizes through 0 (uniquely). Conversely, if ker f = 0 and
g, h :M ′ →M satisfy f ◦ g = f ◦ h, then f ◦ (g − h) = 0 and therefore g − h factor
through ker f = 0 which implies that g − h = 0 and finally g = h.

If f = 0, then any morphism g :M ′ →M satisfies g ◦ f = 0 so that ker f =M .
Conversely, if ker f =M , then f = f ◦ IdM = 0.

The last assertion follows from the first two. ■
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Definition 2.1.28 1. A sequence

0→M ′ →M
f→M ′′ (2.4)

is said to be (left) exact if the sequence

M ′ M M ′′
f

0

is left exact. The dual notion is that of a (right) exact sequence M ′ →M →
M ′′ → 0.

2. A short exact sequencea is a sequence

0→M ′ i→M
p→M ′′ → 0 (2.5)

which is exact both on the left and on the right.
aBe careful that there exists alternative weaker definitions at this level.

In other words, a sequence (2.4) is (left) exact if and only if M ′ = ker f (and
dual) and a sequence (2.5) is exact if and only if M ′ = ker p and coker i =M ′′.

Exercise 2.1.29 Show that
1. a sequence 0→M

f→ N → 0 is left exact if and only if it is right exacta if
and only if f is an isomorphism,

2. if 0 → M ′ f→ M
g→ M ′′ → 0 is left exact (resp. short exact), then f is an

isomorphism if and only if g = 0 (resp. M ′′ = 0) – and dual.
aSo that there is no ambiguity in saying that such a sequence is exact.

Solution. 1. By duality, only the case of a left exact sequence requires our attention.
Now, this is the kind of situation where we have to take into account the fact
that a kernel is only defined up to a unique isomorphism: the sequence is left
exact if and only if f induces an isomorphism between M and the kernel of
N → 0 which is exactly N .

2. We know that g = 0 if and only if ker g = M which means that f is an
isomorphism when the sequence is left exact. If the sequence is moreover right
exact, then g is an epimorphism and zero at the same time which means that
M ′′ = 0.

■

Exercise 2.1.30 Show that any commutative diagram with exact rows

M ′ M M ′′ 0

0 N ′ N N ′′

may be uniquely completed as described (and dual).

Left (resp. right, resp. short) exact sequences in P form a full additive subcategory
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of the category P [2] of all diagrams of the form M ′ →M →M ′′ so that the zero on
the left (resp. the right, resp. both sides) is only a decoration to specify what kind
of sequence we are considering.

Proposition 2.1.31 Limits of left exact sequences are computed termwise (and
dual).

Proof. Limits always preserve kernels since they preserve all limits. ■

It means that, if we are given a commutative diagram of short exact sequences,
then

lim←−
I

(0→M ′
i →Mi →M ′′

i ) = 0→ lim←−
I

M ′
i → lim←−

I

Mi → lim←−
I

M ′′
i ,

and in particular implies that the left hand side is a left exact sequence. Be careful
however that the question of limits or colimits of short exact sequences is way more
complicated.

Corollary 2.1.32 If all columns and both bottom rows are exact in a commutative
diagram

0 0 0

0 K ′ K K ′′

0 M ′ M M ′′

0 N ′ N N ′′,

then the top row also is exact (and dual). ■

It is important to notice that there is no similar assertion for short exact sequences
and that it will be necessary to introduce later long exact sequences to solve this
problem.

Exercise 2.1.33 Show that, in A-Mod, any short exact sequence is isomorphic to
some

0→M ′ →M →M/M ′ → 0

where M ′ is a submodule of M .

Definition 2.1.34 A short exact sequence is said to split if it is isomorphic to

0 −→M1
i1−→M1 ⊕M2

p2−→M2 −→ 0.
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Proposition 2.1.35 A short exact sequence

0 −→M ′ i−→M
p−→M ′′ −→ 0

splits if and only if p is a split epimorphism (and dual).

Proof. The condition is clearly necessary (use i2). Assume conversely given some
s : M ′′ → M such that p ◦ s = 1. Since p ◦ (1 − s ◦ p) = 0, there exists a unique
r :M →M ′ such that i ◦ r = 1− s ◦ p. And we have in particular i ◦ r + s ◦ p = 1.
Since we already know that p ◦ i = 0 and p ◦ s = 1, it only remains to check that
r ◦ s = 0 and r ◦ i = 1. Since i is a monomorphism, it is sufficient to notice that
i ◦ (r ◦ s) = (1− s ◦ p) ◦ s = 0 and i ◦ (r ◦ i) = (1− s ◦ p) ◦ i = i. ■

It is implicit in the previous argument that we have an isomorphism of short

exact sequences with given by
[
r
p

]
:M

∼→M ′ ⊕M ′′ with inverse
[
i s

]
.

