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ABSTRACT

Rigid cohomology is a new cohomological theory which is due to P. Berthelot. We use it to prove a trace
formula which can be applied to exponential sums and o study the de Rham cohomology of a curve over a com-

plete ultrametric field of characteristic zero.

Let X be a separated scheme of finite type over a finite field Fq, K a complete ultrametric field of characteris-
tic zero whose residue field contains Fq and F an overconvergent F-isocrystal on X/K. Given any rational point
x on X, there is a finite dimensional vector space F(x), called the fiber of F at x, and an automorphism ®(x) of
F(x) called the Frobenius of F(x). Given any integer i, there is a vector space Hi(}), called the i-th rigid coho-
mology space with proper support of ¥, and an automorphism (I)é of Hi(?) called the Frobenius of Hi(}). We

prove that, for all i, (I)(l: is a nuclear operator and that

S rd®=X (1o
xeX(F,) ®) ieZ CI) e

Let C be a non singular projective curve over a complete ultrametric field K of characteristic zero with perfect
residue field and X a flat formal scheme over the valuation ring of K whose generic fibre is isomorphic to the

analytification of C and whose special fibre X is reduced. We show that H1 (X} is a subspace of HER(C) and

rig
that, if X is the normalization of X, Hii g(X) is a quotient of H:i g(X). We define the weight filtration on
Hll)R(C) as the shortest filtration for which Fil! = H:ig(X) and Gr! = Hii g(X). We show that if we consider the

orthogonal filtration with respect to the Poincaré pairing, then Fil” = Fil' ~ Fi)! and Fil'! = Fit} U Fii? and
that the filtration is autodual if and only if X has only ordinary multiple points (with normal tangents) as singu-

laridges.
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INTRODUCTION

Rigid cohomology is a cohomological theory for separated varieties of finite type over a field k which is due
to Berthelot. The category of 'lisse’ coefficients for this theory are called overconvergent F-isocrystals. The co-
homological spaces are vector spaces over a complete ultrametric field of characteristic zero having k as residue

field.
The Trace Formula for Overconvergent F-isocrystals

Inspired by a result of Tsen, Artin made a conjecture concerning the p-divisibility of the number of rational
points of an hypersurface in Aﬁq. This conjecture was first proven by Chevalley and further improved by

Warning and Ax to give the classical theorem that the number of rational points is divisible by .

Following the work of Ax, Katz conjectured that the Newton polygon of a smooth complete intersection in
the projective space over a perfect field of positive characteristic p lies above its Hodge polygon. This was al-
feady known to Dwork in the case of a projective hypersurface whose degree is prime to p and Katz was able to
prove it for the first slopes. Mazur and Ogus showed that this conjecture is actually true for any proper smooth

varicty.

In the meantime, Sperber and Adolphson applied the method of Katz to obtain p-adic estimates for exponen-
tial sums. Before that, the question of p-divisibility of exponential sums had not received much interest since
Stickelberger's study of GauB sums. We can only mention Dwork's application of his study of Bessel function

to Kloosterman sums,

In the proof of his theorem, Ax uses Dwork Theory 10 obtain p-adic estimates. In the work of Sperber and
Adolphson, these methods, and in particular p-adic trace formulas, play a major role. Pre-cohomological p-adic

trace formulas have been established by Dwork for the affine space, by Reich for the complement of an



hypersurface and, as an intermediate step, by Monsky for a smooth affine variety. Cohomological p-adic trace
formulas have been obtained by Berthelot and Etesse for proper smooth varieties and by Monsky for smooth

affine varieties.
An exponential sum on a (separated) Fq-scheme of finite type X is a sum

) ¢ S
S i= S(X, % by, vy, £) 1= I, 7(h,G0)- I, i 060

Xe Xz(:F )i
q
where forie (1,...,r},x; is a multiplicative character of Fq and h, is a nowhere vanishing regular function
onXandforje [1,...,s), W is an additive character of Fq and fJ is a regular function on X. A pre-cohomo-
logical p-adic trace formula is an equality S = tr u where u is an endomorphism of a vector space E over a com-
plete ultrametric field of characteristic zero whose residue field contains Fq. Generally, E will not have finite

dimension and it is necessary to specify what is meant by the trace of u.

If (¥, @) is an overconvergent F-isocrystal on X, the fiber of ¥ at a rational point x on X is a finite dimen-
sional K-vector space F(x) together with an automorphism ®(x) called its Frobenius. To the above data

p I Wi fJ Berthelot associates an overconvergent F-isocrystal £ on X and we have

Jhow,f)= T TrdX).
S, %is by, ¥ fl) xe X(Fy) Fek)
By analogy, we define the exponential sum associated to an overconvergent F-isocrystal is
SX, F) = )?(F )Tr ®(x). To prove a cohomological trace formula for exponential sums, it is therefore suf-
Xe
q

ficient to prove a trace formula for overconvergent F-isocrystals.

The i-th space of rigid cohomology with compact support of an overconvergent F-isocrystal F is a K-vector
space Hrlig,c(X’ F) together with an automorphism (D:; called its Frobenius. The trace formula for overconver-

gent F-isocrystals states that for all i € N, q:ic is a nuclear operator and that
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We will give here a complete proof of this formula but no applications to exponential sums.

The Weight Filtration on the de Rham Cohomology of a Curve. Orthogonality

Theorem:

If A is an abelian variety over the fraction field K of an Henselian discrete valuation ring V" and £ is a prime

different from the characteristic p of the residue field k of ¥, Grothendieck defined a filtration (weight filtration)
TyAR) © TyAR) « TyA®)
on the Tate Module of A,
If A'is the dual abelian variety of A, the Poincaré Bundle on A x A" induces a perfect alternating pairing
Ty(A(K) X Ty(A'(K)) — Zy(1).
Grothendieck showed that, with respect to this pairing, we have
Ty(AK) N Ty AEYY" = Ty AR

If A is the Albanese Variety of a smooth projective variety V over K, the Tate Module of A is dual to

Helt(VI_(’ Z,) and therefore induces a filtration (weight filtration) on the first space of L-adic cohomology of V.

When £ = p is the characteristic of k, a similar discussion can be carried out provided we make the further as-
sumptions that V" is complete and that A has (semi-) stable reduction. Also, we have to work with Barsotti-Tate

groups instead of Tate Modules.



Grothendieck showed that there is a filtration {weight filtration)
t f
Tp(A) c Tp(A) cT p(A)
on the Barsotti-Tate group of A and that, with respect to the pairing
Tp(A) X Tp(A) —_— Tp(Gm)

induced by the Poincaré Bundle, we have TP(A)l = TP(A‘)f'l. Note that the above orthogonality formula for Tate

Modules (case £ # p) also takes this form when A has stable reduction.

Assume now that X is a local field (i.e. a complete discretely valued field of mixed characteristic with perfect
residue field). Fontaine and Messing proved that an abelian variety A over K is de Rham (i.e. one can recover its
de Rham cohomology from its p-adic cohomology}. In their first proof, after a reduction to the stable case, they

considered the filtration
f 1
Hpr(A)' < Hhp(a) ¢ Hpp(A),

(weight filtration) which is obtained by applying Dieudonné-Fontaine Theory to the weight filtration on TP(A).
The theorem then followed from the fact that A is Hodge (i.e. one can recover its Hodge cohomology from its

p-adic cohomology).

If V is a smooth projective variety and A the Albanese Variety of V, there is a natural isomorphism
HIBR(V) = HIIJR(A). It therefore follows from the theorem of Fontaine and Messing that, when i < 1,
H]i)R(V) ¢an be recovered from H;[(V, Qp) (the case i = (0 is trivial). Fontaine conjectured that this is still true
when 1>1. Faltings recently gave a proof of the conjecture that any smooth proper variety is Hodge. One may

therefore think that, with the right notion of weight filtration on higher de Rham cohomology, one could prove

Fontaine's conjecture. To be able to define the weight filtration on H' for all i, it is necessary 1o first improve
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our understanding of the filtration when i 1,

In my thése de troisiéme cycle, 1 showed that, using rigid cohomology, one can give a purely cohomological
interpretation to the weight filtration on the Hll)R of an abelian variety with stable reduction over K. Unfortu-
nately, the construction made an essential use of the group structure of A. Tt seems therefore natural to ask for a
direct construction (i.e. without using its Albanese Varicty) of the weight filtration on the Hll)R of an arbitrary

variety.

We will define here the weight filtration on the H}_)R of a non singular projective curve over a complete ul-
trametric field of characteristic zero with perfect residue field and prove an orthogonatity theorem for this filtra-

tion with respect to the Poincaré pairing.

Unfortunately, many questions about this filtration will not be answered here: What is the relation between
the weight filtration, the Hodge filtration and the Analytic Conjugate Filtration on HII)R(C)? Is the weight
filtration independent of the choice of a formal model for C? When the valuation is discrete, the residue field k of
positive characteristic and the Albanese variety A of C has semi stable reduction, is the natural isomorphism
HIIDR(C) = HII)R(A) compatible with the filtrations? When k has positive characteristic, does the Frobenius act
on the graded space for the weight filtration? Can we recover the weight filtration from a filtration on

H;t(C, Qp)? What would be a good definition for the weight filtration on the H%)R of a surface over K7, . ..
Conventions

We fix a field k and when k has positive characteristic p, a power q = p* such that Fq c k. We fix a com-
plete ultrametric field K with valuation ring ¥ and maximal ideal m, having k as residue field. Schemes over
k and F‘q are separated and of finite type. (Formal) schemes over V' are (topologically) finitely presented.
Schemes over K are locally of finite type. A curve is a scheme of dimension at most 1 over a field. Real num-

bers are always in K™ @4 Q.
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Qutline

Section 1 is devoted to the study of overconvergent isocrystals on a separated scheme of finite type over k.

All the results of this section are due to Berthelot.

In section 2 (where K has characteristic zero), we give the construction of the cohomology spaces associated
to an overconvergent F-isocrystal and state some of their properties. Again, all the results of this section are due

to Berthelot.

The definition of an overconvergent F-isocrystal given in section 3 (where K has characteristic zero and
k contains Fq) 1s slightly different from Berthelot's since we are only interested in schemes over Fq but want 1o
be able to consider cohomology spaces over K. We define the exponential sum and the L-function associated to

an overconvergent F-isocrystal and discuss the relation with the exponential sumn associated to a character.

In section 4 (where K has characteristic zero and k contains Fq), we prove that the Frobenius endomorphism
of the rigid cohomology spaces with compact support of an overconvergent F-isocrystals are bijective, we state

the trace formula and prove its multiplicative corollary.

Section 5 (where K has characteristic zero and k contains Fq) contains a pre-cohomological Trace Formula
which can be viewed as dual to the classical ones. Many ideas in the proof are inspired by Monsky's and

Berthelot' s work.

In section 6 (where K has characteristic zero and k contains Fq), we prove the trace formula by reducing it to

the result of section 5. It is also possible to prove this formula by reducing it to Reich's trace formula,

Section 7 (in which K does not appear) is totally independent of the previous ones. We define and compare

some invariants of a curve.
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In section 8 (where K has characteristic zero), we compute the dimension of the rigid cohomology spaces of a
proper curve. Apart from some basic facts from rigid cohomology (e.g. section 1 and 2), this section makes

only use of the results of section 7.

In section 9, which can be read just after section 2, we study the notion of support in rigid analytic geometry
and (when K has characteristic zero) its relation to rigid cohomology. We prove some technical results which

will be used in the following section.

In Section 10 (where K has characteristic zero), we study the relations between the de Rham cohomology of
the generic fibre of a generically smooth proper formal scheme X and various cohomology spaces associated to
its special fibre X. In particular, when X is projective, we describe a pairing between two Gysin sequences
relating the de Rham cohomology of the generic fibre of X, the rigid cohomology of a smooth dense open sub-

set U of the special fibre of X and the de Rham cohomology of the tbe of the complement of U.

In section 11 (where K has characteristic zero), we prove Poincaré duality for (smooth) curves in rigid coho-
molegy. Poincaré duality in rigid cohomology is known for (smooth) proper schemes when K is discrete and
k perfect since it can then be deduced from Poincaré duality in crystalline cohomology. Berthelot can also prove
it for (smooth) affine schemes of dimension at most 3. Since a smooth curve is a disjoint union of affine and
proper schemes, the main theorem of this section is not really new. The idea in the present proof is to deduce

the theorem from an analogous result in analytic de Rham cohomology.

In section 12, we define when K has characteristic zero, the weight filtration on the first de Rham cohomol-

ogy space of a smooth projective curve over K and prove an orthogonality theorem similar to Grothendieck's.

In section 13, we introduce the notion of nuclear sheaf on the affine K-space which allows us to use

cohomological arguments in order to (re-) prove some basic results about nuclear operator on a K-vector space.

In section 14, we introduce the notion of distinguished formal ‘V -scheme which allows us to use rigid ana-
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lytic geometry in order to remove Noetherian hypothesis from several theorems about formal schemes.

Notations and Terminology

We will write ":=" instead of "=, " to mean that a letter will represent a given object. We will say that a

<
property is satisfied if n —— 1 when there exists an n such that this property is satisfied whenever

Nosn <l

We denote the n-th dimensional affine (resp. projective) space over a base S by Ag (resp. P’S’.). Ifl<m <A,
we write Ba (resp. B%", resp. C?l 3) for the closed ball of radius A (resp. the open ball of radius 7, resp. the

closed annulus of radii n and A) and dimension n over K.

An open subset or a covering of a rigid analytic space will always be meant 10 be admissible. A neighbor-
hood of a point is an (admissible) open which contains this point. Also, we will simply say that a rigid analytic

space is compact when it has a finite affinoid covering,
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(1) OVERCONVERGENT ISOCRYSTALS

This section is devoted to the study of overconvergent isocrystals on a separated scheme of finite type over k.

