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Exercise 1 Define the categories Ord, Mon, Grp, Ring, CRing, G-Set (resp.
Set-G), A-Mod (resp. Mod-A) and k-Alg of preordered sets, monoids, groups,
rings, commutative rings, left (resp. right) G-sets, left (resp. right) A-modules
and k-algebras.

Exercise 2 Show that, if G is a monoid, then the set of objects of Mor(G) is G
and that, if X is a preordered set, then the set of objects of Mor(X) is the graph
Γ of the relation.

Exercise 3 Make C/X explicit when X is an object of a category C.

Exercise 4 What is an isomorphism in Set, in Top, in Ab, etc. ? In G if G is a
monoid ? In X if X is a preordered set ?

Exercise 5 What is a functor G → H between categories associated to monoids ?
What is a functor X → Y between categories associated to preordered sets ?

Exercise 6 What are the analogs of the “free abelian group” functor X 7→ Z ·X
for the categories Mon, Grp, A-Mod and k-Alg ?

Exercise 7 Show that, besides the inclusion functor Ab ↣ Grp, there exists an
abelianization functor G 7→ Gab = G/[G,G] in the other direction. Show that the
center is not functorial in the sense that a group homomorphism φ : G→ H does
not necessarily induce a morphism of abelian groups Z(G) → Z(H).

Exercise 8 Show that the categories Z-Mod and Ab are isomorphic. Same
thing with the categories Z-Alg and Ring, and, more generally, k-Alg and a full
subcategory of k\Ring (the image of k must be in the center).

Exercise 9 Show that the image of a section (resp. a retraction, resp. an inverse)
by a functor is a section (resp. a retraction, resp. an inverse).

Exercise 10 Let us denote by Op(C) ⊂ Mor(C) the subcategory whose objects
are morphisms with codomain identical to the domain and morphisms have same
component on domain and codomain (objects with operator). Show that, if k is a
commutative ring, then Op(k-Mod) is isomorphic to k[t]-Mod.

Exercise 11 Show that
1. if C is a small category, then there exists an isomorphism of categories

Hom(C,D)op ≃ Hom(Cop,Dop),
2. if C and C ′ are two small categories, then there exists an isomorphism of

categories

Hom(C × C ′,D) ≃ Hom(C,Hom(C ′,D)).

Exercise 12 Show that, there exists a functor

Catop ×Cat → Cat, (C,D) 7→ Hom(C,D).
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Exercise 13 Show that the category SSet of simplicial sets is isomorphic to the
category ∆̂ of presheaves of sets on ∆. Analog with semi-simplicial sets and ∆̂inj.

Exercise 14 Show that there exists a cosimplicial object |∆•| of Top sending [n] to
|∆n| and u : [n] → [m] to the unique linear map sending ei to eu(i) if (e0, . . . , en)
denotes the usual basis of Rn+1.

Exercise 15 Show that the simplicial set S•(X) associated to a topological space
X corresponds to hX ◦ |∆•| under SSet ≃ ∆̂ and that this provides a functor
Top → ∆̂ sending a topological space X to its associated simplical set S•(X).

Exercise 16 Show that the forgetful functors Top → Set and Ab → Set are
faithful but not fully faithful.

Exercise 17 Show that there exists a fully faithful functor

Mon ↣ Cat, G 7→ G, (resp. Ord ↣ Cat, X 7→ X).

What is the essential image ?

Exercise 18 Show that there exists a fully faithful functor Cat ↣ ∆̂.

Exercise 19 Show that if F ≃ F ′, then F is faithful (resp. full, resp. fully faithful,
essentially surjective, an equivalence) if and only if F ′ is.

Exercise 20 Show that if X is a preordered set and Y denotes its ordered quotient,
then the categories X and Y are equivalent.

Exercise 21 Show that, ifA is a ring, then Mat(A) := N, endowed with Hom(m,n) =
Mn×m(A) and multiplication of matrices, is a small category. Show that if A is a
field k, then Mat(k) is equivalent, but not isomorphic, to the category of finite
dimensional k-vector spaces (which is large).

Exercise 22 Show that, if F is represented by both X and X ′, then X ≃ X ′.
More precisely, show that if both (X, s) and (X ′, s′) are universal for F , then
there exists a unique isomorphism f : X ≃ X ′ such that F (f)(s) = s′.

Exercise 23 Show that usual forgetful functors are representable.

Exercise 24 Show that M ⊗k N is universal for (the functor that sends P to the
set of) bilinear maps M ×N → P .