Exercise 2.1.36 Show that a diagram

M ′ N ′

M N

f ′

g′ g

f

is cartesian (resp. cocartesian, resp. both cartesian and cocartesian) if and only if
the sequence

0 −→M ′

[
f ′
g′

]
−→M ⊕N ′ [f g]−→ N −→ 0

is left exact (resp. right exact, resp. short exact).

The following provides a very nice alternative definition for (short) exact se-
quences:

Exercise 2.1.37 Show that a sequence

0→M ′ →M →M ′′ → 0

is left exact (resp. right exact, resp. short exact) if and only if the diagram

M ′ M

0 M ′′

is cartesian (resp. cocartesian, resp. both cartesian and cocartesian).
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Proposition 2.1.38 If a diagram

M ′ N ′

M N

f ′

g′
⌜

g

f

is cartesian, then ker f ′ = ker f and ker g′ = ker g (and dual).

Solution. There exists a sequence of cartesian diagrams

ker g′ M ′ N ′

0 M N

⌜

f ′

g′
⌜

g

f

showing thanks to exercise 1.3.17 that the rectangle is cartesian and therefore
ker g′ ≃ ker g. The original statement is obtained by symmetry. ■

Exercise 2.1.39 Show that if A is a commutative ring, M is an A-module and
f, g ∈ A are comaximal (the ideal generated by f and g is the full ring) then the
sequence

0→M →Mf ×Mg
−→Mfg → 0

is exact.

Solution. The condition means that there exists h1, h2 ∈ A such that h1f1+h2f2 = 1.
Before going any further, note that fn and gm are always comaximal when n,m ≥ 0
and that Mf =Mfn when n > 0. We now turn to the proof. First of all, composition
is clearly zero. Let us show that the first map is injective: if the image of s ∈M is
zero in Mfi for i = 1, 2, it means that there exists ni ∈ N such that fni

i s = 0. Up to
replacing fi by fni

i , we may assume that fis = 0 and we will have

s = 1s = h1f1s+ h2f2s = 0.

We give now ourselves si/fni
i ∈ Mfi for i = 1, 2 with same image in Mf1f2 and we

have to find s ∈M whose image in Mfi is si/fni
i . We may again assume that ni = 1

and our hypothesis means that (f1f2)m(f1s2− f2s1) = 0 for some m. Actually, up to
replacing fi by fm+1

i and si by fmi si, we may assume that f1s2− f2s1 = 0. It is then
sufficient to set s := h1s1 + h2s2. We will have

f1s = f1(h1s1 + h2s2) = (h1f1 + h2f2)s1 = s1

and symmetrically for s2. It remains to show that the last map is surjective: we give
ourselves s/(f1f2)n ∈Mf1f2 and we show that it comes from Mf1 ×Mf2 . Again, we
may assume that n = 1 and consider (h2s/f1,−h1s/f2). We will have

h2s

f1
− −h1s

f2
=
h2f2s+ h1f1s

f1f2
=

s

f1f2
. ■
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2.1.4 Abelian category
Definition 2.1.40 An abelian category is a preabelian category where all monomor-
phisms and all epimorphisms are regular.

The condition means that any monomorphism is a kernel and any epimorphism
is a cokernel (the converse being always true).

Examples 1. The category Ab of abelian groups is abelian.
2. The category A-Mod of left modules over a ring A is abelian.
3. More generally, if P is a small preadditive category, then the category P-Mod

of additive functors from P to Ab is abelian.
4. Also, if C is a small category, then the category Ĉ(Ab) of presheaves of abelian

goups on C is abelian.
5. The category Op(k-Mod) of k-modules endowed with an operator is abelian.
6. The category AbCHaus of compact Hausdorff abelian groups is abelian.
7. The category AbTop is not abelian however because the identity Zdisc → Zcoarse

is not a regular monomorphism.
8. The category AbHaus is not abelian either because the map ℓ1(R)→ ℓ2(R) is

not a regular monomorphism.
9. The category MatZ is not abelian because [2] is is not a regular monomorphism.