All the results of this section are due to Berthelot and will appear in [Berthelot 897?] (see also [Berthelot 86]).

(1.1) Tube of Radius 1 of a k-Scheme in a Formal ¥ -Scheme

(1.1.1) If A is a topologically finitely presented 'V -algebra, then A ;= A ®,, K is an affinoid K-algebra and
Py = Spm A is an affinoid space called the gencric fibre of P := Spf 4. Also, the obvious map
+ ——— A induces a morphism sp: Pg — P of ringed spaces (or, more precisely, ringed sites) called the

specialization map.

(1.1.2) Let P be a formal affine V" -scheme and X a closed subscheme of P defined over k. Let

{f;,.... 1] be asctof generators for the ideal of X modulo m and 1 < 1. Then the open subset
]X[P.n ={xePg,Vie {I,...,r},IEX) <n}

of Py is called the tube of radiusm of X in P. If n < 1, the ube ]X[P,n does depend on the choice of the defin-

<
ing equations but two different choices will however give the same thing if n —— 1.

(1.1.3) If Pisaformal V -scheme, one can paste the generic fibres of the affine open subsets of P in order to
obtain a rigid analytic space Py called the generic fibre of P. One can also paste the specialization maps corre-

sponding 1o the affine open subsets of P in order to obtain the specialization map sp: Py—— P

(1.1.4) LetP be a formal V" -scheme and X a closed subscheme of P defined over k. If P = u P is a finite
1

affine open cover of P, the trace of JX m P[p .. on P, - N P.  is identical to the trace of 1X N P.[p ., if
itP;m 1,K K ] PJ-T!

<
N —>1or 1 = 1. One can therefore paste the tubes ]X M Pi[p, n to get the tbe JX([p n of radiusm of X in
p ¥
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<
P. Two different choices of coverings and defining equations will give the same tubes if 1 ——— 1 orm = 1.

(1.1.5) Definition Let P be a formal ¥ -scheme and X a subscheme of P defined over k. Let X be the clo-
sure of X in P and coy the complement of X in X. The tube of radiusm of X in P is
]X[P,n = ]Y[n \]°°X['r|' It is an open subset of PK' We will write KXlp:= ]X[P.I and call it the tube of X in
P. Replacing strict inequalities by large inequalities in the above construction, one alse defines the closed tube

[X]P,n of radiusM<1lof XinP,

(1.1.6) LetP be aformal 1 -scheme and X a subscheme of P defined over k. Proposition 1.3.3 in [Berthelot
897] states that if X is connected and P smooth in a neighborhood of X, then 1X{p oo is connected. Proposition
1.1.5 in loc. cit. states that it P is flat, then the specialization map P ——— P is surjective onto the closed

points. Also, the tubes ]X[ﬂ form < 1 form an increasing (admissible) covering of 1X[p.

(1.2) Strict Neighborhood of a k-Scheme into a Formal ¥ -Scheme

(1.2.1) Definition Let Pbe a formal ¥ -scheme and X a subscheme of P defined over k. Let X be the clo-
sure of X in P and coy the complement of X in X. A strict neighborhood of X in P is an open subset V of

]Y{P such that given any compact open subset W of ]Y[P, there exists M < 1 such that W < V u ]°°X['r1'

(1.2.2) Definition If P is a formal V -scheme and X a subscheme of P defined over k, then the set of all
strict neighborhoods of X in P is directed (by inclusion). A fundamental system of sirict neighborhoods of X in

P is a cofinal subset.

(1.2.3) Example «IYe—— A.-?,- is a closed immersion of an affine V" -scheme into the affine n-space,

then the set {B} n Y%, is a fundamental system of strict neighborhoods of Y, in P2 for the obvious em-
A K/i>1 k v

bedding Y, <——— fe—s f’\{}-

(1.2.4) Definition Anembedding X =—— P of a k-scheme into a formal V" -scheme is admissible if the
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following conditions are satisfied:
i} The closure X of X in P is proper over k.
if) P is smooth in a neighborhood of X.

The scheme X is admissible if there exists such an embedding.

{1.3) Overconvergent Functions on a k-Scheme

(1.3.1) Definition Let X ——— P be an embedding into a formal scheme and V a strict neighborhood

(1.2.1) of X in P. The sheaf of overconvergent functions on V is the sheaf of rings

e{] = 15)1’] JK*GVK

where {V; )5 o is a fundamental system of strict neighborhoods (1.2.2) of X inside V and for all A € A,

j3: Vy &=—— V is the inclusion map. If X is the closure of X in P, we will write GS(CP =0 ]' X

(1.3.2) Definition Let X <—— P and Y = Q be two embeddings in formal schemes, A morphism

(f cu): Y € Q—— X c Pis a commutative square

Y — X
X !

Q—— P.

(1.3.3) Given a morphism of k-schemes f: Y ——— X and two embeddings X < » P, Y < > (3, we
can diagonally embed Y in Q' := P x Q and consider the first projection p;: Q' —» P. We get a morphism
of embeddings (f cp;}: Y c Q'—— X < P. Note that Y «<—— Q' is admissible if X —— P and

Y <——— Qare.

(1.3.4) A morphism (f cu): Y € Q—— X c P of embeddings gives rise to a morphism
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I, ]?"[Q——e 1X(p of rigid analytic spaces. The pull back along this morphism preserves strict neigh-
borhoods and it follows that there is a ring homomorphism O p—— 1 f [u*®§CQ which makes
}T[u into a morphism of ringed spaces. When there is no chance of confusion, we will write v instead of ]T[u.

. I, ' L '
In particular, if F is a sheaf of ¥y _p-module, thenu ¥ :=u"F ®“-10}'(cp eYc:Q'

(1.4) Overconvergent Isocrystals on a k-Scheme

Let X =—— P be an embedding into a formal scheme and X the closure of X in P. For n € N, let

P":=Px...xPandfori<n,

pl A .‘n:Pn_»Pn-l

yooovaly s

be the map which omits the i-th factor. Also, let A; P—— P* be the diagonal immersion. We embed

X diagonatly in P" and consider the morphisms
(Mdg,p; & ¥XcP'——XcP"! and (ldy, Ay X cP—— X c P2

(1.4.1) Definition An overconvergentisocrystal on X c P is alocally free chp-module of finite rank 7,
* *
together with an isomorphism e: pyF —=— p, ¥ called its Taylor isomorphism, subject to the conditions:
% —_
i) A (8) = Idg on ]X [P

if) P1o(8) o Pa3(€) = P1(€) on TX [13

{1.4.2) Definition Let F and § be two overconvergent isocrystals on X < P, with Taylor isomorphisms
€ and 1 respectively. A morphism ®: ¥ —— § of overconvergent isocrystals is an homomorphism of

*
O/ cp-modules such that 1) o p;(®) = po(@) o .

(1.4.3) Overconvergent isocrystal on X < P form an abelian category Isoc'(X < P) with an internal Hom,

H.em, and left adjoint ®.
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(1.5) Pull Back of an Overconvergent Isocrystal

(1.5.1) Let(fcu):Y < Q—— X c P be a morphism of embeddings (1.3.2) and F an overconvergent
isocrystal (1.4.1) on X < P with Taylor isomorphism €. Then u*EF is an overconvergent isocrystal on
Y < P with Taylor isomorphism (uxu)*(s). Ifv:Q———Pissuchthat (f;v) : Y ¢ Q —> X c P is an-
other morphism of embeddings, then the pull back of € along (u,v): Q —— P x P is an isomorphism

* * ¥
(v.v) (&):u F —=—v ¥ of overconvergent isocrystalson Y < P.

(1.5.2) Definition and Notations Let{fcu):Y c Q—— X cP be a morphism of embeddings
into formal schemes, it follows from (1.5.1) that the overconvergent isocrystal u* F is essentially independent of
u. Itis called the pulf back of F along f and written f*J: or ¥ or even just ¥ if no confusion can arise. Also, if
@: F — § is a morphism of overconvergent isocrystals on X c P, we will write f*CD instead of u*d). In
the future, when no reference to u is necessary, we will say that f: Y ¢ Q—— X < P is a morphism of em-

beddings.

(1.53) If £ Y € Q —— X c P is a morphism of embeddings, then the functor

£
f :Isoc' (X c P) =———Isoc' (Y c Q) is exact and additive,

(1.5.4) THEOREM  (Berthelot) Let u: Q —— P be a morphism of formal V -schemes such that
(Idy,uy: X ©Q—— X c P is a morphism of admissible (1.2.4) embeddings. If u is smooth in a neighbor-

hood of X, then we have an equivalence of category
L 3
Idy: Isoc'(X € P) —=— Isoc' (X c Q).
(1.5.5) Corollary If X =—- P is an admissible embedding, the category Isoc’ (X c P) is essentially in-

dependent of P. In particular, we can drop the reference (o P and just write Isoc' (X). There is a well defined

overconvergent isocrystal Oy on X called the trivial isocrystal.
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{1.5.6) If X is a scheme over k which is ot necessarily admissible, the category Isoc' (X/K) of overconver-

gent 1socrystals on X/K is defined as follows:

Let X be a compactification of X, X = Y. a finite open cover and for all i, Y, ~—— Q_a closed embed-
1 1 b1
ding into a formal scheme which is smooth in a neighborhood of X :=X Y. An overconvergent isocrystal
1 1
on X is a family of overconvergent isocrystals ¥ on X < Q, together with a family of compatible isomor-
1 1 1

phisms between their restrictions to X, » X, « Q. x Q.. This again can be shown to depend only on X.
1 J 1 ]

One can also define the pull back map f': Tsoc' (X/K) — Isoc' (Y/K) along a morphism f; ¥ —— X.
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(2) RIGID COHOMOLOGY

In this section, we assume that K has characteristic zero. We give the construction of the cohomology spaces
associated to an overconvergent F-isocrystal and state some of their properties. All the results of this section are

due to Berthelot and will appear in [Berthelot 897] (see also [Berthelot 86]).

(2.1) Modules with Overconvergent Integrable Connections

Let X &—— P be an embedding into a formal scheme, V a smooth strict neighborhood (1.2.1) of X in P,
S :=V\IX[p and {V;},. 5 a fundamental system of stricts neighborhoods (1.2.2) of X in V. Let
A ;)]Y[p, it § &~— V and, for all V, with AE A, % V, & V be the inclusion maps. We

*
write j' = li_ﬂ)l Jaxdy, -

(2.1.1) Let ¥ be a coherent € )'(-module. Then, if V is small enough, there exists a coherent & y-module
™ on V such that if we set L' :=j'M,, then juM ' = F (and M. ' = Fpy)). Let &: F — § be an homo-
morphism and N a coherent Oy-module such that j«NL' = § . Then there exists, if V is small enough, a mor-
phism ¢: M —s N such that if we set ¢' :=j'¢, then ® = jx« ¢'. Finally, if

% *
(fcu): Y € Q——— X < Pisamorphism of embeddings (1.3.2), then u F = (u M),
(2.1.2) Definition Let T be a coherent &y-module with an integrable connection V. Assume that there
exists a strict neighborhood V' of X in P x P such that V' ¢ V X V and A(V) ¢ V' and an isomorphism
1 Py —=—> p; M on V' such that, if 4 is the ideal of ACY) in V', then 1 induces the stratification

" Oy By M —=s M By Ty

of M. Then V is said overconvergent.
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(2.1.3) Let F be an overconvergent isocrystal (1.4.1) on X and M a coherent & y;,-module such that
jaT ' = F. Let A: P «—— P P be the diagonal embedding. If V is small enough, there exists a strict
neighborhood V' of X in P x P such that V' < V x V and A(V) ¢ V' and an isomorphism
¢ p;m. —_— p?fﬂl on V' such that, if j‘: Vie— ]')T[Pz is the inclusion map, then € = jie'. The isomor-
phism ¢ induces a smratification on U which is therefore endowed with an overconvergent integrable connection.
Conversely, any coherent ©'y,~-module TU with an overconvergent integrable connection comes from an overcon-
vergent isocrystal F on X  P. Finally, let us remark that morphisms of overconvergent isocrystals correspond

to horizontal homomorphisms.

(2.2) Rigid Cohomology and Rigid Cohomology with Proper Support

Let X <—— P be an embedding into a formal scheme, V a smooth strict neighborhood of X in P and
S = V\]X[p. Let F be an overconvergent isocrystal on X < P and M a coherent & y-module with an
(overconvergent) integrable connection such that A" = F .
(2.2.1) Notations Hiy (V,-)is the i-th derived functor of

I“]X[P(V, -)y=Ker[[(V,- ) ——T(V \NXEp, - )}
on the category of abelian sheaves.
(2.2.2) Definition The i-th space of rigid cohomology of F is
Hip(X <P, 3):=H(V,M' 84 Q).

The i-th space of rigid cohomology with proper support of F is

Hyp (X P F)i= Hiy (V. M ®g Q).
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(2.2.3) Notations For F = O, we just write H;'ig(x cP) and Hiig.c(X cP).

(2.2.4) Remark Since the inclusion it V\ 1X[p = V is quasi-Stein (as in [Kichi 67, Inv. Math]), we

have for a coherent O'y-module TN,
Hjx(, (V- M) = H(V, (M —— ixi M)
and it follows that

- . . R -* .
Hijg X H=H(V, M 8 Oy ——ix i M By Qy)).