Exercise 25 Let k be a commutative ring and f1, . . . , fr ∈ k[t1, . . . , tn]. Show that
the functor that sends a commutative k-algebra A (make the morphisms explicit)
to the set

S(A) := {(a1, . . . , an) ∈ An / f1(a1, . . . , an) = · · · = fr(a1, . . . , an) = 0}

of all solutions with values in A, is representable.
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Exercise 26 Show that if C is a small category, then there exists a fully faithful
Yoneda functor

ょ : C ↣ Ĉ, X 7→ hX .

Exercise 27 Write down a diagram for the colimit as in (??).

Exercise 28 Show that in an preordered set, a limit (resp. colimit) is a least upper
bound or inf or join (resp. greatest lower bound or sup or meet). What about
cone and cocone ?

Exercise 29 Show that, if D → D′ is a morphism of diagrams of shape I in C
with respective limits X and X ′, then there exists a unique morphism X → X ′

making commutative the diagram

D D′

X X ′

Exercise 30 Show that there exists “canonical” isomorphisms (and dual)
1. X × 1C ≃ X for X ∈ C,
2. X × Y ≃ Y ×X for X, Y ∈ C and
3. (X × Y )× Z ≃ X × (Y × Z) for X, Y, Z ∈ C.

Exercise 31 Show that, if C is a cartesian category, then there exists a functor

C → ∆̂(C) := Hom(∆op, C), X 7→ X•

where Xn := Xn+1 and u : [m] → [n] is sent to the unique morphism Xn+1 →
Xm+1 whose i-th component is the j-th projection with j := u(i− 1)

Exercise 32 Show that the fibered coproduct in the category of commutative rings
is tensor product.

Exercise 33 Show thata, in a diagram

Y2 Y1 Y0

X2 X1 X0,

⌜

if the right hand square is cartesian, then the left hand square is cartesian if and
only if the full rectangle is cartesian.

aThis is an illustration of the more general proposition ?? below.

Exercise 34 Show that if C is a small category, then Op(C) is the kernel of the
domain and codomain functors Mor(C) ⇒ C in Cat.
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Exercise 35 Make explicit specific limits (final object, products, fibered product
and kernel) and colimits (initial object, coproduct, fibered coproduct and cokernel)
in Mon, Grp, G-Set, A-Mod or Cat.

Exercise 36 Show that a split monomorphism is a regular monomorphism and
that a regular monomorphism is a monomorphism (and dual).

Exercise 37 Show that a morphism f : X → Y is a monomorphism (resp. an
epimorphism) if and only if the induced functor C/X → C/Y (resp. Y \C → X\C) is
fully faithful.

Exercise 38 Show thata if both f : X → Y and g : Y → Z are monomorphisms,
then so is g ◦ f (and dual). Show that, conversely, if g ◦ f is a monomorphism,
then so is f (and dual).

aBe careful that this is not the case for regular monomorphisms in general.

Exercise 39 Show that a regular epimorphism which is also a monomorphism is
automatically an isomorphism (and dual).

Exercise 40 Show that, if we are given f, g : X → Y and i : Y ↣ Z is a
monomorphism, thena ker(i ◦ f, i ◦ g) = ker(f, g) (and dual). Analog for fibered
products (and dual) ?

aIf one of them exists, then so does the other and. . .

Exercise 41 Show that, if we are given a commutative diagram of monomorphisms

X1 X2

Y

then, the upper arrows are inverse isomorphisms to each other (and dual).

Exercise 42 Show that, in a cartesian diagram

X ′ Y ′

X Y

f ′

⌜

f

if f is a monomorphism, then f ′ also is monomorphism (and dual).

Exercise 43 Show that if i : X ↣ Y is an injective map and the diagram of sets

X Y

Y Z

i

i
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is cocartesian, then it is also cartesian.

Exercise 44 Show that, if f : X → Y is an epimorphism, then im(f) = Y (and
dual).

Exercise 45 Show that a strict epimorphism is regular (and dual).

Exercise 46 Assume given f, g : X → Y such that Y × Y exists. Show that
ker(f, g) exists if and only if there exists a cartesian diagram

Z X

Y Y × Y

⌜
(f,g)

δ

in which case Z = ker(f, g).

Exercise 47 Show that Set, Top, Ab, etc. are bicomplete.

Exercise 48 Show that colimits of sets are stable under pullback.

Exercise 49 Show that, if F is left exact, then F preserves (regular, strict)
monomorphisms (and dual).

Exercise 50 Show that, if C is a small category and all limits of shape I exist in
D, then all limits of shape I also exist in the category Ĉ(D) of presheaves and
they are preserved by the functor

Ĉ(D) → D, F 7→ F (X)

for fixed X ∈ C (and dual).