Exercise 2.1.41 A representation of a monoid G (or a G-module) is a morphism
ρ : G → Endk(M) where M is a module on some fixed commutative ring k. A
morphism of representations is a k-linear map M → N which is compatible with
the actions of G. Show that they form an abelian category Repk(G).

Hint. One can check that Repk(G) ≃ A-Mod with A = k ·G. ■

Exercise 2.1.42 Let O ⊂ C[[t]] be the ring of power series with positive radius
of convergence. A derivation on an O-module M is a group homomorphism
∂M : M → M such that ∀s ∈ M,∂(fs) = f ′s + f∂M(s). An O-linear map
f : M → N between modules with derivations is sait to be horizontal if it
commutes with the derivations. Show that modules with derivations and horizontal
maps form an abelian category.

Hint. One can check that this category is equivalent to the category D-Mod where

D :=

{
d∑

k=0

fk∂
k, fk ∈ O

}
is the (non-commutative) ring of differential operators with the commutation rule

[∂, f ] := ∂f − f∂ = f ′. ■

Proposition 2.1.43 If A is an abelian category, then Aop is also an abelian category,
as well as AI if I is a small category.

Proof. For the second assertion, use proposition 1.3.42. ■
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Definition 2.1.44 An abelian subcategory of an abelian category is a full subcategory
which is stable under all finite limits and finite colimits.

Exercise 2.1.45 Show that an abelian subcategory is indeed an abelian category.

Exercise 2.1.46 Show that a functor F : A → B between two preabelian categories
is left exact if and only if it is additive and preserves left exact sequences (and
dual).

Exercise 2.1.47 Let B be an abelian category. Show that, if a fully faithful functor
A↣ B has an exact adjoint or coadjoint, then A also is abelian.

Exercise 2.1.48 Show that the category of free abelian groups of finite rank (or
equivalently MatZ) is preabelian but that the inclusion in the category of all
abelian groups is not an exact functor.

Hint. Everything works fine besides the fact that the cokernel Q in Ab of a morphism
of free abelian groups of finite rank may not be free. However, one can writeQ = F⊕T
with F free and T torsion. An then, the cokernel in the original category will be F
as one easily checks. ■

Lemma 2.1.49 In a preabelian category, a morphism f : M → N is a regular
monomorphism if and only if

0→M
f→ N → coker f → 0

is a shorta exact sequence (and dual).
aRecall that we mean that it is simultaneously left and right exact.

Proof. The condition is clearly sufficient. Conversely, if f is the kernel of a morphism
g : N → P , we can then build the following commutative diagram (using the universal
property of the kernel):

M = ker g coker f

N

ker p P.

f p

f

As shown in exercise 1.3.28, both left hand morphisms are necessarily inverse to each
other, showing that M = ker p. ■

Recall the notion of a balanced category from definition 1.3.36: a morphism
which is at the same time a monomorphism and an epimorphism is automatically an
isomorphism.
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Proposition 2.1.50 An abelian category is balanced.

Proof. Follows from exercise 1.3.26. ■

Recall that we introduced the notions of regular image and coimage in definition
1.3.34.

Proposition 2.1.51 If f :M → N is a morphism in a (pre) abelian category, then
the sequence

0→ im f → N → coker f → 0

is (left) exact (and dual).

Proof. According to proposition 1.3.33, for left exactness, it is sufficient to show that
ker(N

π→ coker f) is universal for factorization of f through a regular monomorphism
j : N ′ ↣ N . We can then simply contemplate the following commutative diagram:

0 N ′ N coker j 0

kerπ

M N coker f 0.

j

f

π

If the category is abelian, then π is a regular epimorphism with kerπ = imf and the
sequence is therefore also right exact. ■

Corollary 2.1.52 A morphism f :M → N in a preabelian category is an epimor-
phism if and only if im f = N (and dual).

Proof. We have im(f) = N if and only if π : N → coker f is the zero morphism.
But since π is an epimorphism, it means that coker f = 0 or equivalently that f is
an epimorphism. ■

Recall that the notion of a strict morphism was introduced in definition 1.3.34:
it means that regular image and regular coimage coincide.

Proposition 2.1.53 A preabelian category is abelian if and only if all morphisms
are strict.

Proof. We already know from exercise 1.3.35 that a strict monomorphism/epimorphism
is automatically regular.