(2.3) Functoriality of Rigid Cohomology

(2.3.1) Itis clear that rigid cohomology and rigid cohomology with compact support are both functorial in F.
Also, rigid cohomology with coefficient in an overconvergent isocrystal is functorial in X < P. Finally, note
that rigid cohomology with proper support is covariant with respect to open immersions and contravariant with

respect o proper morphisms.
(2.3.2) THEOREM  (Berthelot) Let u: Q ——— P be a morphism of formal V¥ -schemes such that

(Idyg,u): X € Q —— X c P is a morphism of admissible (1.2.4) embeddings and F an overconvergent

isocrystal on X. If uis smooth in a neighborhood of X, we have the isomorphisms
Al (dy, F): Hy (X <P, F) —= HL (X Q. F) and
H;ig,c(IdX, ¥): H;ig‘c(x cP,F)—= H;ig,c(x cQ, 7).

(2.3.3) Corollary If X «——— P is an admissible embedding and F an overconvergent isocrystal on X, the

spaces H:ig(X cQ, ¥F)and H;ig‘c(X < Q, F) are essentially independent of P. In particular, we can drop the
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reference to P and write Hriig(X/K, F)and Hli'ig,c(fo’ F). When there is no chance of confusion, we will drop

the reference to K or to X,
(2.3.4) If X is a scheme over k which is not necessarily admissible, one can also define the funciors

Hiig(X/K, -)and H:ig SX/K, - ) on the category Isoc' (X/K). Because of this, in the sequel we will not require

the k-schemes to be admissible.

(2.4) Some Properties of Rigid Cohomology.
Let X be a k-scheme and F an overconvergent isocrystal on X/K.,
(2.4.1) If X=X, II X,, then,
Hig(X, ) = Hyp (X, ) @ Hyy (X5, ) and Hyp (X, F) = Hyp (X, ) @ Hy, (06, F).
(2.4.2) Wehave Hy (X, F) = HY (X ) and By (X, F) = Hy (Ko, B).
(2.4.3) If K'isa finitc extension of K with residue ficld k', then
L (XK, F) = iy (XK, F) @ K and Hiy, (X, /K, F) = Hy, (XK, F) O K°
(2.4.4) There is a canonical map,
H, (X, ) —— H (X, F).
It is an isomorphism when X is proper in which case we identify these two spaces.

(2.4.5) IfZisaclosed subscheme of X and U its open complement, there is a Gysin sequence
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i i i i+1
s Hy (U, ) —— Hy, X, ) — H, (2, ) ——H (X, ) — -
(2.4.6) IT'Y is a proper smooth (formal) scheme over V', with special fibre X, there are natural isomorphisms
Hyio(X) = Hpp(Yg).

{2.4.7) Ifdim X = n, then Hii g,C(X, F) =0 for i > 2n. Using the Gysin sequence, this non trivial result can

easily be deduced by induction from the results of section 5.
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(3) OVERCONVERGENT F-ISOCRYSTALS AND EXPONENTIAL SUMS

In this section, we assume that K has characteristic zero and that k contains Fq with q = p°. We give a defi-
nition of an overconvergent F-isocrystal which slightly differs from Berthelot's: We are only interested in
schemes over Fq but want to be able to consider cohomology spaces over K. We define the exponential sum and
the L-function asscciated to an overconvergent F-isocrystal and discuss the relation with the exponential sum as-

sociated to a character.

(3.1) Overconvergent F-Isocrystal.
Let X be an Fq-scheme.

(3.1.1) Notations Fy is the s-th power of the absolute Frobenius on X. We set X =X @ k and
q
*
Fy :=Fy ®p k. If ¥ is an overconvergent isocrystal (1.4.1} on X}, then F .. Fy ¥ and, by induction for
k q k
r+1 n (g)
each positive integer r, Fa ) (J(q )) . Ifa: F —— § is a morphism of overconvergent isocrystals, then

r+l ry (g)
MCY = F;(k(x and by induction for each positive integer r, s (a(q )) .

(3.1.2) Definition Anoverconvergent F-isocrystal on X is an overconvergent isocrystal F on Xy, together

with an isomorphism of overconvergent isocrystals : 9@ = F called its Frobenius isomorphism.

(3.1.3) Definition Let ¥ and § be two overconvergent F-isocrystals on X with Frobenius isomorphisms
® and P, respectively. A morphism o: ¥ ——— § of overconvergent F-isocrystals is a morphism of over-

convergent isocrystals such that o @ =¥ 5 o @,

(3.1.4) Definition Iff:Y -~ X be a morphism of Fq-schemes and ¥ an overconvergent F-isocrystal
*
on X with Frobenius isomorphisms . The pull back f F of F along f is the overconvergent isocrystal

fi? together with the Frobenius isomorphism f:(D. Similarly, we define the pull back of a morphism.
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(3.1.5) Overconvergent F-isocrystals on X form an abelian category F-iso' (X) with an internal Hom, ¥ em,
and left adjoint ®. Iff: Y —— X be a morphism of Fq-schemes, the functor
L

f : F-iso'(X) — F-iso'(Y) is additive and exact. The trivial overconvergent F-isocrystal is @' together

with the trivial endomorphism as Frobenius.

(3.2) Overconvergent F-Isocrystals on a Point

(3.2.1) An overconvergent F-isocrystal (3.1.2) on Spec Fq may be (and will be) viewed as a finite dimensional

K-vector space H together with an automorphism ¢.

(3.2.2) If k contains qu with r > 1, then qu @y k is a canonically isomorphic over k to the product of
q

r-1

r copies of k via a®1 —— (&, @, ..., a? ). In terms of schemes, if we set x := Spec F rand
r-1 . .
Xy =X ®g k, we have an isomorphism x; = I(')I x with each x® isomorphic to Spec k. Under this isomor-
q

-1 . . .
phism, the Frobenius endomorphism of x;_corresponds to the endomorphism of %I x which sends xP 1o X071

modr)

(3.2.3) Itfollows from (3.2.2) that, when k contains qu, an overconvergent F-isocrystal on Spec qu can be
-1 .
(and will be) viewed as an ordered product H := If HW of finite dimensional K-vector spaces. The pull back of
: Tl Gl mod ) . . .
H along the Frobenius endomorphism is l(')l H . The Frobenius isomorphism on H is therefore a

product ¢ of isomorphisms ¢V H® =, gE1m0d D 14 oricular, all the H®'s have the same dimension.

(3.3) Exponential Sums and L-Functions Attached to an Overconvergent

F-Isocrystals
Let & be an overconvergent F-isocrystal (3.1.2) on an Fq-scheme X with Frobenius isomorphism .,

(3.3.1) Notations If x =— X is a closed point, then F(x) := x*} and ¢(x) := x*tb. Note that when
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x is rational, then d(x)} is an automorphism of F(x).
(3.3.2) Definition The exponential sum attached to F is
SX,F= X )tr(cb(x)).

Xe X(Fq

(3.3.3) Notations Iffi Y —— X a morphism, then S(Y, f, F) := 5(Y, f*J:). When there is no chance

of confusion, we will omit to mention for Y.

If k contains qu , then F also defines an overconvergent isocrystal F_on X := X ®p qu with Frobenius
q

- ; @ @™

isomorphism D =P o, oD . Weset S(Y,f, ¥) := S(Yr, fr, ?r).

(3.3.4) Definition Ifk is algebraically closed, the L-function attached to F is the power series
LX, F, ) :=cxp(Z, S/(X. ) (/).

(3.3.5) Clearly, S(X, ') is just the number N(X) of rational points of X. It follows that L(X, &, 1) is the

zeta function Z(X, t) of X,

(3.3.6) Notations (kalgebmicallyclosed) If f: Y —— X is a morphism, then

*
LY, E F, 0 :=L(Y,f F,t). When there is no chance of confusion, we will omit to mention Y or f.

(3.4) Primitive F-Isocrystals on a Commutative Group Scheme
Let G be a commutative group scheme over Fq and

m,p, Py GxG——G
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the addition and the projections.

{3.4.1) Definition A rank cne overconvergent F-isocrystal (3.1.2)} £ on G is primitive if there exists an

isomorphism of overconvergent F-isocrystals m 2= p?f, ® p;f. on G xG.

(3.4.2) Definition Let £ be a primitive overconvergent F-isocrystal on G with Frobenius isomorphism ®.

Then the map

1 GF ) — K*

X tr P(x)
is a character of G(Fq) called the character associated with £.

(3.4.3) Let £ be a primitive overconvergent F-isocrystal on G and ¥ the character associated with £, If

f : X —— G is a morphism of Fq-schemes, then

S5, 8)=__ %(Fq) XEC)

is just the classical exponential sum S(X, £, i) attached to ¢ and f on X.

(3.4.4) The map £ —— x which associates a character to a primitive overconvergent F-isocrystal on G is a

group homomorphism. It is shown in [Berthelot 83] that when G is the additive group G, g or the multiplica-
g

tive group G, y, this homomorphism is surjective. More precisely, for any character y of li‘q (resp. x of FZ;),

a primitive overconvergent F-isocrystal f'\lf on Ga,Fq {resp. Kx on Gm,Fq) is explicitly given.

(3.5) L-Function Attached to a Primitive Overconvergent F-Isocrystal.

Let G be a commutative group scheme over Fq and £ a primitive (3.4.1) overconvergent
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F-isocrystal (3.1.2) on G with Frobenius isomorphism @ and associated character y (3.4.2).

(3.5.1) Lett: G——— G the map obtained by composing the addition mapm: G X ...X G —— G with

(d, Fg, ..., FG):G——Gx...xG, Ifxe G(F ), we have
14, Fg, ..., Fa) o Fgox=Fg ..., Fgh dox.

Since G is commutative, we se¢ that Fg o to X =10 Fg o x =to x. It follows that F; leaves t(x) stable and

therefore t(x) € G(Fq).
(3.5.2) Definition With the notations of (3.5.1), the map

tr: G(F ) —— G(F )

X — 1(x)
is called the trace map.
(3.5.3) Remark Ifk contains qu , then the character ), associated with £ isy o tr.

r-1
Proof. By definition, if x € G(Fy), we have y,(x) = td.rd@_ . 0@ ). We keep the notations of
(3.5.1) and let py, py, ..., P G X...x G ——>G be the projections. By definition, we have
(% o W) = tr O(K(x)) = tr (¢ B)(x). Since £ is primitive,m £ =py£ ® py& ® ... ® p2& and therefore

-1 r-1
2220290029 ) Itfollows that tr (1 B)(x) = rd. 10D, ., 4@ )0

(3.5.4) Iff: X —— G is a morphism of Fq-schemes and k contains qu, it follows from the previous
lemma that, for each integer r, we have S (X, f, £) = § (X, f, x). In particular, if k is algebraically closed,

L(X, f, £, v) is just the classical L-function L(X, f, , t) attached t0 % and f on X.
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(4) THE TRACE FORMULA

In this section, we assume that K has characteristic zero and that k contains Fq. We prove that the Frobenius
endomorphism of the rigid cohomology spaces with compact support of an overconvergent F-isocrystal are

bijective and we discuss the trace formula.

(4.1) Proposition LeXbean F -scheme and F an overconvergent isocrystal (1.4.1) on Xy, Then,

forallie N, H:ig c(ka, F) is an isomorphism.,

Proof.  Let us first assume that there exists an embedding X, =—— I”\,If} such that none of the coordinate
hyperplanes meets X. Since the standard Frobenius F: (tys - - - ) F— ([%, e [1(\11) of Pﬁ is a Galois
covering outside the coordinates hyperplanes, there exists a strict neighborhood (1.2.1) V of Xy in I”\}D{ such that
the Frobenius induces a Galois covering F; v V, and a coherent @ y-module T with an

{overconvergent) integrable connection such that L' = Fiy-

* .
Any F-automorphism o of I"\g induces an automorphism o'* of the de Rham complex F M & Qy(q) of

F M. Clearly, the endomorphism Fa(Z 6™ ) of FxF T ® Q. factors uniquely through the pull back
Fifl @0y — S RFMeQ),
along F to give the trace map Tr: RE M ® Qy —— M ® Qy . This trace map induces an homomorphism
tr: Hyp (X F 3) = iy (VO FM @ 0) —— i (X, F) = Hy, (V.1 ®g Q).
Clearly, if we compose Tr on the left with F*, we gel multiplication by qN onm, ®0V Q{,. Thus, we see

that the endomorphism y := (lqu) tr of H:ig Xy F)is a right inverse for H;ig C(ka, F).

* .
By definition, if we compose F with Tr, we get the endomorphism F (X 0'*) of F*F*im. ® (. This en-
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domorphism induces an endomorphism of H;i g,c(Xk, ) with is nothing but the sums of the automorphisms
induced by the F-automorphisms of ll’\fv Since an F-automorphisms of l”\};{ is smooth and induces the identity
on Xy, it follows from Theorem (2.3.2) that it induces the identity on Hiig‘ o(Xy» #). This shows that the en-
domorphism of H};_ (X,., F) induced by Fx(E 6 is just multiplication by q" and therefore that y is also a left

inverse for Hii g c(ka, .

In general, we proceed by induction on the dimension of X. If X is 0-dimensional, then there clearly exists

an embedding as above. In higher dimension, there always exists a dense open subset U of X and an embedding

A
of Uin PfI;,I- as above. We can then use our induction hypothesis and the Gysin sequence

coe o iy (U, F) o Hy, (0, ) o By (XU F) o BEL 00, F) -0

(4.2) The Frobenius Automorphism on Rigid Cohoniology with Proper Sup-

port
Let F be an overconvergent F-isocrystal (3.1.2) with Frobenius isomotphism @ on an Fq-scheme X.
{(4.2.1) Notations Forie N, Hiig’c(X, F):= Hli'ig,c(xk’ F) Iff: Y —— X is a morphism of
Fq-schemes, then Hli'ig,c(f’ Fy:= Hriig,c(fk’ F). If a: F — § is a morphism of overconvergent isocrystals,
then H;ig’c(X, o) = Hli‘ig, c(Xk, o). Also, if X, ——P is an embedding in a formal scheme, X[ = X L
{4.2.2) Definition Forallie N, the composite isomorphism
i, i i
oc = Hrig,c(x’ @) o Hrig,c(FX’ ¥)

is the Frobenius automorphism of Hrii 8. X, F).