Exercise 51 Show that a representable functor F : C → Set preserves all limitsa.
aThere exists no dual statement and the notion of a limit plays a special role.

Exercise 52 Show that a small category I is filtered if and only if
1. I ̸= ∅,
2. ∀i, j ∈ I,∃k ∈ I, i→ k, j → k,
3. ∀u, v : i→ j,∃k ∈ I, c : j → k / c ◦ u = c ◦ v.

Exercise 53 Show that
1. a set (resp. a small category) is the filtered colimit of its finite subsets (resp.

finite subcategories),
2. a category with finite colimits (resp. finite coproducts) and filtered colimits

has all colimits (resp. all coproducts).
3. a functor that preserves finite colimits (resp. finite coproducts) and filtered

colimits preserves all colimits (resp. coproducts).
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Exercise 54 Show that filtered colimits are exact in Ab, Top, etc. and that they
are preserved by the forgetful functors to Set (one may show the second assertion
first).

Exercise 55 Show that Ab satisfies AB4* extra condition: arbitrary products are
exact.

Exercise 56 Show that Ab satisfies AB6 extra condition: filtered colimits commute
with arbitrary products:∏

j∈J

lim−→
ij∈Ij

Mij ≃ lim−→∏
j∈J Ij

∏
j∈J

Mij

when each Ij is filtered.

Exercise 57 Show that most forgetful and inclusion functors we have already met
have an adjoint (and sometimes a coadjoint) and make them explicit.

Exercise 58 Show that the adjoint to the forgetful functor k-Alg → k-Mod is the
tensor algebra functor M 7→ T(M). Same thing with S(M) when we restrict to
commutative algebras.

Exercise 59 Sow that, if f : A → B is a morphism of rings, then the forgetful
functor B-Mod → A-Mod has both an adjoint M 7→ B ⊗A M and a coadjoint
M 7→ HomA(B,M).

Exercise 60 Show that (for fixed Y ) the functor X 7→ X × Y from Set to itself is
adjoint to the functor Z 7→ F(Y, Z):

F(X × Y, Z) ≃ F(X,F(Y, Z)).

This is called Currying. Write down the analogous statements for Cat and Ab.

Exercise 61 Show that if both F1 and F2 are adjoint to G, then F1 ≃ F2 (and
dual).

Exercise 62 Show that if F1 : C ⇆ C ′ : G1 and F2 : C ′ ⇆ C ′′ : G2 then,
F2 ◦ F1 : C ⇆ C ′′ : G1 ◦G2.

Exercise 63 Describe unit and counit in all the examples studied so far. Deduce
in each case faithfulness or full faithfulness of the functors.

Exercise 64 Show that, if a small category C has (self) coproducts, then all
representable functors F on C have an adjoint.

Exercise 65 Show that any adjunction between two functors F and G extends to
an adjunction on diagrams of a given shape I:

Hom(F (D), E) ≃ Hom(D,G(E)).
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Exercise 66 Show that k[t] (resp. k[t]t) endowed with t 7→ t ⊗ 1 + 1 ⊗ t (resp.
t 7→ t⊗t) is an abelian group of the category opposite to the category of k-algebras
(it is called a bialgebra).

Exercise 67 Show that, if all limits exist in C, then the same holds in Ab(C) and
they are preserved by the forgetful functor Ab(C) → C.

Exercise 68 Let F : C → C ′ be a functor between cartesian categories. Show that
1. if F preserves finite products, then F induces a functor still written F :

Ab(C) → Ab(C ′),
2. if moreover, F preserves all limits of C, then it preserves all limits of Ab(C).

Exercise 69 Show that if C is a small category, then there exists an isomorphism
of categories Ĉ(Ab) ≃ Ab(Ĉ).

Exercise 70 Show that if C is a small cartesian category, then there exists a fully
faithful functor Ab(C) ↣ Ĉ(Ab).

Exercise 71 Define the category k-Alg(C) of k-algebras of a cartesian category C
when k is a commutative ring of C.

Exercise 72 Show that k[t] endowed with t 7→ t ⊗ 1 + 1 ⊗ t and t 7→ t ⊗ t is a
commutative ring of the category opposite to the category of k-algebras.

Exercise 73 Show that a coproduct of projectives is projective (and dual).

Exercise 74 Show that if X is projective, then
1. any epimorphism Y ↠ X is split,
2. if a Y ↣ X (resp. X ↠ Y ) is a split monomorphism (resp epimorphism),

then Y also is projective (and dual).