Conversely, any morphism f : M → N splits as M π→ im(f) ↣ N . Now
π splits in turn as M → im(π) ↣ im(f). Since the morphism im(π) ↣ N is
still a monomorphism and all monomorphisms are regular in an abelian category,
proposition 1.3.33 implies that im(π) = im(f). Corollary 2.1.52 implies that π is an
epimorphism and we are done. More precisely, this implies that coim f → im f is
an epimorphism. The dual argument shows that this is a monomorphism and we
know from proposition 2.1.50 that an abelian category is balanced. ■
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Corollary 2.1.54 In an abelian category, any morphism f :M → N factors uniquely
up to an isomorphism as an epimorphism followed by a monomorphism. ■

Most statements about abelian categories can be proven by reducing to a category of modules
using the following embedding theorem1:

Theorem 2.1.55 — Freyd-Mitchell. If A is a small abelian category, then there exists a ring
A and a fully faithful exact functor A↣ A−Mod.

Proof. To do. ■

In other words, a small category is abelian if and only if it is equivalent to an abelian subcategory
of a category of modules.

2.1.5 Exactness
Up to the end of this section, we work in a fixed abelian category A.

Definition 2.1.56 A sequence M ′ f→M
g→M ′′ is said to be exact in the middle or

exact in M or even simply exact if im f = ker g.

Example A sequence 0 → M ′ f→ M is exact if and only if f is a monomorphism
(and dually, a sequence M f→M ′′ → 0 is exact if and only if f is an epimorphism).

Exercise 2.1.57 Show that the condition for being exact is autodual: if coker f =
im g, then im f = ker g.

Exercise 2.1.58 Show that a sequence

0 −→M ′ i−→M
p−→M ′′ −→ 0

is left exact (resp. right exact, resp. short exact) if and only if it is exact in M ′,M
(resp. M,M ′′, resp. M ′,M,M ′′).

Exercise 2.1.59 Show that a sequence

0 −→M ′ −→M −→M ′′ −→ 0

is is short exact if and only if it is left exact and p is an epimorphism (and dual).

Exercise 2.1.60 Let B be another abelian category and F : A → B an additive
functor. Show that the following are equivalent:

1. F is exact,
2. if M ′ →M →M ′′ is exact (in the middle), then F (M ′)→ F (M)→ F (M ′′)

is exact in the middle,
3. F preserves short exact sequences.

1Feel free to use it if you are too lazy to draw big diagrams.
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Proposition 2.1.61 If f :M ↠ N is an epimorphism, then any cartesian diagram

M ′ N ′

M N

f ′

⌜

f

is also cocartesian (and dual).

Proof. We know from exercise 2.1.36 that the sequence

0→M ′ →M ⊕N ′ → N → 0

is left exact. Moreover, the composite morphism M ⊕N ′ ↠M ↠ N is an epimor-
phism. This shows that the sequence is also right exact and therefore (exercise 2.1.36
again) that the square is cocartesian. ■

Corollary 2.1.62 Epimorphisms are stable under pull back (and dual).

Proof. Use for example (the dual version of) exercise 1.3.29. ■

It is sometimes hard to provide a formal proof that a given sequence is exact and
the next criterion will prove itself quite valuable:

Exercise 2.1.63 Show that a sequence M ′ f→M
g→M ′′ is exact in M if and only

if g ◦ f = 0 and, given any h : L → M such that g ◦ h = 0, there exists an
epimorphism π : L′ ↠ L such that h ◦ π factors through f :

L′ L

M ′ M M ′′

π

h
0

f

0

g

Solution. If the sequence M ′ f→ M
g→ M ′′ is exact, we can simply compose the

cartesian squares

L′ L L

M ′ im f = ker g M

⌜ ⌜
h

and use the fact that epimorphisms are stable under pullback (corollary 2.1.62).
Conversely, if the condition is satisfied, we can consider the case L = ker(g). Since f
factors through ker g, there exists a commutative diagram

L′ ker(g)

M ′ M M ′′

0

f g
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with an epimorphism upstairs. This implies that M ′ ↠ ker g is an epimorphism and
therefore that im f = ker g (by unique factorization). ■

Proposition 2.1.64 — Snake lemma. If

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

i

f ′

p

f f ′′

j q

is a commutative diagram with exact rows, then there exists a natural autodual
(long) exact sequence

0→ ker f ′ i→ ker f
p→ ker f ′′ δ→ coker f ′ j→ coker f

q→ coker f ′′ → 0.