(4.2.3) If qu is contained in k, then for all i € N, the Frobenius automorphism q:f: of Hiig X, F)) is the
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r-th power of ¢i.
Proof. By definition, we have
O = Hoig o(Xp @) 0 Hiyp (Fx . F) =
Hy oK, @)oo Hyy (X, 097 By Py 39 ) oL o By (Fy, ).
But, for all integer k> 1, CD(qk-l) is the pull back of (D(qkhz) along Fy so that
Hli'ig,c(x’ 0@, Hli'ig,c(FX’ 3@ - Hriig,c(FX’ 3@, Hriig,c(x’ ‘I’(qk_z))-
Applying this successively tok =r, . . . , 2, gives the asserted equality.0
(4.3) The Trace Formula

Let F be an overconvergent F-isocrystal with Frobenius isomorphism ¢ on an Fq-scheme X.

(4.3.1) Statement of the Theorem For allie N, the Frobenius automorphism (4.2.2) q)i of

Hliig,c(X, ) is nuclear (13.1.1) and we have
— i i
SKX, F) = ieEN (1) o,
{(4.3.2) Corollary Ifkisalgebraically closed, we have
. i+1
L(X, F,0) = IL det(1-p)D .
ieN <

Proof.  According to (4.2.3), the trace formula for ¥ reads
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SX,. Fy= & (D' )
and it follows that
L(X, 3.9 = expl £ S,X, ) ) =exp( T [ X D' @)1 Eh).
On the other hand, since K has characteristic zero, we have seen in (13.2.2) that
det(1-44}) = expl- = 1r (§1)" 1]

and it follows that

1 dertgh ™ = et 2w @)Y sent T (5 (Die @bb cnD

ieN ¢ ieN =1 ¢ r=1ieN ¢
(4.4) Examples

The trace formula stated in (4.3.1) is already known in several particular cases. We will prove it in complete

generality in Section 6.

r-1 .
(4.4.1) If k contains qu and H := _HOH(‘) is an overconvergent F-isocrystal on x := Spec F q© then
1:

0
rig,c

-1 .
(x, H) = ‘®0 HY with Frobenius automorphism (4.2.2) ¢ permuting cycli-
1

Hyjp o(x, H)=0if i # 0 and H
cally H(O). ..and H(r’l). The trace formula obviously holds for x whenr=1. If r> 1, we get tr ¢ = 0 and here

again, we see that the trace Formula holds for x.

(4.4.2) Let X be an open subset of All-; . Let f be a regular function on X and y an additive character of Fq.
q
Also, let hy, ..., h_be r invertible functions on X and X1s+ - +» %, T multiplicative characters of Fq. Let

£\P (resp. ¥ 2y TESP - Kx ) be the primitive overconvergent F-isocrystal associated by Berthelot to y on
T
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* ¥ %*
Ga,Fq (resp. 3, on Gm,Fq’ ..., TESP. X On Gm,Fq) and £ :=f f'\ll ® hlkxl ®...8 hriixr. It follows from
[Berthelot 84] and [Robba] that the trace formula holds for £ when K = Cp.

{4.4.3) Let X be a proper and smooth scheme over F_. If K is a finite extension of Qp, it follows from

q
[Berthelot-Ogus] and [Berthelot 73] that the trace formula holds for the trivial isocrystal on X. Using [Etesse],
the same argument should work for any (over-) convergent F-isocrystals on X which arises from non degenerate

F-crystals on X/W (Fq).

{4.4.4) Let X be a smooth affine scheme of dimension at most three over Fq and assume that K is discretely
valued with perfect residue field. Berthelot can prove that Poincaré duality holds for X. It therefore follows from

[Monsky] that the trace formula holds for the trivial isocrystal on X.
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(5) A PRE-COHOMOLOGICAL RESULT

In this section, we assume that K has characteristic zero and that k contains Fq. We prove a trace formula
which can be viewed as dual to the classical ones. Many ideas in the proof are inspired from Monsky's and
Berthelot' s work. This trace formula invelves some cohomology spaces but we do not want to call it a coho-

mological trace formula since these spaces are not finite dimensional and not canonically associated to the data.

We fix coordinates s, by for Aﬁ and call standard Frobenius of Aﬁ the map which sends ;o t?.

(5.1) Setting

(5.1.1) We fix the following
i) A smooth affine Fq-scheme X of dimension n,
ii) A smooth affine V' -scheme Y such that X ®Fq k=Y ®y k,
ili) A closed immersion i: ¥ &——— A flf, .

v) A strict neighborhood (1.2.1) V of X, in l{’\,{i for the obvious embedding X; =——— ?e » Py,

v) A coherent Oy,-module M,
viy IfF: v@ — visthe map induced by the standard Frobenius of Aﬁ, a sirict neighborhocod W of
X, in P} contained in V and in VP,

L
vi)  An homomorphism ¢ : (F T} ——— My
(5.1.2) The pre-cohomological result we want to prove is the following: i) The composite map
%k

- gl F n (@) =™*m \ gl * t n

isnuclear (13.1.1) and ii) If X does not have any rational point, then tr ¢ = 0.
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(5.1.3) IfA>1, we write

Vi, . .. 1 /A) =

+.4
{E tﬁﬂ A, € v At “‘ﬂlaul,__,unl — 0as L +.+HL, — o)),

= H1
ul,..,z;,"tn>0 a”lv--’“nll
We will need the following corollary to Bosch's version of Artin approximation theorem ([Bosch], Theorem
(22)1: Forie {1,...,m),let Fie V{1 /A, ..., /AT, ..., T ) with A > 1. If there exists
81> 8c € V{ty, ..., 0] such that, for allie {1,...,m),F(gy,..., 8y) =0, then there exists for
A sufficiently close to 1,81, ..., g € V {ty/h, ..., t./A) such that for allie (1,...,m),

Figi.....8)=0.

(5.2) Proposition  Let £ be afree sheaf of finite rank on BK. Then,
D) If1<n <A, then Hyn, (B}, £)=0for k #n.
n
ii) Hrll;n.-(B;:, &) is isomorphic o the topological direct factor
n

TR T i+t e
s . LTI K/n nlaul_",unl — Oaspy+.+p, — - o)

= b3 a
[TRWSRTAR | 5 BRI o

of 1"((3%,;V Q). This space will always be endowed with the induced topology.

i) Iff& —— L£'is an homomorphism of free sheaves on BK, then the induced map
H%H.-(BR, 2)—— HI]‘}%.-(BR, £
is continuous.

iv)  Forl<p<m<A,the restriction map H?}B.-(BR, £y — Hﬁ?l ,-(BI;L, L) is completely continu-

OUs.

Progf.  In i), we may assume that £ = 9. We will prove simultancously i) and ii). The analytic variety
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BY \B™" can be covered with the products Bi ! x C_, x B® with 1 < i < n, which are affinoid and thereforc
AP A IR
do not have higher coherent cohomology. It follows that Hl];n,-(BK, &) is the k-th cohomology space of the
n

augmented complex
. n Y-l n-i
K(n) :=T(B;, 0)—— C({B; " x C,n 2 X By}, ).

Since K(n) is clearly the n-th completed tensor power of K(1), we might actually restrict ourselves to the case
n=1. Wehave

K(1)=I'(B,, &) ——T(C, 5, O,

nA

and we see that HBD-(B v, ) = 0. Moreover, since the subspace
n

= K H o0 ; ; i

[!’;-éo al e K/n Iaui —>0asp — -=} of F(Cn';u @) is a topological supplement for (B, , ©), itis

isomorphic to H};-(Bl, ).
n

The assertion iii) follows from i) since Cﬁ 5, being affinoid, an homomorphism £ —— £' induces a con-
tinuous map I(Cp 5, £) —— T(Cq 5, 2).
To prove iv), we may again assume that £ = U. We have to show that r is the limit of finite rank maps. If

N e N, let rpy: Hin-(BY, & ) — Hhn, BT, O } be the continuous linear map such that
N Bp 1N Bn A

l’lll...t*:lniful+...+u >-N

N (L { "
0 otherwise.
Let us denote with a subscript 1| the norm of H'Il;?] ,-(BI;:, &). We have It‘lll. .. Lt:nlln =nM7 " ang there-
fore ||l}f1- . tl;Lln"11 =yt lltﬁll. .. t“nnlln. In particular, if py+ ... +u < - N, we have since n/p >
1, 4L :ﬁnun <emN . . . gﬁnnp. It follows that lr-rpgll < (MmN Since pm < 1, we see that r is the

limit of the maps ry which clearly have finite rank.[J
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(5.3) Proposition  The composite map
n n F" n Q@ * n * < n
is nuclear.

Proof.  As mentioned in Example (1.2.3), we may assume that W = BR N Yi. Letig: We—— Bri be the

closed immersion induced by iand £, » £ » i»JL be a free presentation. Since F is flat,

29 —— 2@ L FM = iy JEF M)y

is also a free presentation and iy »¢ can be extended to a morphism

2@ 2@ LIE M)
l l l

Since HI]‘X[(W, M)=Hg(B,, i xM ), we may assume that Y is the affine space and that M is free. Let
P be the composite map

*

* o Tes
Py = Hﬁﬁ(Bk, my—— Hﬁﬁl Batia, F M) Hgﬁuq(nluq, my——s H{;T.I(B,L, m).

We have seen in part iii} and iv) of Proposition (5.2) that res is completely continuous and ¢ continuous.
One easily deduces from loc. cit. that F* too is continuous. It follows that P is completely continuous and
therefore by [Gruson] (See also [Serrel) that it is nuclear. It follows from part i) of Proposition (5.2) that
HE(B?\; m)= nQK Hﬁ;](BA' M) and it is clear that, for all 7, @ is the restriction of the endomorphism P of
Hﬁﬁ(Bl’ M), Our assertion is therefore a consequence of Lemma (13.3.2).0
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(5.4) Lemma IfX does not have any rational point, then the equation 1 =X (F*(T - T)) S, has a so-

lution in T(W, O%). One might need to make a finite extension of K if the valuation is not discrete.

Proof.  We write X := Spec A and let I be the ideal of A generated by all the expressions ¢ - f with fe A.
Let x be a closed point on X comresponding to 2 maximal ideal p of A. The point x is rational if and only if the
Frobenius endomorphism of k(x) = Afp is the identity, or equivalently, if for all f € A, we have f-fe #, that
is, if  c . In particular, if X does not have any rational point, then I is not contained in any maximal ideal and

must therefore be equal to A. It follows that the equation 1 = £ ('l"i1 - T,) §; has a solution in A.

If the valuation is discrete, the equation 1 = X (F* (T;) - T;} S; must therefore also have a solution in
T (Q , ). When the valuation is not discrete, we can use Lemma (8.2) below and we see that after a finite exten-
sion of K, this equation will have a solution in F(Q’, ). It therefore follows from Artin-Bosch approximation
theorem that this equation already has a solution in I'(W, & )’(). More precisely, if hy, ..., h are some gencra-
tors of the ideal of Y in Aqbi, then we can write in V {ty,...,,}, 1 =X (F*(fi) - g+ % ujhj and

(5.1.3) tells us that we can take the f's, g;'s and uj's in K{t;/A, ..., ¢ /A} for A sufficiently close to 1.0

(5.5) Proposition  Assume that X has no rational points. Then, tr ¢ = 0.

Proof.  Letus write A' :=T(W, Oy )and M = H?X[(W , ). The obvious map Oy X M —— M induces
amap A" x M ——— M which makes M into an A'-module. If f ¢ A', we have a morphism of exact se-

quences

f
0 > Ker f > M > M » M/ 3 ()
lo oo of fdoE 10
f
0 » Ker f > M > M 3 M/f >0

*
We have seen in Proposition (5.3) that fo®oF is nuclear and it follows from Proposition (13.4) that

* * *
DoF of also is nuclear and that tr (fo®oF } = tr (®oF of). Now, again by Proposition (5.3), we know that
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* * . * *
(F (f) -Do®oF is nuclear and it follows that tr (F (f) -f)c®dF =0.

We can make a finite extension of K if necessary and assume that there exists f's, g's € A' such that

&
1=2(F (f)-£) g Thus, if we set g:@ = @, we have

EQi=tr (BF ) =tr (EF () - £;) go®F ) =T ir (F (£) - £)o@;oF ) = 0.0
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(6) PROOF OF THE TRACE FORMULA

In this section, we still assume that K has characteristic zero and that k contains Fq. We prove the trace for-
mula by reducing it to the result of the previous section. It is afso possible o prove this formula by reducing it

1o Reich's trace formula.

(6.1) Lemma i) LetA>1landIc ¥ {t;/A, ..., /A)[T] a finitely generated ideal. If

IV {ty,. ... t,}[T] contains a monic polynomial so does 1V {t;/\, . . ., t /AT for A sufficiently close to 1.
ii) Let B be a V (1,/A, . .., t /A])-algebra which is topologically of finite presentation. If the adic comple-

tion B of B is finite over V {ty, ..., 1 ), then B is already finite over V {t;/M, . . ., L /A} for A sufficiently

close to 1.