Exercise 75 Show that
1. if each Xi is projective, then (Xi)i∈I is projective in C :=

∏
i∈I Ci,

2. if each Ci has enough projectives, so does C.

Exercise 76 An isogeny is a homomorphism of abelian groups f :M → N such
that

1. ∀y ∈ N,∀n ∈ Z ∖ 0,∃x ∈M, f(nx) = y,
2. ∀x ∈M, f(x) = 0 ⇒ ∃n ∈ Z ∖ 0, nx = 0.

Show that, if W is the collection of all isogenies, then W−1Ab ≃ Q-Vec (:=
Q-Mod).

Exercise 77 The category of topological spaces up to homotopy has topological
spaces as objects but sets of morphisms [X, Y ] := C(X, Y )/ ∼ and composition
induced by usual composition. Show that it is equivalent to W−1Top if W denotes
the collection of homotopy equivalences.

Exercise 78 Show that if C admits right calculus of fraction with respect to W ,
then the localization functor Q : C → W−1C is exact.
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Exercise 79 Show that, if P is a preadditive category, then Pop is preadditive too.

Exercise 80 Show that hM : P → Ab still preserves all limits and is in particular
left exact (and dual).

Exercise 81 Show that
1. if A,B are two rings, then HomRing(A,B) ≃ Hom+(A,B),
2. If A is a ring, then A-Mod ≃ A-Mod.

Exercise 82 Prove the additive Yoneda lemma: if P is a smalla preadditive
category, M ∈ P and F ∈ P-Mod, then there exists a natural isomorphism of
abelian groups Hom(hM , F ) ≃ F (M) (and dual).

aThe statement generalizes to large categories.

Exercise 83 Show that, if P is an additive category, then Pop is additive too.
Show also that, if I is a small category, then PI is additive.

Exercise 84 Show that, if we are given two morphisms f =M → N and g : N → P
in an additive category, and decompositions M =

⊕m
k=1Mk and N =

⊕n
j=1Nj

and P =
⊕p

i=1Np, then g ◦ f = [hik] with hik =
∑

j gij ◦ fjk.

Exercise 85 Show that the forgetful functor Ab(P) → P is an isomorphism when
P is additive.

Exercise 86 Show that a category P is additive if and only if there exists a (not
unique) cartesian category C such that Ab(C) ≃ P .

Exercise 87 Show that
1. a subcategory P ′ of an additive category P is an additive subcategory if

and only if it is stable under finite direct sums: if M1, . . . ,Mn ∈ P ′, then⊕n
k=1Mk ∈ P ′.

2. a functor F : P → Q between additive categories is additive if and only
if it preserves finite direct sums: if M1, . . . ,Mn ∈ P, then F (

⊕n
k=1Mk) =⊕n

k=1 F (Mk).

Exercise 88 Let Q be an additive category. Show that, if a fully faithful functor
P ↣ Q has an adjoint or a coadjoint, then P also is additive.

Exercise 89 Show that, if P is a small preadditive category and Q is additive,
then Hom+(P ,Q) is additive.

Exercise 90 Show that
1. a sequence 0 →M

f→ N → 0 is left exact if and only if it is right exacta if
and only if f is an isomorphism,

2. if 0 → M ′ f→ M
g→ M ′′ → 0 is left exact (resp. short exact), then f is an

isomorphism if and only if g = 0 (resp. M ′′ = 0) – and dual.
aSo that there is no ambiguity in saying that such a sequence is exact.
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Exercise 91 Show that two sequences 0 → M ′ → M → M ′′ → 0 and 0 →
N ′ → N → N ′′ → 0 are left (resp. right, resp. short) exact if and only if the
(corresponding) sequence 0 →M ′ ⊕N ′ →M ⊕N →M ′′ ⊕N ′′ → 0 is left (resp.
right, resp. short) exact.

Exercise 92 Show that any commutative diagram with exact rows

M ′ M M ′′ 0

0 N ′ N N ′′

may be uniquely completed as described (and dual).

Exercise 93 Show that, in A-Mod, any short exact sequence is isomorphic to
some

0 →M ′ →M →M/M ′ → 0

where M ′ is a submodule of M .

Exercise 94 Show that a diagram

M ′ N ′

M N

f ′

g′ g

f

is cartesian (resp. cocartesian, resp. both cartesian and cocartesian) if and only if
the sequence

0 −→M ′

[
f ′
g′

]
−→M ⊕N ′ [f −g]−→ N −→ 0

is left exact (resp. right exact, resp. short exact).