Proof. The construction of δ is shown on the following diagram:

P ker f ′′

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

cokerf ′ Q.

⌜

⌟

Let us give some details. We first form the cocartesian (which is also cartesian by
proposition 2.1.61) diagram

N ′ N

cokerf ′ Q.
⌟

Note that exercise 2.1.38 provides us with short exact sequences 0→ cokerf ′ → Q→
N ′′ → 0 (so that we turned a cokernel into a kernel) and 0→ im f ′ → N → Q→ 0
(that we shall only use in the end). We can consider the following factorization

M ′ M M ′′ 0

N ′ N

coker f ′ Q

0

f ′ f

δ

⌟
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and then the induced morphism

0 ker f ′′ M ′′ N ′′

0 coker f ′ Q N ′′.

δ

f ′′

δ

It follows from proposition 2.1.32 that ker δ = ker δ (but this will only be used in the
end). Dually, we have a cartesian square and a factorization

P ker f ′′

M M ′′

⌜ and

P M

N ′ N.

δ̃ f

The fact that all horizontal morphisms are monomorphisms and all faces besides the
left hand side are commutative in

ker f ′′ M ′′

P M

cokerf ′ Q.

N ′ N

δ

δ

δ̃

f

implies that it is indeed a commutative diagram so that our definition is autodual.
According to exercise 2.1.32, we are only left with the proof of exactness in ker f ′′.

As an intermediate step, we first assume that f ′ is an epimorphism and we have
to prove that ker f → ker f ′′ also is an epimorphism. For this purpose, we consider
the following commutative diagram with cartesian upleft square:

P ′ P M

M ′ N ′ N

M N

u′

u

⌜
δ̃ f

f ′

i

j

j

f

and set v := u− i ◦ u′ : P ′ →M so that f ◦ v = 0. It follows that v factors through
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ker f . Then, since p ◦ v = p ◦ u (because p ◦ i = 0), the diagram

P ′ P M

ker f ker f ′′

M M ′′

v

u

p

p

is commutative and the middle horizontal morphism must be an epimorphism.
We now turn to the general case. We have to show that that p induces an

epimorphism ker f ↠ ker δ = ker δ. It is sufficient to apply the intermediate step
(case f ′ surjective) to the following commutative diagram with exact rows and
columns:

0 0

ker f ker δ

0 M ′ M M ′′ 0

0 im f ′ N Q 0.

i p

f δ

■

Exercise 2.1.65 Show that if

M ′ M M ′′ 0

0 N ′ N N ′′

f ′ f f ′′

is a commutative diagram with exact rows, then there exists a natural autodual
(long) exact sequence

ker f ′ → ker f → ker f ′′ → coker f ′ → coker f → coker f ′′.

Exercise 2.1.66 Prove the four-lemma: if

M1 M2 M3 M4

N1 N2 N3 N4

f1 f2 f3 f4

is a commutative diagram with exact rows with f1 an epimorphism and f2, f4
monomorphisms, then f3 is a monomorphism (and dual).
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Solution. Split into

M1 M2 M ′
2 0

0 N ′
1 N2 N ′

2 0

f2 f ′2

and

0 M ′
2 M3 M ′

4 0

0 N ′
2 N3 N4

f ′2 f3

and apply snake lemma (version of exercise 2.1.65) to both. ■

Exercise 2.1.67 Prove the five-lemma: if

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

f1 f2≃ f3 f4≃ f5

is a commutative diagram with exact rows with f1 an epimorphism and f2, f4
isomorphisms and f5 a monomorphism, then f3 is an isomorphism.

Proposition 2.1.68 Assume that, in the commutative diagram

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0,

f f ′′

the bottom row is exact. Then, the top row also is exact if and only if the right
hand square is cartesian (and dual).

Solution. It follows from exercise 2.1.38, proposition 2.1.62 and exercise 2.1.59 that
the condition is sufficient. For the converse, we can first pull back the bottom row
and apply the five lemma upstairs:

0 M ′ M M ′′ 0

0 N ′′ M̃ M ′′ 0

0 N ′ N N ′′ 0.

⌜
f ′′

■
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Definition 2.1.69 An extension of M by N is a short exact sequence 0 → N →
E → M → 0. The extension is said to be trivial if the short exact sequence is
split.