Proof. 1) Let P ¢ 1V {ty, oo, tn][T] be a monic polynomial and Fi,...,F el

k
Hl, - ,er V{tl, ‘s ,LR}ET] such that P = 1§1GiHi-

. — m-1 m . o
Let us write P := go+ . .. +g T + T" and, forallie (1,...,k},F := resziJTr and
H;:= rezNhiJTr' Thus, we have forall re {1,...,m-1}, g = r=§+t fi,shi,t‘ It therefore follows from the

corollary of Artin approximation theorem stated in (5.1.3), that for A sufficiently close to 1, there exists for all

re {1,...,ml},gge ¥V {t; /A, ..., /A)} and for all re {1,...,m-1},ie {1,...,k},
hi e V(y/A, ..., /A} such that g = Z f; ch; .
IfwesetP' =gy +...+ gr‘n_le'l +T™ and Hi:=Zhi TeV {ty/h, ..., t,/A)[T], we see that

k
P'= 2 GH € IV (y/h, ..., L/AYT).

ii) Since B is topologically of finite presentation, it is sufficient to show that any b € B is integral over

V {4/, ..., 1 fA} for A sufficiently close to 1.
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Letbe B, n: V [tllk, Cees Ln/l][T] ——> B the V' {{;/A, ..., t,/A}-linear map which sends T to b and
I := Ker . Since b is integral over V" {1, ..., } then, necessarily Iv {tl, ey [n}[T] contains a monic
polynomial. We assumed 13 topologically of finite presentation, and therefore I is finitely generated. It follows
from i) that IV {t;/A, . . ., t /A}[T] contains a monic polynomial for A sufficiently close to 1, which implies

that b is integral over V- {t;/A, ..., ¢ A} O

(6.2) Proposition Letf: Y —— Z be a morphism of smooth affine 'V -schemes which induces a

finite map on the special fibres. Let Z ~—— Af{}- {resp. Y —— Ag)be a closed immersion and (V)3 5 G

fundamental system of strict neighborhoods (1.2.2) for the obvious embedding Z, < > ﬁ c 3 Ij’\f‘} . Then,

the set {W; = rlé(vl)]le A i5 a fundamental system of strict neighborhoods for the obvious embedding

Y, © 3 ‘?’ c > I!’\rlﬁ- Moreover, for A sufficiently close to 1, the induced maps fi: Wy ——— V, are fi-

Rite.

Proof. As mentioned in Example (1.2.3), the set [BR ™ ZK]bl is a fundamental system of strict neighbor-
hoods of Z, in l”\f,} We may therefore assume without loss of generality that Z = Afl} and that, for all
A>1, Vy = Bi‘. Since fy is finite, s0 is the completion of f and it follow from part ii) of Lemma (6.1) that, for

A sufficiently close to 1, f induces a finite map
Yo=Y @y n) Vi, . ) —— SpfV {t)/A, ..., L /AL
After tensoring with K, we see that the induced maps Fé(B’i) —_— B’i are finite for A sufficiently close to 1.

Since the intersections Yy n BE form a fundamental system of strict neighborhoods of Y in ll’\,]ff we only

have to show that given any i > 1, then flé(BK) c BE for A sufficiently close to 1.

Let 81,..., 8y be the coordinates on A,Ilf-. Since (for A sufficiently close to 1) Y, is finite over
SptV {t; /A, ..., t,/A}, there exists f1,....f, eV {tll?u, ceey tnDL] such that if y € F}é(Bri) with w{y) = x,

then
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;0™ + 5,008 ™ 4L+ £ (0 =0,
and it follows from the ultrametric inequality that
;)1 = Max |fj(x)|1"j < M Ilfjlli"j
where Il - Il denotes the (spectral) norm on B;:. Forallje {1,...,m}, we have fJ € V{y/A, ...t /A} and

in particular, Ilfjlll < 1. Since Ilfjllk———-) Ilfjll1 as A —— 1, we may assume that IlijI;,L < p.j and it follows

that Is;(y)l < L. We can proceed the same way with s,, . . ., sy

(6.3) Lemma Let Y be a smooth affine 'V -scheme with n-dimensional fibres. Let i: Y &— Arllq,

A
be a closed immersion and V a strict neighborhood for the obvious embedding Y e—— Y=< > lg'\f]f,- Af

M is a locally free O y-module of finite rank, then HE (V.M)=0fork#n,
v 1Y, [

Proof. i) Case k>n. By Noether Normalization Lemma, there exists a finite map Y, ——— AE and
we can liftittoamapm: Y —— Afrv‘-. Using Lemma (6.2), we may assume that V := n'l(Ba) m Xy and
that the induced map ng: V—— B Ii is finite. The sheaf n:K,*OTL is coherent and we have
Hl](‘Yk[(V, m)= HE(BK, g »M ). The analytic variety B} \B" can be covered by the products
Bi ! x (B} \B) x B} with 1 <i < n, which are quasi-Stein (as in [Kiehl 67, Inv. Math]) and therefore do not
have higher coherent cohomology, It follows that Hl;}n(Bi, nK’*Tﬂ.) is the k-th cohomology space of the avg-

mented complex
T(B}, my «M) —— C({B} " x (B3 \B) x B} '}, m +M).
which has length n.

ii) Case k < n. We may assume that V := BI; N Xk and then, if iy: Ve—— Bl;i is the closed immersion

induced by i, we have Hy, ((V, L) = HRN(BY, e +7). One can casily build a resolution
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0 »Enn > » L4 > ig T
of ig «T with £,,..., 2 | (locally) free. Since Y and A} are smooth, we can cover B), by open subsets
U such that the restriction of i to U is defined by a regular sequence. We may also assume that the restriction

of N, to U X is free. The Koszul complex K. on some basis of M is a resolution of the restriction of

iK’*fﬂL to U. Since X. has length N-n, we see that if s > 0, then
Bt (-, Ly = ExtG (- By ) = Eavtg (-, (ig xM ) = 0.
It follows that £ too is (locally) free.

We are therefore reduced to the case Y = Ay Since I'g(Bj, M) = lim Dgn.-(B3, M), the assertion is

consequence of part i) of Proposition (5.2).0

(6.4) Lemma Let X be a scheme over F . Z a closed subscheme of X and U its open complement.

Assume that the trace formula holds for U and Z. Then, it holds for X.

Proof. Let F be an overconvergent F-isocrystal (3.1.2) on X. As mentioned in (2.4.5), there is a Gysin se-

quence
e — H]l'ig,c(U’ F)—— H;ig,c(X, F)— Hrlig,c(z' F)—— H:i*;C(X, F—
For all i € N, let Q)ic(X), ¢i(Z) and ¢L(U) be the Frobenius automorphisms (4.2.2) of Hiig (X, F),

Hriig,c(U , F)and HIii& oZ, F), respectively. If we assume that, for alli € N, ¢i(Z) and ¢i(U) are nuclear

(13.1.1), then it follows from proposition (13.4) that q;‘i:(X) too is and that the alternating sum

tr 09(U) - r 90X) + 1 42@) - w O}V + . ..
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is zero. This means that
Y P i i g gl
Z Vo= L (D) re+ K (D' e@).
On the other hand, if @ is the Frobenius isomorphism of F, we have

X, ¥F) = XEXE(Fq)u'((D(x)) = e Ij‘.",(Fq)tr((D(x)) + e %(Fq)tr(tb(x)) =SU, F+ 8z, H0O

(6.5) Conclusion of the Proof

Using (2.4.2), we may assume that X is reduced. Then, we proceed by induction on the dimension n of X.
The zero dimensional case follows from property (2.4.1) and Example (4.4.1). In general, Lemma (6.4) together
with the induction hypothesis tells us that we can always replace X by any dense open subset. Since Fq is per-
fect and X reduced, X is generically smooth. We may therefore assume that X is smooth. Then, using property
(2.4.1), we may assume that X is connected, and therefore irreducible. Also, we can replace X by any affine open
subset. Finally, since the rational points form a rare (= nowhere dense) subset, we may assume that X does not

have any rational point.

It follows from Théoréme 6 and Remarque 2 ¢) p 588 of [Elkik] that there exists a smooth affine scheme

Y over YV such that X @p k=Y®qp k fi Ye—DA ,];I, is a closed immersion, we can use the obvious
q

A .
embedding X, < 3 Y < > 19.‘1;{ to compute H)l'ig X, F). There exists a strict neighborhood V of X in
lg'\};l and a coherent O y-module M with an (overconvergent) integrable connection such that MU' = ¥y and we

have
Hyjp (X, 3) i= Hig(V, L ®g_ Q5.

Since, for all i € N, M ®c’v Q\i, is locally free, we know from Lemma (6.3) that

HI](X{(V, m ®GVQ\i/) =0 for k # n. It follows that I—Iiig'C(X, F) is the (-n+i)-th cohomology space of the
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complex

L Hig(V, 1 8 Q) —— Hix (V. M 8y Oy —— - - .

1fF: VI —— V is the map induced by the standard Frobenius of A}, there exists a strict neighborhood

Wof X, in lg\}:i contained in V and VP and an horizontal isomorphism
%
o (F M)y —=— My

which induces the Frobenius isomorphism of . The Frobenius automorphism of Hriig (X, F) is therefore in-

duced in cohomology by the composite endomorphisms

Hix(W, My @, Q)
T
HY (V.M 8 Q) s ™, (v F'M @, 0l )
XY T B Sy X[\ Oy V@
l'

HY (W, (F ) @ ) oy T W, M ®e  Qh)
1X["e W Gw W 1XYW GW W/

Our assertion therefore follows from Proposition (13.4) and the pre-cohomological result of Section 5.0
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(7) GEOMETRIC INVARIANTS OF A CURVE

This section is totally independent of the previous ones. We define and compare some invariants of a curve.
The field K does not play any role in this section. We call normalization of a ring A (resp. scheme X) the nor-

malization of A__, (resp. Xeqh

(7.1) Number of Branches at a Point on a curve
Let x be a closed point on a k-scheme X,

{7.1.1) Definition The (geometric) degree deg x of x is the separable degree [k(x):k]sep of the residue field

k(x) of x over k.

(7.1.2) Let k' be an exiension of k and n : X, — X the projection. If 1 is a sufficiently big finite

extension of k', we have

19¢8% = (k) ®) 1) o = O degx

and it follows that

degx= I degx'
R(x")=x

(7.1.3) Definition Assume that X is a curve with smooth normalization X (e.g. k perfect) and let

m
Xy, ., X, be the points on X over x. The (geometric) number of branches at x is m, := i§1 deg x;.

(7.1.4) With the assumptions of (7.1.3), if k' any extension of k and 7 : X — X the projection, the

smoothness of X implies that X, := X ®, k' is smooth and is therefore the normalization of X It follows
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that

m,= X m.
X omx)=x
{7.1.5) A curve X always has smooth normalization after a finite extension of k: If k an algebraic closure of
k, the normalization Xk of Xp is smooth. After a finite extension of k, there exists a curve Y such that

XR = Y and a birational map n: Y —— X. Since Y is normal, it is necessarily the normalization of X.

(7.1.6) Definition If k' is a sufficiently big extension of k so that X+ has a smooth normalization and

 : X — X is the projection, then the (geometric) number of branches at x is m = X m,.
T(x")=x

(7.2) Genus at a Point on a Curve

1t x be a closed point on a curve X/k.

(7.2.1) Assume that the normalization X of X is smooth. Let @ 4 be the reduced local ring at x on X and

X,I¢

&, the normalization of @ . Then, we set

8, = dim (& /0, o).

(7.2.2) With the assumptions of (7.2.1), if k' an extension of k and = : X — X the projection, then

&, ®, k' is normal and therefore isomorphicto 11 & L It follows that
n(xy=x

X X

T(x")=x
(7.2.3) We have seen in (7.1.5) that if k' is a sufficiently big finite extension of k, then X has a smooth

normalization. If &t : X, ——— X is the projection, we set 8, = X  8&...
(X" )=x
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(7.2.4) Definition The genus of X at x is
8y =0, -m_+deg x
and the singular genus of X is s :=§J 8y
(7.2.5) Definition A rational point x on a curve X/k is an ordinary m-tuple point (with normal tangents) if
the completion of the reduced local ring at x on X is isomorphic to kilt,..., tm]]/(titj, i#)). A closed point

x on a curve X/k is an ordinary multiple point (with normal tangents) if after a sufficiently big finite extension

k' of k, all the points x' over x on X, are ordinary multiple points.

(7.3) Proposition  The genus (7.2.4) of a closed point x on a curve X/k is a non-negative integer. It

is zero only for ordinary multiple points with normal tangents (7.2.5).

Proof.  We may clearly extend the base ficld as we wish and replace X by X eq- We may therefore assume that
X is reduced with smooth normalization X, and that all the points Xy, .., % on X over x, are rational. We

have to show that 8, > m,_- 1 with equality if and only if x is an ordinary multiple point.

Let & x be the local ring at x on X, @x its normalization and fori=1,.. ,mlet & x. the local ring at X; on
1

A -
X. Let é x (resp. O, resp. , for all i, 6 "i) be the completion of &, (resp. &, resp.U x.) SO that
1

Qb
it
=1

Q>

= - .8 A . L .
Since O,/0, has finite length, we also have §,= dim O /0. There is a commutative diagram with exact

rows and columns
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from which it results that
v m A
Sx 2 dim; [igl Gxi ®gx kj-12m,-1.

One easily checks that for an ordinary multiple point, we have equality 8, = m, - 1. Conversely, if

8, = m, - 1 the above sequence of inequalitics becomes a sequence of equalities
m A
=di H ® k - 1 = - l.
6x dlmk[i=1 ﬁxl_ éx ] m,

o
This implies that for all i, & x. ®§ k=kand, in the above diagram, we get an isomorphism of & x/é x With
1 X

the cokernel of the diagonal embedding of k into k™.