Exercise 95 Show that a sequence

0 →M ′ →M →M ′′ → 0

is left exact (resp. right exact, resp. short exact) if and only if the diagram

M ′ M

0 M ′′

is cartesian (resp. cocartesian, resp. both cartesian and cocartesian).
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Exercise 96 Show that if A is a commutative ring, M is an A-module and f, g ∈ A
are comaximal (the ideal generated by f and g is the full ring) then the sequence

0 →M →Mf ×Mg
−→Mfg → 0

is exact.

Exercise 97 A representation of a monoid G (or a G-module) is a morphism
ρ : G → Endk(M) where M is a module on some fixed commutative ring k. A
morphism of representations is a k-linear map M → N which is compatible with
the actions of G. Show that they form an abelian category Repk(G).

Exercise 98 Let O be the ring of holomorphic functions on an open subset U of C.
A derivation on an O-moduleM is a group homomorphism ∂M :M →M such that
∀s ∈ M,∂(fs) = f ′s+ f∂M(s). An O-linear map f : M → N between modules
with derivations is sait to be horizontal if it commutes with the derivations. Show
that modules with derivations and horizontal maps form an abelian category.

Exercise 99 Show that an abelian subcategory is indeed an abelian category.

Exercise 100 Show that a functor F : A → B between two preabelian categories
is left exact if and only if it is additive and preserves left exact sequences (and
dual).

Exercise 101 Let B be an abelian category. Show that, if a fully faithful functor
A ↣ B has an exact adjoint or coadjoint, then A also is abelian.

Exercise 102 Show that the category of free abelian groups of finite rank (or
equivalently MatZ) is preabelian but that the inclusion in the category of all
abelian groups is not an exact functor.

Exercise 103 Show that the condition for being exact is autodual: coker f = im g
if and only if im f = ker g.

Exercise 104 Show that a sequence

0 −→M ′ i−→M
p−→M ′′ −→ 0

is left exact (resp. right exact, resp. short exact) if and only if it is exact in M ′,M
(resp. M,M ′′, resp. M ′,M,M ′′).

Exercise 105 Show that a sequence

0 −→M ′ −→M
p−→M ′′ −→ 0

is short exact if and only if it is left exact and p is an epimorphism (and dual).

Exercise 106 Show that M f→ N
g→ Q

h→ R is exact if and only if it splits into
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right and left exact sequences

M
f→ N → P → 0 and 0 → P → Q

h→ R.

Exercise 107 Let B be another abelian category and F : A → B an additive
functor. Show that the following are equivalent:

1. F is exact,
2. if M ′ →M →M ′′ is exact (in the middle), then F (M ′) → F (M) → F (M ′′)

is exact in the middle,
3. F preserves short exact sequences.

Exercise 108 Show that a sequence M ′ f→ M
g→ M ′′ is exact in M if and only

if g ◦ f = 0 and, given any h : L → M such that g ◦ h = 0, there exists an
epimorphism π : L′ ↠ L such that h ◦ π factors through f :

L′ L

M ′ M M ′′

π

h
0

f

0

g

Exercise 109 Show that if

M ′ M M ′′ 0

0 N ′ N N ′′

f ′ f f ′′

is a commutative diagram with exact rows, then there exists a natural autodual
(long) exact sequence

ker f ′ → ker f → ker f ′′ → coker f ′ → coker f → coker f ′′.

Exercise 110 Prove the four-lemma: if

M1 M2 M3 M4

N1 N2 N3 N4

f1 f2 f3 f4

is a commutative diagram with exact rows with f1 an epimorphism and f2, f4
monomorphisms, then f3 is a monomorphism (and dual).
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Exercise 111 Prove the five-lemma: if

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

f1 f2≃ f3 f4≃ f5

is a commutative diagram with exact rows with f1 an epimorphism and f2, f4
isomorphisms and f5 a monomorphism, then f3 is an isomorphism.

Exercise 112 Show that if E is an extension of M by N , f : M ′ → M and
g : N → N ′, then f ∗g∗E = g∗f

∗E (up to isomorphism).

Exercise 113 Show that Ext(M,N) is an abelian group for the Baer sum.

Exercise 114 Show that (and dual)
1. if g : N → N ′ then g∗ : Ext(M,N) → Ext(M,N ′) is a morphism of groups,
2. if E is an extension of M by N then the map

Hom(M ′,M) → Ext(M ′, N), f 7→ f ∗E

is a morphism of groups.