We shall denote by Ext(M,N) the set of extensions of M by N up to (iso)
morphism

0 N E M 0

0 N E ′ M 0

≃

(by the five lemma, any morphism is automatically an isomorphism). The pull-back
of an extension E of M by N along a morphism f :M ′ →M is the unique extension
(up to isomorphism) making commutative the diagram

0 N f ∗E M ′ 0

0 N E M 0.

⌜
f

Uniqueness is a consequence of exercise 2.1.68 that also shows that the right hand
square is automatically cartesian. The push-out of E along g : N → N ′ is defined
dually by

0 N E M ′ 0

0 N ′ g∗E M 0.

g
⌟

Exercise 2.1.70 Show that if E is an extension of M bu N , f : M ′ → M and
g : N → N ′, then f ∗g∗E = g∗f

∗E (up to isomorphism).

Definition 2.1.71 The Baer sum of two extensions E and E ′ of M by N is

E + E ′ := ∇∗∆
∗(E ⊕ E ′) = ∆∗∇∗(E ⊕ E ′)

with ∆ =

[
1
1

]
:M →M ⊕M and ∇ =

[
1 1

]
: N ⊕N → N .

This is pictured as follows

0 N ⊕N E ⊕ E ′ M ⊕M 0

0 N F M ⊕M 0

0 N E + E ′ M 0.

∇
⌟

⌞
∆
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Exercise 2.1.72 Show that Ext(M,N) is an abelian group for the Baer sum.

Exercise 2.1.73 Show that (and dual)
1. if g : N → N ′ then g∗ : Ext(M,N)→ Ext(M,N ′) is a morphism of groups,
2. if E is an extension of M by N then the map

Hom(M ′,M)→ Ext(M ′, N), f 7→ f ∗E

is a morphism of groups.

Exercise 2.1.74 Show that if 0→ N ′ → N → N ′′ → 0 is a short exact sequence,
then there exists a long exact sequence (and dual)

0 Hom(M,N ′) Hom(M,N) Hom(M,N ′′)

Ext(M,N ′) Ext(M,N) Ext(M,N ′′).

2.1.6 Grothendieck category
We now introduce Grothendieck axioms:

Definition 2.1.75 A category is:
1. AB3 : Abelian with all colimits (AB3* : dual).
2. AB4 : AB3 and coproducts are exact (AB4* : dual).
3. AB5 : AB4 and filtered colimits are exact (AB5* : dual).
4. AB6 : AB5 and filtered colimits commute with products (AB6* : dual).

Remark This may be extended to
1. AB0 : preadditive with finite coproducts (so that AB0* = AB0 = additive)
2. AB1 : AB0 with cokernels (so that AB1 + AB1* = preabelian)
3. AB2 : AB1 with epimorphisms being regular (so that AB2 + AB2* = abelian)

Examples 1. The category Ab satisfies AB6 + AB4*.
2. The category AbTop is only preabelian (AB1 + AB1*).
3. The category AbCHaus ≃ Abop (Pontryagin duality) satisfies AB4 + AB6* .
4. If C is any category, then AbĈ ≃ Ĉ(Ab) satisfies AB6 + AB4*.
5. If P is a small preadditive category, then P-Mod satisfies AB6 + AB4*.
6. The category of sheaves of abelian groups (see below) on a topological space satisfies AB5 +

AB3* (but not AB6 nor AB4* in general).
7. There is no category satisfying AB5 + AB5* besides {0}.

Definition 2.1.76 A Grothendieck category is an AB5 category that has a generator.

Examples 1. A-Mod is a Grothendieck category.
2. If A is a small abelian category, then Ind(A) is a Grothendieck category.
3. If C is a small category, then Ab(Ĉ) is a Grothendieck category.
4. If P is a small preadditive category, then P-Mod is a grothendieck category
5. The category of sheaves of abelian groups (see below) on a topological space is a Grothendieck

category.
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Exercise 2.1.77 Show that if C is an AB5 category, then G is a generator if and only if, for
all M ∈ C, there exists an epimorphism G(I) :=

⊕
I G ↠ M .

Proposition 2.1.78 A Grothendieck category is automatically AB3*.

Proof. To do. ■

Proposition 2.1.79 A Grothendieck category has enough injectives.