Now, note that for all i, & X; is a discrete valuation ring, isomorphic to some k[[t;]] (or k if x is isolated).
m

We can therefore identify 6’ « With the subring of IT k[[t,]] consisting of all m-tuples (fy.. .., f) of power
1=1

series with identical constant terms. The canonical surjection of k[[t;, ..., 1,11 onto

ity J1 ... x kil,]] gives an isomorphism of &, with kllt;, . . ., t,11At1) 0

(7.4) Cyclomatic Number and Genus of a Curve

(7.4.1) Definition The geometric number of connected (vesp. of irreducible) components of a k-scheme X is

the number of connected (resp. irreducible) components of X after a sufficiently big finite extension of k.
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(7.4.2) Definition Let c (resp. n) be the geometric number of connected (resp. irreducible) components of a

curve X, The eyclomatic number (or topological genus) of X is
t:=X(m, -degx)-n+c,
X
where, for all closed point x on X, m, denotes the (geometric) number of branches (7.1.6) at x.

{7.4.3) Definition Let X be a curve over k. It follows from (7.1.5) that there exists after a finitc ¢xtension
of K a proper smooth curve Y' which contains the normalization X of X as a dense open subset. Let S be the
singular locus of X, .4 and § its inverse image in X. If we paste X__; with Y'\'S along the canonical isomor-
phism X\S —=— X__,\S, we get a geometrically reduced proper curve Y whose singularities are all in X ed-

The arithmetic (resp. geometric) genus of X is dim; HI(Y, Oy) (resp. dimy HI(Y‘, Oy)).

(7.4.4) Note that, if X is a curve over k, then the arithmetic genus, the geometric genus, the cyclomatic
number (or topelogical genus) and the singular genus of X only depend on X cq and are invariant under finite ex-

tensions of k,

(7.5} Proposition Let X be a proper curve over k, g its arithmetic genus (7.4.3), d its geometric

genus (7.4.3), tits cyclomatic (74.2) number and s its singular genus (7.2.4). We have g=d + t +s.
Proof.  We may assume that X is reduced with smooth normalization X. Let 1t : & —— X be the projec-

tion. Since mx ¥ g/Uy is a torsion sheaf on X, it has 0-dimensional support. Thus, this sheaf has no higher

cohomology and we have
HU(X, 1 O5/05) = © (meO5/ Oy = @ ma O 1Oy = © Ty /0y .

Since = is affine, there is an exact sequence

0 - HX, 05 —» HUR, 9g) - ® Ty /Oy~ H'(X, 0 > H' (R 0g) - 0.



Writing that the alternating sum of the dimensions is zero gives:
g = dimy H'(R, Og) + T dim 8y /&y - dim H(X, Og) + dim, HO(X, 0) =

d+X8, -n+c=d+Zg +Z(m, -degx)-n+c=d+s+t0

55
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(8) RIGID COHOMOLOGY OF A PROPER CURVE

In this section, we assume that K has characteristic zero. We compute the dimension of the rigid coho-
mology spaces of a proper curve. Apart from some basic facts from rigid cohomology (e.g. Section 1 and 2), we

will make use only of the results of the previous section. We write hi(X) = dimK H;ig(X) and

Bi(X) 1= dimy H; o (X).

(8.1) Lemma Forascheme X/k, hO(X) (resp. hO(X)) is the geometric number of (resp. of proper) con-
C

nected componenis of X.

Proof. i) Let us first prove the assertion concerning rigid cohomology without support. As mentioned in

(2.4.1) and (2.4.3), rigid cohomology is additive and commutes with finite extensions of K. We may therefore

0

assume that X is connected with a k-rational point x and we have to show that H; g(X) = K. Since we are only

interested in schemes of dimension less than 1, we will assume for simplicity, that X is admissible (1.2.4).

Let X =——— P be an admissible embedding and X the closure of X in P. Let @' (resp. Ql") be the sheaf

of overconvergent functions (1.3.1) (resp. overconvergent differentials j’Ql) on X in P. By definition, the space

0

Hrig(X) is the kernel of the differentiation map

d: HgX[, &) —— HOgXL, '),
which contains at least the constants.
Since P is smooth in a neighborhood of X, the rational point x lifts to a V' -point of P. In particular, 1X[ has

a K-rational point &. Since ]X[ is smooth, & IXLE is isomorphic to a power series ring Kllt), ..., 3 on

which differentiation kills only the constants. There is therefore a commutative diagram with exact rows
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0 4 0% 0n%r ol
0 —— H; ,(X) — H' (X[, ") —— H'(IX[, Q")
1) l !

d ~ -
1
0— K — O — Qe

Since X is connected, so is 1X[, as mentioned in (1.1.6), and it follows that there exists a fundamental system

of connecied strict neighborhoods of X in P. Therefore, the last two vertical arrows are necessarily injective. We

0

thus see that Hrig(X) injects into K.

ii) Let us now prove the assertion concerning rigid cohomology with support. Here again, we may assume

that X is connected with a k-rational point x. If X is proper, the assertion is a consequence of part i) and prop-

0

erty (2.4.4). We may therefore also assume that X is not proper and we have to show that H., g.c

X)=0.

LetXbea compactification of X. The beginning of the Gysin sequence reads since X and X \ X are proper

0
rig,c

0 0
X) —— H,;,

0——H X)— H K\K) —— - - .

0
rig

0

We therefore have to show that the restriction map H_. _(X) —— H, ig()H( \ X) is injective. But X being

0

connected with a rational point, it results from part i) that Hrig()_() = K. On the other hand, since X is not

0

proper, X\ X is not empty and we know from part i} that H; g()_( \ X) contains at least the constants. [

(8.2) Lemma Let k' be a subfieid of k which is absolutely of finite type. Then, after a finite extension

of K, there exists a closed subfield K' of K with residue field X' on which the induced absolute value is discrete.

Proof.  Let p be the characteristic of k (read Q for Fy). We first lift a transcendence basis t, ..., of
k' over Fp toTy,..., T in K. The elements T,..... T, are algebraically independent over Q and it follows
that the absolute value induced on Q(T}, ..., T,) is then necessarily given by

H _
IZa, T /ZbuT"li = max I, |/max Ib, .
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In particular, it is discrete. Let K" be the topological closure of Q(Ty, ..., T)in K. Since (t;,..., 1)isa
transcendence basis for k' over Fp we can write k' = Fp(tl, ce oty et with e, ..t algebraic
over Fp(tl, ceesty) Lifte,q,.. ., t.to T 4,..., T, in an algebraic closure of K" (inside an algebraic

closure of K) and set K' = K"'(T

r+1>+ - +» Ip)- This is a finite extension of K" and therefore a complete dis-

cretely valued field. By construction, K' has k' as residue field and K(T, ;... T,) is a finite extension of

K containing K'.0

(8.3) Lemma Let Y be aflat proper scheme over 'V whose fibres are geometrically reduced curves.

Then the fibres Yy and Y\ of Y have the same arithmetic genus (74.3).

Proof.  Inthis section, we will only need the case K discretely valued and will therefore make this assumption

in the proof. The general case will be proven in Theorem (14.6.1).

We can make an extension of K and replace Y by one of its connected components in order to have Yy geo-
metrically connected. Since Y is flat, multiplication by a uniformizer 7 of ¥ on & y Pprovides us with a long
exact sequence

0 0 t | 1 2
o HEY, 0> H(Y, O)-H(Y,)>H(Y,9) - H Y, @) = HY(Y, @) > - -,

Since Yy, is proper, geometrically connected and geometrically reduced, we know that HO(Yk, &) =kand the
first map is therefore necessarily surjective. On the other hand, Y being Noetherian with one-dimensional fibres,
we have HZ(Y, @) =0. Thus, we see that there is a short exact sequence

n
0—— H'(Y, &) —— H'(Y, &) — Hl(Y,, &) — 0.

from which it results that

H'(Y,, ) = H(Y, ©) ®,, k
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and that H'(Y, @) has no torsion, Since V" is a discrete valuation ring, this implies that H(Y, &) is free of fi-

nite rank. Since
H'(Y, @) =H(Y, 9) ®, K,

we see that dim, H'(Y,, ©) = rankq, H'(Y, &) = dimy H!(Yg, ©)0

(8.4) THEOREM IfX isaproper curve over k, then
hx) =, h'(X) = 2d + 1,
h2(X) = n, hi(X) = 0 for i > 2,

where ¢ (resp. n) is the geometric number of connected (resp. 1-dimensional irreducible) components of X, tits
cyclomatic (7.4.2) number and d its geometric genus. Moreover, H;i g(X,"K) commutes with arbitrary isometric

extensions of K.

i) Let us first assume that X is smooth. Since X is of finite type over k, it is defined over a subfield k' of
k which is absolutely of finite type. We have seen in Lemma (8.2) that, after a finite extension of K, there ex-
ists a closed subfield K' of K with residue ficld k' on which the induced absolute value is discrete. It therefore re-
sults from Corollary 7.4 in [Grothendieck 73] that X lifts to a smooth projective scheme Y over V- defined over
the valuation ring of K'. It follows from Lemma (8.3) that X and Yy have the same genus. On the other hand,
as mentioned in (1.1.6), the tube (1.1.5) of a smooth connected scheme is connected and the specialization map
Yy — X is surjective on closed points. It results that X and Yy have the same geometric number of con-

nected components. As meniioned in (2.4.6), there are natural isomorphisms

H};o (X/K) = Hiye (V)
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and the proposition in this case results from the analogous statement in de Rham cohomology.

ii} In general, we can make a finite extension of K and replace X by its maximal reduced subscheme in order
to assume that X reduced with smooth normalization X. Choose a smooth dense open subset U of X and iden-
tify U and its inverse image under the projection n: X ——— X. The complement Z of U in X and its inverse
image Z in X are 0-dimensional varieties and therefore do not have higher rigid cohomology spaces. It follows

that the morphism of Gysin sequences induced by 7 (which is finite) reduces to

0 0 0 1 1
0 = Hyjp o(U) = K (X) - K, (@) > Hyy ((U) - Hyp (X) 5 0
I \ l Il !

0

0 0
0- Hrig.c(U) - Hrig

(%) > )y, (2) - Hyp (0) - HL (%) 5 0

and foriz2,

Hijg,oU) —=— Hijy(X)
|| l
Hjig,c(U) — Hll'lg(x)

Everything else is zero.

The dimension of H?ig(X) has been computed in Lemma (8.1). Since the 1-dimensional irreducible compo-
nents of X are in bijection with the 1-dimensional irreducible components of its normalization ¥ and that
Hli,i g(X) —_— Hiig(X) for i = 2, it result from part i) that Hiig(X) has the right dimension in this case. It

only remains to compute hl(X). We use the fact that for both Gysin sequences above, the alternating sum of the

dimensions is zero. In particular, these alternating sums are equal. After obvious cancellations, we see that

-1 +1°@) + 01Xy = - 00 + 102 + LRy,
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Note that by lemma (8.1), we have hO(Z) = g.‘.z deg x and
X

0
h = X = X d
(2) XEZ degy xeZ ﬂ:()%:x &y

so that
WZ)-1%2) = L( T degy-degx)= I m, - deg x.
xe Z m(y)}=x xeZ X
Now, by Lemma (8.1} and part i} of the proof we have hO(X) =c, hO(X) =nand h'(%) = 2d. Thus,
h°(X)=2d + £ (m, - deg x) -n+c=2d +1.
Finally, using the Gysin sequence
0 0 g ) V4 1 1 <
00— Hrig,c(U) - Hrig( ) - Hrig( }— Hrig,c(U) - Hrig( }> 0

and Hj;, (U)—=— H, (%) foriz2,

we easily deduce from part i) and Lemma (8.1) that Hriig (U} commutes with arbiirary isometric extensions of

K. Finally, using the Gysin sequence
0 ] 0 1 1
G- Hrig,c(U) - Hrig(X) - Hrig(Z) - Hrig,c(U) — Hrig(x) -0

and T, (U) —=— Hy (X) fori>2,

we find that that Hriig(X/K) commutes to arbitrary isometric extensions of K.0
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(8.5) Corollaries

(8.5.1) IfX/kisaproper curve over a perfect field, the natural homomorphism

1

1
Hy;, (0 —— H] (%)

is surjective.

Proof.  This is a corollary of the proof of Theorem (8.4) since when k is perfect, the normalization of X is
smooth: We may assume that X is reduced and we have seen that the horizontal homomorphisms in the

commutative diagram

1
rig,c

I l

Hyjp o(U) —— HL (X)

1
rig,c

Uy —H. (%),

rig,c

H
are surjective. So is therefore the right vertical homomorphism.O
(8.5.2) Ifkisperfect and X is a smooth curve over k, then
hx) =c, hi(X)=2d +v-n,
W2X)=c  and  B(X)=0fori>2,
where d is the genus of X, ¢ (resp. C') is the geometric number of 1-dimensional components (resp. of proper

components) of X and v is the geometric number of missing points on X (ie. v = )}:(\X deg x, where X is the
x€

smooth compactification of X). Moreover, H:.l g X) commutes with arbitrary isometric extensions of K.
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Proof.  This follows at once from Theorem (8.4) and the Gysin sequence

0

0
0- Hrig,c

Tig

0
rig

1

by 1
(R\X) - Hyj, o(X) > Hyy,

rig,c

X)->H. (X)>H X\X) >0

and M, () =B, (X) fori>20

(8.5.3) IfXisacurveoverk, then H:ig X) commutes with arbitrary isometric extensions of K.
Proof.  We can make a finite extension of k and replace X by X eq In order to assume that X contains a

smooth dense open subset U. Then, we consider the Gysin sequence

0
Tig

1
rig.c

() 0 1
0 - Hyjp ((U) = Hp3,(X) - Hppp (XANU) — Hyg, (U) = H (%) - 0
and HY, (U)—=—s H, (%) fori>2.