Exercise 115 Show that if 0 → N ′ → N → N ′′ → 0 is a short exact sequence,
then there exists a long exact sequence (and dual)

0 Hom(M,N ′) Hom(M,N) Hom(M,N ′′)

Ext(M,N ′) Ext(M,N) Ext(M,N ′′).

Exercise 116 1. Show that the inclusion 1 = {0} ↣ (Z,≤) induces a functor
P ↣ C(P) which is fully faithful and preserves all limits and colimits. We
shall identify P with its image in C(P) so that M0 = M and Mn = 0
otherwise.

2. Show that the inclusion [1] := {0 < 1} ↣ (Z,≤) induces a functor

Mor(P) ↣ C(P), (M
f→ N) 7→ [M

f→ N ]

(with M in degree 0 and N in degree 1) which again is fully faithful and
preserves all limits and colimits.

3. Analog with left, right or short exact sequences ?

Exercise 117 Show that if K• is a (semi) simplicial object of P and we set
dn :=

∑n−1
i=0 (−1)idin, then K• becomes a chain complex. Show that this provides

a functor ∆̂(P) → C(P) (called the Dold-Kan correspondancea ).
aWhen P is abelian, we obtain an equivalence between simplicial complexes and chain

complexes indexed by N.
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Exercise 118 Show that there exists an adjunction between differential objects
and complexes.

Exercise 119 Show that morphisms that are homotopic to 0 form a subgroup of
HomC(P)(K

•, L•).

Exercise 120 Show that if f ∼ g : K• → L• and φ : L• → M• (resp. ψ : J• →
K•), then φ ◦ f ∼ φ ◦ g (resp. f ◦ ψ ∼ g ◦ ψ).

Exercise 121 1. Show that a morphism of complexes f : K• → L• is a homo-
topy equivalence if and only if there exists a morphism g : L• → K• such
that g ◦ f ∼ Id and f ◦ g ∼ Id.

2. Show that a complex K• is contractible if and only if IdK• ∼ 0K• .

Exercise 122 Show that a complex [M
Id→ M ] is always contractible but the

complex

· · · → 0 → Z
2→ Z → Z/2Z → 0 → · · ·

is not (although the sequence is exact).

Exercise 123 Show that any additive functor F : P → P ′ provides a functor

F • : K(P) → K(P ′).

Exercise 124 Show that the mapping cone is indeed a complex.

Exercise 125 Show that, conversely, if 0 → K• → L• → M• → 0 is a termwise
split extension, then there exists a morphism h : M•[−1] → K• and an isomor-
phism L• ≃ M(h) (of extensions).

Exercise 126 Show that
1. K• Id→ K• → 0 → K•[1] and
2. [M

f→ N ] →M
f→ N → [M

f→ N ][1]
are always distinguished.

Exercise 127 Show that
1. if 0 → K• f→ L• g→M• → 0 is a termwise split extension, then there exists

a distinguished triangle K• f→ L• g→M• → K•[1],
2. conversely, any distinguished triangle is isomorphic to a triangle coming

form a termwise split extension.

Exercise 128 Show that C(A) also is abelian.

Exercise 129 Show that cohomology provides us with an additive functor

Hn : C(A) → A

which is not left or right exact in general.
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Exercise 130 Show that if Q is a divisible group, then

Hn
sing(X,Q) ≃ HomAb(H

sing
n (X), Q).

Exercise 131 Show that, if H : K(P) → A is a cohomological functor and
K• → L• → M• → K•[1] a distinguished triangle, then there exists a natural
long exact sequence of complexes

· · · → H(K•[n]) → H(L•[n]) → H(M•[n]) → H(K•[n+ 1]) → · · · .

Exercise 132 Show that 0 → M ′ → M → M ′′ → 0 is a short exact sequence in
A if and only if the morphism M ′ → [M →M ′′] (resp. [M ′ →M ][1] →M ′′) is a
quasi-isomorphism.

Exercise 133 Assume K• f→ L• →M• → K•[1] is a distinguished triangle. Show
that f is a quasi-isomorphism if and only if M• is acyclic (and idem with a short
exact sequence).

Exercise 134 Show that, if

K• L• M• K•[1]

K ′• L′• M ′• K ′•[1]

u v w u[1]

is a morphism of distinguished triangles and two among u, v and w are quasi-
isomorphisms, then so is the third (and idem with a short exact sequences).

Exercise 135 Prove the following :
1. if M = M ′ ⊕M ′′, then M is injective if and only if both M ′ and M ′′ are

injective (and dual).
2. if 0 → M ′ → M → M ′′ → 0 is an exact sequence with M ′ injective, then
M is injective if and only if M ′′ is (and dual).