Proof. To do. ■

2.2 Complex
2.2.1 Definition/Examples

We fix an additive category P .
Definition 2.2.1 1. A (long) sequence of P is a commutative diagram on the

ordered set (Z,≤):

· · · −→ Kn−1 dn−1−→ Kn dn−→ Kn+1 −→ · · ·

We call Kn (resp. dn) the term (resp. differential) of degree n.
2. If dn ◦ dn−1 = 0 for each n ∈ Z, then K• is called a (cochain) complex.
3. A complex K• is said to be bounded below (resp. bounded above, resp.

bounded) if Kn = 0 for n << 0 (resp. for n >> 0, resp. both for n << 0
and n >> 0).

A morphism f : K• → L• is a sequence of morphisms fn : Kn → Ln satisfying
fn+1 ◦ dn = dn ◦ fn:

· · · Kn−1 Kn Kn+1 · · ·

· · · Ln−1 Ln Ln+1 · · · .

dn−1

fn−1

dn

fn fn+1

dn−1 dn

Proposition 2.2.2 1. Complexes of P form a (full) additive subcategory C(P)
of P(Z,≤),

2. limits and colimits are computed termwise in C(P),
3. any additive functor F : P → P ′ provides an additive functor

F • : C(P)→ C(P ′).

Proof. All similar assertions are known for P(Z,≤). Moreover, any limit of colimit of
complexes is still a complex since any limit or colimit of commutative diagrams of
the form

Kn−1 Kn

0 Kn+1
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has the same form. Everything follows. ■

Exercise 2.2.3 1. Show that the inclusion 1 = {0}↣ (Z,≤) induces a functor

P ↣ C(P), M 7→M [0]

(so that M [0]0 = M and M [0]n = 0 otherwise) which is fully faithful and
preserves all limits and colimits.

2. Show that the inclusion [1] := {0 < 1}↣ (Z,≤) induces a functor

Mor(P) ↣ C(P), (M
f→ N) 7→ [M

f→ N ]

(with M in degree 0 and N in degree 1) which again is fully faithful and
preserves all limits and colimits.

3. Analog with left, right or short exact sequences ?

We shall denote by C+(P), C−(P) and Cb(P) the categories of complexes that
are respectively bounded below, bounded above and bounded. All the coming
developments has an equivalent with +, − and b.

A chain complex is defined exactly as a cochain complex but using diagrams on
(Z,≥) = (Z,≤)op instead and writing dn : Kn → Kn−1. Equivalently, a chain complex
is a cochain complex in Pop (with morphisms in the reverse direction). Actually, the
isomorphism (Z,≤) ≃ (Z,≥), n 7→ −n provides an isomorphism C(Pop)op ≃ C(P)
between chain complexes and cochain complexes. We shall make that identification
(so that Kn = K−n and dn is turned in d−n) and only consider a chain complex as a
change in the notation.

Exercise 2.2.4 Show that if K• is a (semi) simplicial object of P and we set
dn :=

∑n−1
i=0 (−1)idin, then K• becomes a chain complex. Show that this provides

a functor ∆̂(P)→ C(P) (called the Dold-Kan correspondancea ).
aWhen P is abelian, we obtain an equivalence between simplicial complexes and chain

complexes indexed by N.

Examples 1. Recall that there exists a functor

Top→ ∆̂, X → S•(X) with Sn(X) = C(|∆n|, X).

On the other hand, the free abelian group functor Set → Ab induces by
composition a functor ∆̂ := ∆̂(Set) → ∆̂(Ab). Moreover, we have the
Dold-Kan correspondance ∆̂(Ab)→ C(Ab). All in all, we get a functor

Top→ C(Ab), X → C•(X) with Cn(X) := Z · Sn(X).

2. Alternatively, using the functor

Setop → Ab, S 7→ F(S,M),

where M is a fixed abelian group, we obtain

Topop → C(Ab), X → C•(X,M)
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with

Cn(X,M) := F(Sn(X),M) ≃ HomAb(Cn(X),M).

3. If X is a smooth manifold, then there exists the de Rham complex Ω•(X): the
fact that this is indeed a complex relies in the end on the theorem of Schwarz
that states that f ′′ is symmetric or equivalently that, locally,

∂2f

∂x∂y
=

∂2f

∂y∂x
.

There also exists a morphism of complexes R[0]→ Ω•(X).
4. If A is a commutative algebra, then there exists also a de Rham complex Ω•

A/R

and a morphism A→ Ω•
A/R.
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