Our assertion immediately follows from Corollary (8.5.2).0
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(9) RIGID COHOMOLOGY AND DE RHAM COHOMOLOGY WITH COM-
PACT SUPPORT

In this section which only requires some basic knowledge of rigid cohomology (e.g. Section 1 and 2), we
study the notion of support in rigid analytic geometry and (when K has characteristic zero) its relation to rigid

cohomology. We prove a technical result which wiil be used in the following section.

(9.1) Section with Support in Rigid Analytic Geometry

(9.1.1) Definition Let V/K be a rigid analytic space. A subset W of V is a support in V if its sct-theoretic

complement VAW is open in V.

(9.1.2) In terms of sites, if W is a support in V, then V\' W has a closed complement in V (a site, explicitly
given by: The open sets are the open subsets of V whose complement is contained in W and a sheaf is just a

sheaf on V which is trivial outside W).

(9.1.3) Definition If W is a support in V, the sheaf (resp. group) of sections of an abelian sheaf E on

V with support in W is the sheaf (resp. group) of sections of E with support in the closed complement of V \ W.

(9.1.4) Concretely, if W is a support in V, the sheaf (resp. group) of sections of E with support in W is the
kemel [ (E) (resp. I'y(V, E)) of the homomorphism E —— j« j*E where j : VAW —— V is the inclu-
sion map (resp. the homomorphism T'(V, E) ——T(V \ W, E)). Moreover, we have

Fy(V, E)}=T(V, Ly, (B)).

(9.1.5) Notation Generalizing (2.2.1), we set H‘SV(V’ =)= Ril"w(V, - ). Also, if V is smooth and K has

characteristic zero, Hpp y(V) := Ry, (V, Q7).
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{(9.1.6) It follows from Propositions 6.4 and 6.5. i) in [Verdier] that if W is a supportin V and E’ a complex

of abelian groups on V, then there are two distinguished triangles

RLyE' >E' — Rjsj E,
Ry (V,E) —— RI(V, E) —— RI(V\W, E").

(9.2) Sections with Support in a Family, with Compact Support

(9.2.1) Definition A family of supports in a rigid analytic space V over K is a directed set © of supports

9.1.1)in V.

(9.2.2) Definition IfE is a sheaf of abelian groups on an analytic variety V/K and @ a family of supports
in V, the sheaf [ (E = lim I'\E (resp. the group I',(V, E) := 11::1 Iy (V, E)) is the sheaf (resp. the group) of
ﬁ

sections of E with support in ©.
(9.2.3) Caution In definition (9.2.2), we might have TV, E) #I(V, [&E).

(9.2.4) Notation If & 1is a family of supports in an analytic variety V/K, then

H(V, -) :=RTg(V, -y and if V is smooth and K has characteristic zero, Hhp (V) := RT4(V, 2.

(9.2.5) Definition An analytic variety V is ind-compact if the set ¢ of (quasi-) compact open supports in

V is a directed set.

(9.2.6) Definition Assuming K of characteristic zero, let V/K be a smooth ind-compact analytic variety and
c the family of compact open supports in V. The K-vector space H]i)R (V) is the i-th space of de Rham coho-

mology of V with compact support
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(9.3) Rigid Cohomology and Support

Let X &< P be an embedding of a k-scheme into a formal V -scheme P and V a strict neighborhood

(12.1) of X in P.

{9.3.1) Examples The tube (1.1.5) ]X[.q of radius M of X in P, with n < 1, is a support (9.1.1) in V. The
set + of all V\ V' where V' is a strict neighborhood of X in P contained in V is a family of supports in V. As in

E
(2.1), we set j' =lim j'j' , where for V' € +, j' is the immersion of V'in V.
—

(9.3.2) Itis shown in Chapter II of [Berthelot 897] that the functors j* and I, (Caution: Berthelot writes + as
t

a superscript) are both exact and that for any abelian sheaf E on V, the sequence

is exact.

(9.3.4) Remark If K has characteristic zero, if X <——— P is admissible (1.2.4) and if V is smooth, then

Hyig,o(X) = Hpg 1x(V) and Hy;, (X) = H'(V, j'Q").
(9.3.5) With the assumptions of (9.3.4), the second triangle of (9.1.6) gives a long exact sequence

i+1

T Hll’ig,c(x) —— Hpp(V) —— Hpp(VAIX) —— Hiig,c

X)—. -,

(9.4) Lemmas

Let X &—— P be an immersion of a k-scheme into a formal V' -scheme, V a strict neighborhood of X in P,

S the complement of ]X[p in V and i the inclusion map of $ in V.

(9.4.1) IfV'isa strict neighborhood of X in P contained in V and §' the complement of ]X[P inV', there is a
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natural isomorphism of functors

s ok
EV\V‘ = I*ES\SII .

*
Proof.  Let E be a sheaf of abelian groups on V and s a section of ixLg\g1 E over an open subset W of V.
We can view s as a section of E over W m § whose restriction to W ~ §' is trivial. Since V= V' S is an

admissible covering, so is

W=(WnVYuWnSs).
Sinc¢e, on the other hand we have
WNnVYINn(WnS=Wn§,

we can extend s uniquely to a section of E over W m V whose restriction to W ~ V' is trivial. In other words,

s extends uniquely to a section of [y E over W.[J

(9.4.2) The set c of compact open supports of S is contained in the set ® of of all S\ S' with V' and S' as in

{9.4.1).

Proof.  'We have to show that if W is a compact open support of S, then V' ;= V\ W is a strict neighborhood
of X in P. We have mentioned in (1.1.6) that the tubes ]Z[.rl of radius 1 of Z in P for ) < 1 form an increasing
admissible covering of ]Z[p. The open subset W of S being compact is necessarily contained in one of the

1Z[,, and this just means that V" is a strict neighborhood of 1X[p in P.O
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(9.5) Proposition  Let X =< P be an embedding, V be a compact strict neighborhood of X in P,
S = V\IX[p and E" a complex of abelian groups on V. Then, S is ind-compact and there is a natural isomor-
phism
.* . [}
RI(S,i E)=RI(V,L,E).
Proof.  Iifollows from Lemma (9.4.1) that if @ is the set defined in (9.4.2), there is a functorial isomorphism

- - .*
I 1_121 1*113\5.1

Since V is compact, Corollaire 5.2 in [Grothendieck-Verdier] tells us that Hi(V, - ) commutes with direct

limits. It follows that for any abelian sheaf E on V, we have
.* - .*
Fg@S.i E)= ll_r)n I'(S, Cg\gi E) =
N . v* . . -* —_
12)“ F(V, I*ES\S'I E) = F(V, IE)I] I*LS\SII E) = F(V, E'E),
Also, if 1 is an injective sheaf of abelian groups on V, we have for all i > 0,
. . 5 : *
H'(V, L,I) = HY(V, lim i i D =lim H'S, Loed D) =
(V, L) = H(V, lim iLg\gi ) = lim H'(S, Loy D=0,

since we know from [Verdier] that L\ preserves injectives.

Since both ', and ix are exact and preserves injectives, the natural isomorphism

T'(S,i E) = I(V, T, E) induces an isomorphism in the derived category

RT4(S, i E)=RI(V, [,EY).
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To conclude, it is sufficient to check that the set ¢ of compact open supports of $ is cofinal in @: Since V is
compact, any strict neighborhood V' of JX[p contained in V, contains some V \]Z[n. Hence W := V\V'is

contained in ]Z[n m S and a fortiori in [Z]1r1 ~ S which is a compact open support in S.0
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(10) SPECIALIZATION HOMOMORPHISMS BETWEEN DE RHAM AND
RIGID COHOMOLOGY

In this section, we assume that K has characteristic zero, We study the relations between the de Rham coho-
mology of the generic fibre of a generically smooth proper formal scheme X and various cohomology spaces as-
sociated o its special fibre X. In particular, when X is projective, we describe a pairing between two Gysin se-
quences relating the de Rham cohomology of the generic fibre of X, the rigid cohomology of a dense open sub-

set U of the special fibre of X and the de Rham cohomology of the tube of the complement of U,

(10.1) Specialization Homomorphism

Let X be a generically smooth (i.e. its generic fibre is smooth) proper formal v -scheme, U a smooth open

subset of the special fibre X of X and Z the closed complement of U in X.

(10.1.1)  Asmentioned in (9.3.5), there is a long exact sequence

Sp::

. . . -
+ + —— Hyy (U) —— Hpp(Xge) —— Hppp(12D —— H;

rig,c(U)—) B

(10.1.2) Definition The homomorphism spi which appears in (10.1.1) is the i-th specialization homeo-

morphism of U in X,

(10.1.3) Remark Let X <—— P be a closed immersion of X into a formal 'V -scheme which is smooth

in a neighborhood of X. It induces an immersion IK ©—— ]X|p from which one obtains an homomorphism
sp' 1 Hyyo (X) =——— Hpp(Xy)

which is easily seen not to depend on P by the method of the diagonal embedding.
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(10.1.4) Definition The homomorphism spi of (10.1.3} is the i-th specialization homomorphism of X in

X.

(10.1.5)  Thereis a natural morphism

S Hli'ig,c(U) - Hli'ig(x) — Hli'ig(z) _— H:‘—l'-gl,c(w —_—

Il el ! I

i
5P

o i 0 (5~ ) —— ]

rig,c(U) _

between the Gysin sequence and the long exaci sequence of specialization.
Proof.  With the notations of (10.1.3), we have a commutative diagram
Ul = ]Ul[p
$ L
Ly—>KXlp
from which we deduce, using (9.1.6), a morphism of triangles
RT){(HX[p, ") ——— RI'(JX[p, Q) —— RT(1Z[p, Q")

! l l

RT (X, Q) —— RT(X, Q) —— RI(1Z{ 4, @H0

(10.2) Cospecialization Homomorphism
We keep the hypothesis and notations of (10.1).

(10.2.1)  From the functorial exact sequence
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of (9.3.2) on X and Proposition (9.5), it follows that there is a long exact sequence

1

. . cOS . .
-+ + — Hpp (02D > Hpyp(Eg) — Hyo(U) —— Hpp

DR,c(]ZD _

(10.2.2) Definition The homomorphism cos! which appears in (10.2.1) is the i-th cospecialization ho-

momorphism of Jin X.

(10.2.3) Remark If ¥ «——— P is a closed immersion in a formal ¥ -scheme which is smooth in a

neighborhood of X, we have, as in the proof of (10.1.5), a commutative square
JUly —— U[p
L !
X — IX[p

From this, one deduces a commutative diagram

I—glig(.x) — H;ig(U)
s’ Il

i co Si i
Hpr(Xg) — Hy;,y(U).

(10.3) The Trace map in Rigid Cohomology

(10.3.1) Let V be a proper algebraic variety over K and V™ its analytification. It is shown in [K&pf] that if
P

F is a coherent sheaf on V, then the natural maps

Hi(V, F) —— Hi(v®™ F2)
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are isomorphisms. It follows that when V is smooth, there are canonical isomorphism

HpR(Y) —=— Hpp(V™).

(10.3.2) Construction (Berthelot) Let P be a closed subscheme of PfI;{ suchthat Y ;=P Af]; is

smooth of dimension d. The restriction to Yy, which is smooth, of the dualizing complex ® on Py is just

Qd[d]. If U 1s the special fibre of Y, we can therefore deduce from the trace map on Py an homomorphism
HrRs ) —=— HY PR, ™) —— HIPP, 0™ = 1P, ,0) —— K.
One can check that this homomorphism factors through the canonical map
Hig (YR, 0°) — BHOR, @) = BY, ()
to give an homomorphism

tr: H2d

tHY; g“:(U) —3 K.

It can be shown that this homomorphism only depends on U,

(10.3.3) If X is a smooth varicty of dimension d over k, it follows from Théoréme 6 and

Remarque 2 ¢) p 588 of [Elkik] that there exists a dense open subset U of X as above. Moreover, property

24
rig.c

2d

(2.4.7) and the Gysin sequence (2.4.5) tell us that the restriction map H Yigc

(U — H (X) is an iso-

morphism. We can therefore consider the composite map

2d
rig,c

i () e—=— HA (U) —— K.

(10.3.4) Definition With the notations of (10.3.3), if the homomorphism
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2d
[r: H.ng’c(X) ——— K
is well defined (i.c. independent of U}, it is called the trace map in rigid cohomology.

(10.3.5)  Berthelot shows in [Berthelot 89?] that when hﬁg «(X) = 1, the trace map is well defined. It is ac-

tually sufficient to require that hég ¢ 1s the geometric number of connected components of X.

(10.4) Lemma  Let X ~—— P be an immersion of a k-scheme into a formal V' -scheme, V a strict
neighborhood (12.1) of X in P and E', F" two complexes of sheaves of K-vector spaces on V. There is a natural
isomorphism

RO E @ F' =ROyE @ j'F

(resp. E" ® [,F = Rini E' & F).

Proof.  Since, by (9.3.2), we have a functorial short exact sequence

and by (9.1.6), a distinguished triangle

RL;(E —— E —— Risi E,
it is sufficient to show that, if E and F are sheaves of K-vector spaces on V, then
I:]X[E ®K EtF - 0.

In other words, we have (o show that the sheaf associated with
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W —— (W, [jx(E) 8¢ T(W, L,F)
is zero. If W is affinoid, and therefore compact, the value of this presheaf is
lim [y (W, E) ® Ty (W, F)
Hence, any section s of this presheaf over W can be written s = F S; ® ; where s; (resp. ) is a section of

E (resp. F) over W whose restriction to § = V \ JX[ (resp. V") is trivial. Since V =S w V' is an admissible

covering, this implies that s is necessarily zero.0

(10.5) The Poincaré Pairing

We assume that K has characieristic zero. Let X be a d-dimensional k-scheme, X = P an admissible

(1.2.4) embedding and V a smooth strict neighborhood of X in P.