Exercise 136 Assume B is another abelian category and F : A → B is adjoint to
a functor G : B → A. Show that (and dual)

1. if F is exact then G preserves injectives,
2. if F is faithful exact and B has enough injectives, then A too has enough

injectives.

Exercise 137 Show that if E is an open covering of a topological space X, M
is an abelian group, then there exists a complex C•(E,M) with Cn(E,M) :=
F(Sn(E),M) and a quasi-isomorphism

C•(X,M) ↠ C•(E,M).

Exercise 138 Show that if X is a contractible topological space (resp. and M is
an abelian group), then C•(X) (resp. C•(X,M)) is a left (resp. right) resolution
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of Z (resp. M).

Exercise 139 Show that, if Rn is seen as a smooth manifold, then Ω•(Rn) is a right
resolution of R.

Exercise 140 Show that D(A) is also the localization of C(A) at quasi-isomorphisms
(even it this last category does not admits right or left calculus of fractions).

Exercise 141 Show that Extn(M,N) = 0 for n < 0 and Ext0(M,N) = Hom(M,N)
if M,N ∈ A.

Exercise 142 Show that Ext1(M,N) ≃ Ext(M,N) when A has enough injectives
or projectives (although this condition is not necessary).

Exercise 143 Assume A has enough injectives. Show that I ∈ A is injective if
and only if Extn(M, I) = 0 for all M ∈ A and n ̸= 0 (and dual).

Exercise 144 Show that if M,N are two abelian groups, then Extn(M,N) = 0
for n ̸= 0, 1.

Exercise 145 Show that if M is an abelian group, then

Ext(Z/nZ,M) ≃M/nM.

Exercise 146 Show that, in the category of abelian groups,

Extk(Z/nZ,Z/mZ) ≃
{

Z/dZ if k = 0, 1
0 otherwise

with d = m ∧ n (for m,n > 0).

Exercise 147 Show that

Tork(Z/nZ,Z/mZ) ≃
{

Z/dZ if k = 0, 1
0 otherwise

with d = m ∧ n (for m,n ≥ 1).

Exercise 148 Show that, ifG is a group and k = Z, then H1(G,M) ≃ Z(G,M)/B(G,M)
where

Z(G,M) := {f : G→M/∀g, h ∈ G, f(gh) = f(g) + gf(h)}

is the set of crossed homomorphisms and

B(G,M) := {f : G→M, g 7→ gm−m : m ∈M}

is the set of principal homomorphisms.
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Exercise 149 Assume G is a group and k = Z. Compute H1(G,M) when
1. the action of G on M is trivial,
2. M = Z with the non-trivial action of µ2 := {1,−1}.

Exercise 150 Show that

RnSol(M) ≃


ker ∂M if n = 0
coker ∂M if n = 1
0 otherwise.

Exercise 151 Show that an object is injective if and only if it is F -acyclic for all
left exact functors F if and only if this is the case when F = Hom(M,−) for all
M ∈ A (and dual).

Exercise 152 Show that the condition is automatic when F has an exact adjoint.

Exercise 153 Show that X̂ is a cartesian category with final object given by
1(U) = 1 := {0} for all open subsets U of X and such that

(F × G)(U) = F(U)× G(U)

for all presheaves of sets F and G.

Exercise 154 Show that, if A is a presheaf of rings on X, then a presheaf of
A-modules is (the same thing as) a presheaf of sets M together with a structure
of A(U)-module on M(U) for U open in X such that

1. ∀s, s′ ∈ M(U), (s+ s′)|V = s|V + s′|V and
2. ∀f ∈ A(U),∀s ∈ M(U), (fs)|V = f|V s|V

for V open in U . Show that a morphism of presheaves of A-modules α : M → N
is a morphism of presheaves of sets such that αU : M(U) → N (U) is A(U)-linear
whenever U is an open subset of X.

Exercise 155 Show that, if F is a presheaf of sets (resp. M is a presheaf of
A-modules), then there exists a bijection (resp. an isomorphism)

Hom(1U ,F) ≃ F(U)
(
resp. HomA(ÂU ,M) ≃ M(U)

)
with

1U(V ) =

{
1 := {0} if V ⊂ U,
0 := ∅ otherwise

(
resp. ÂU(V ) =

{
A(U) if V ⊂ U,
{0} otherwise

)
.

Exercise 156 Show that the forgetful functor ̂ẐX-Mod → X̂(Ab) is an isomor-
phism of categories.

Exercise 157 Show that the forgetful functor Â-Mod → X̂ has an adjoint.
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Exercise 158 Show that the functor

X̂ → SetOpen(X), F → (F(U))U∈Open(X)

1. is faithful and conservative,
2. preserves (and reflects) all limits and colimits.

Exercise 159 Show that Â-Mod is an abelian category (satisfying AB6 and AB4*).

Exercise 160 Show that the stalk functor F 7→ F(x) on X̂ is exact and preserves
all colimits.

Exercise 161 Show that OX(x) is a local ring when X is a manifold.

Exercise 162 Show that, if U is an open subset of X, then the restriction has and
adjoint and a coadjoint given respectively bya

F 7→
(
V 7→

{
F(V ) if V ⊂ U
∅ otherwise

)
and F 7→ (V 7→ F(U ∩ V )).

aUse {0} in place of ∅ in the algebraic case.

Exercise 163 Show that, if R ∈ J(X) and U is an open subset of X, then
R ∩Open(U) ∈ J(U).

Exercise 164 Show that if F is a sheaf on X, then F(∅) = 1.

Exercise 165 Show that a sheaf F is uniquely determined by F(V ) when V runs
through a basis B of open subsets of X.

Exercise 166 Showa that a presheaf F with values in a complete category D is a
sheaf if and only if the presheaf U 7→ Hom(E,F(U)) is a sheaf of sets whenever
E ∈ D.

aThis provides a way to extend the definition of a sheaf even when there are not enough
limits in D.

Exercise 167 Show that a presheaf of abelian groups or rings is a sheaf if and
only if the underlying presheaf of sets is sheaf.

Exercise 168 Show that if A is a sheaf of rings on X, then

A-Mod ≃ A-Mod(X̃)

(a sheaf of A modules is essentially the same thing as an A-module in the category
of sheaves of sets).

Exercise 169 Show that OX is a sheaf on X := Spec(A) and that M̃ is an
OX-module when M is an A-module.
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Exercise 170 Show that, if X = Spec(A), then there exists an adjunction

HomOX
(M̃,N ) ≃ HomA(M,Γ(X,N ))

if M is an A-module and N an OX-module.

Exercise 171 An A-module is said to be locally free of rank n if it is locally
isomorphic to An. Show that the category of vector bundles on a manifold X is
equivalent to the category of locally free OX-modules of finite rank.

Exercise 172 Show that, if F → F̃ is an epimorphism of presheaves, then F̃ =
Ȟ(F).

Exercise 173 Show that, if E is a set, then EX ≃ CX
E when E is endowed with

the discrete topology, and that there exists an adjunction

Hom(EX ,F) ≃ Hom(E,Γ(X,F))

if F is a sheaf.

Exercise 174 Show that if x is a point, then there exists an isomorphism of
categories x̃ ≃ Set given by F 7→ E := F(x) (and we shall identify both
categories).

Exercise 175 Show that, if M is an A-module, then there exists an isomorphism

HomA(AU ,M) ≃ M(U)

where AU is the sheafification of ÂU .

Exercise 176 Show that the forgetful functor ZX-Mod → X̃(Ab) is an isomor-
phism.

Exercise 177 Show that the forgetful functor A-Mod → X̃ has an adjoint F 7→
A · F .

Exercise 178 Show that the functor F → (F(x))x∈X is adjoint to the functor that
sends (Ex)x∈X to E with E(U) =

∏
x∈U Ex.

Exercise 179 Show that the functor F → (F(x))x∈X is an equivalence when X is
discrete.

Exercise 180 Show that the following are equivalent:
1. α : F → G is an epimorphism,
2. for all U open in X and all t ∈ G(U), there exists an R ∈ J(U) and
sv ∈ F(V ) for all V ∈ R such that t|V = αV (sV ),

3. for all U open in X and all t ∈ G(U), there exists an open covering U =⋃
i∈I Ui and for all i ∈ I, si ∈ F(Ui) such that t|Ui

= αUi
(si).
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Exercise 181 Show that
1. if F is a presheaf on X and U is an open subset, then (F̃)|U ≃ F̃|U ,
2. F|U is automatically a sheaf when F is a sheaf,
3. the corresponding functor X̃ → Ũ has both an adjoint and a coadjoint.

Exercise 182 Show that if I is an injective A-module, then I|U also is injective.

Exercise 183 Show that Hn(X,M•) ≃ ExtnA(A,M•) for all n ∈ Z.

Exercise 184 Show that, if X =
∐

i∈I Xi, then Hn (X,M•) ≃
∏

i∈IH
n(Xi,M•

|Xi
).
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