(10.5.1)  Iifollows from Lemma (10.4) that the wedge product

Qy B Qy—Qy

induces a commutative diagram
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Ry Qy ® i’ Qy —— ROk Qy

& I
RLyx Qy ® Oy — ROx[Qy
i !
QuyodrQy —— Qy
T T
Qy®gL[,Qy —— L,Qy
¥ L

* . . .

(10.5.2)  Taking H*(V, - ) of the top arrow of the diagram (10.5.1), we obtain bilinear maps

i 2d-i 2d
H;ig,c(x) xH rigl(x) —Hj g.c(X)

which can be seen to only depend on X by the method of diagonal embedding. These maps are also functorial

with respect to open immersions,

(10.5.3) Definition Composing the bilinear maps of (10.5.2) with the trace map (10.3.4), if this is well

defined, gives the Poincaré pairings
1 2d-i
Hrig,c(X) X Hrig {(X)—— K.
(10.6) Proposition  Let X/V be a flat, projective, generically smooth formal scheme, U a smooth

open subset of the special fibre X of X and Z the closed complement of U in X. There is a natural morphism of

long exact sequences



77

i

. p - N -
+ = Hijg o(U) — Hp(Xg) —— Hpp(1Z) —— Hify (0) —— - - -
! ! ! !
‘2 d-
i T ey —— WAL 0 B O —

(in which the superscript * denotes the dual vector space) in which the vertical maps in U and X are induced by

the Poincaré pairings (10.5.3) (provided the trace map (10.3.4) is well defined for U)

Proof.  Applying RI'(X , - ) to the big commutative diagram of (10.5.1) with V = X » and composing on

the right with the trace map

tr: RT(X g, Qy) —— K[-2d),

which exists since X is projective, yields a commutative diagram

R (X, Q) @ RT(Xy, j' Q) —— K[-2d]

l i
RI(Xg, Q") ®g RM(Xg, Q) —— K[-2d]
T T

RT(Z[, Q) ®¢ RI(Xy,[,Q") —— K[-2d].

which induces a morphism of long exact sequences as asserted.

The vertical maps in X are clearly induced by the Poincaré pairings in de Rham cohomology. Moreover, it

is immediate from Construction (10.3.2) that the composite homomorphism

2d

is the trace map in rigid cohomology if this is well defined. In particular the vertical homomorphisms corre-



sponding to U are induced by the Poincaré pairings in rigid cohomology.0
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(11) POINCARE DUALITY FOR CURVES

In this section, we assume that K has characieristic zero. We prove Poincaré duality for curves in rigid
cohomology. Poincaré duality in rigid cohomology is known for (smooth) proper schemes when K is discrete
and k perfect since it can then be deduced from Poincaré duality in crystalline cohomology. Berthelot can also
prove it for (smooth} affine schemes of dimension at most three. Since a smooth curve is a disjoint union of
affine and proper schemes, the main theorem of this section is not new. The idea in the present proof is to de-

duce the theorem from an analogous result in analytic de Rham cohomology.

(11.1) Class of a Point on a Smooth 1-Dimensional Analytic Space
Let S/K be a smooth analytic space of dimension one and £ a point on S.

(11.1.1) Lemma Iffe I'(S', @) is a defining equation for § in some neighborhood S' of & in S, then the

image Cgss of dlogf under the canonical map
' 1 loar !l - 1 1
IS\, Q) —— Hg(S, Q )<——H§(S, Q7).
does not depend on f.
Proof.  Let g be another defining equation for & in some neighborhood S" of €. Since S is smooth of dimen-
sion one, the local ring at £ is a discrete valuation ring. It follows that there exists a neighborhood S™ of
& and u € T(S™, O%) such that g =uf on 8. Then, on S\ &, we have dlog g = dlog f + dlog u with

dlog u e (8™, QI) and the assertion follows from the exactness of the sequence

re”, @y — s rieve o)y — Hé(S‘", ohyo
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(11.1.2) Definition The image Cess of dlog f under the canonical map
' 1 | ) 1 - 1 1
T{S'\E, Q )——--)Hg(s, Q )(—Hg(S, QY.
is the class of the point € in Hé(S, Ql).
(11.1.3)  Definition If § is ind-compact, the image Se/s of /s under the composite map
HiS, @) — s HI(S, @) —— HE(S, @) = HS, (S)
g\ e\ AN = “'DR,c

is the de Rham-class of the point £ .

(11.2) Trace Map and Poincaré Pairing for a 1-Dimensional Ind-Compact An-

alytic Space

Let S be an analytic variety over K, C a non singular projective curve over K and § &—— C*" an open

immersion. It is shown in [Liu] that $ is necessarily ind-compact. We consider the composite map
tr: Hap (S) —— HAp(C) —=— K
*DR,¢ DR :

(11.2.1)  Definition If ir is well defined (i.e. independent of the embedding), it is the trace map in analytic

de Rham cohomology.
(11.2.2) Lemma If§is a pointon S, the de Rham class Se/s is sent to 1 under tr.

Proof.  Let f be a (algebraic) defining equation for £ in some (algebraic) open subset V of C such that f is in-

vertible outside . Then, one knows that dlog f is sent to 1 under the composite map
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TV \E, @) — Bi(C, @) —— HAR(O) —=— K.
The assertion therefore foliows from the commutativity of the diagram

PV \E Q') — HIC, Q) —— HEp(©)

! l &
reva\g, oy — Hé(ca“, oy —— H3 ™
l $ T

SNV, @) —— HiS, ') —— B, ()0
(£1.2.3) It follows from (11.2.2) that if hZDR o(S) = 1, then tr is well defined. Actually, it is sufficient to
require that after a sufficiently big finite extension of K, then hlz)R‘ ¢ 1s the number of connected components of
S.
(11.2.4) Definition If the trace map is well defined, the pairings
. 2

HpRr(S) X Hpg (S)—— K.

obtained by composing the bilinear maps

Hpg(S) x le)‘ﬁ,c(S) —_ H%R,C(S)

induced from the wedge product on $ with the trace map are the Poincaré pairings.

(11.3) Proposition  For the open disc D of radius one, the trace (11.2.1) map is well defined and the

Poincaré pairings (11.2 4) are perfect.

Proof.  Coherent sheaves have no higher cohomology on D since it is a quasi-Stein (as in [Kichl 67,



Inv. Math]) space. This implies that HI*)R(D) is the cohomology of the complex
I(D, &'p) — T(D, Q).
Let us choose a parameter t for I so that
A=(Z ait/aje Kand Ve<1/€ lajl > 0)
is the algebra of functions on D and H]*)R(D) is the cohomology of the complex
d:A—— A dt
One immediately checks that the sequence

0 » K 3 A » A dt > (0

is exact, so that D has no higher de Rham cohomology and HIOJR(D) =K.
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For e < 1, let D be the closed disc of radius £ and Cy its complement in D. Since D and C, are Stein, we

have an exact sequence

0 —— Hyp, (D, &) —— (D, §) —— I(C,, ©) ——> Hp, (D, &) —— 0

and we also see that H]i) (D, @) for i > 1. From the obvious injectivity of the middle homomorphism in this
£

sequence, it results that Hg (D, @) as well is zero.
£

Note that the D/'s form a fundamental system of compact open supports in D. Taking direct limits, we

therefore obtain the nullity of Hi(D, ) fori= 1, and an exact sequence
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0 > A » A'— > H.(D, &) —— 0.

where A':= lim ['(C,, O). With respect to our parameter t, we have
_)

A'=[Zaiti/aie K/3£<llsilail<<oofori<<0and‘v’s<lleilail—>0fori>>{)]
1

and we can identify Hé(D, O} with the orthogonal complement
Ag = {i§0 aiti/aie Kand3e<1/¢ lajl << oo},

of A in A' with respect (o the topological basis [ti]iE 7

By definition, H;)R,c(D) is the cohomology with compact support of the complex

d:9p — Qb =0p dt.
We have just seen that RTo(D, Op) = A [-1] and it follows that HBR,c(D) is the cohomelogy of the complex
d
[Ao—— AL dt] {-1}
It is easily seen that the sequence

d Ies

0 > Ac » Ag dt » K >0

p> aili dit ——a )
is exact. This gives that HIi)R‘C(D) is zero for i # 2 and an isomorphism

2 -~
HDR,C(D) —x— K
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which is just the trace map since it clearty sends diog t to 1.
The Poincaré pairing
HRR(D) X Hhp (D) —— Hip (D) —=—K
is indnced by the bilinear map

<, >rAXALdt—— AL dt

T ait, £ bith di) ———> % citidt
(Zo 2t & bit 4o 120

with ¢ = _+)_.". kaibj- This pairing is clearly non zero and therefore perfect since it involves 1-dimensional
1 _]"—'

spaces.]

(11.4) THEOREM IfU is a smooth curve over k, then the trace map is well defined and the Poincaré

pairings (10.5.3)
i 2-i
Hrig,c(U) X Hrig(U) —K
are perfect.

Proof. It follows from (10.3.5) and Corollary (8.5.2) that the trace map is well defined. Making if necessary
a finite extension of K, we can use Lemma (8.2) to deduce from Proposition 7.4 of [Grothendieck 73] that there
exists a smooth projective formal scheme X over V' whose special fibre X is a compactification of U. Let Z be
the complement of U in X. We have seen in Proposition (10.5) that, if C is the generic fibre of X, then there is

a morphism of long exact sequences
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i

s B (0) T Hbg(©) ——> Thg(Z) —— HEL (U) — -
L ! ! !

25 cosl

- A o 2-1 " ) P
- —— H(U) —— HERO —— Hip (12D —— Hi Uy —— - -
where the vertical homomorphisms corresponding to C and U are induced by the Poincaré pairings.

Poincaré¢ duality in algebraic de Rham cohomology states that the vertical maps corresponding to C are bijec-

tive. In order to prove the theorem, it is therefore sufficient, by the five lemma, to show that the maps
i 2-i -
HprUZD — Hig (12D

are bijective. By construction, these maps are induced by the Poincaré pairings (provided the trace map is well

defined) in analytic de Rham cohomology.

After a finite extension of K, the finite variety Z becomes a finite union of rational points, and by additivity,

we are reduced to show the bijectivity of
1 2-i .
HpRQxD) ~——> Hg (XD

when x is some rational point on X. In other words, we have to show that the trace map is well defined on

HZDR,c(]xD and that the Poincaré pairings
Hpr (xD) x B3 (X)) —— K
are perfect.

In general, if x is a smooth rational point on a formal V' -scheme, there is an étale map 7 from a neighbor-

hood of x to the projective space and it follows from Proposition 1.3.1 in [Berthelot 897] that the induced map
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between ]x[ to Jr(x)[ is an isomorphism. This implies that |x[ is isomorphic to the open ball of radius one. In

our one dimensional case, we see that 1x[ is isomorphic to the open disc of radius one, and the theorem is there-

fore a consequence of Lemma (11.3).0

(11.5) Corollaries

(11.5.1) It follows from Theorem (11.4) and Remark (8.5.2) that, when k is perfect, if X is a smooth curve

over k, then
0 1
h"(X)=c, hW{X)=2d+s,
h’(X)=¢'  and  hi(X)=0fori>2,
where d is the arithmetic genus (7.4.3) of X, ¢ (resp. ¢) is the geomelric number of 1-dimensional connected
(resp. proper connected) components of X and s is the geometric number of points needed to smoothly compact-

ify X. This agrees with the results of [Monsky-Washnitzer]. We also see that Hiig oX) commutes with

isometric extensions of K,

(11.5.2)  IfUfkis a smooth curve and U' a dense open subset, the restriction homomorphism
Hll'ig(U) _ Hlig(U‘)

is injective.

Proof.  The complement of U' in U being zero-dimensional has no higher rigid cohomology. It therefore re-

sults from the Gysin sequence that the resiriction map

' 1
Hyjp ((U) —— HL (U)

rig,c
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is surjective. The assertion is therefore a consequence of Poincaré duality [J

(11.5.3)  Let C/K be a non singular projective curve, X a flat, projective formal V -scheme such that
Xg= C*™ U a smooth open subset of the special fibre X of X and Z the closed complement of U in X. Then,

the trace map is well defined on H%ROZD and the Poincaré pairings
. 94
Hpr(ZD) x Hpg (1ZD—— K

are perfect. Moreover, the morphism of long exact sequences

i+1
rig.c

l l l l

1,v

o Hij, (U) ~—— H}o(C) —— HAp(1Z) —— BTl ) — - -

odei ., COS 9 9 } i
- = Ky (U —— HpR(C)" —— Hpy (Z)"—— H Uy —— - -

of (10.5} is an isomorphism where all the vertical homomorphisms are induced by the Poincaré pairings.
Proof. It is clear by construction that the vertical maps corresponding to Z are induced by the Poincaré pair-

ings provided the trace map is well defined. From Poincaré duality in de Rham and rigid cohomology, we know

that vertical maps corresponding to C and U are bijective. The assertion follows immediately [
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(12) THE ORTHOGONALITY THEOREM FOR THE WEIGHT FILTRATION

In this section, starting at (12.2), the field K is assumed to have characteristic zero. We define the weight
filtration on the first de Rham cohomology space of a smooth projective curve over K and prove an orthogonal-

ity theorem similar to Grothendieck's theorem in £-adic cohomology.

(12.1) Formal Model for a Proper Scheme

We recall the definition (14.3.2) of a (geometrically) distinguished formal V -scheme: It is a flat formal

V¥ -scheme with (geometrically) reduced fibres.

(12.1.1) Definition A formal model for a proper scheme V over K is a formal scheme ¥ over

V" whose generic fibre Xy is isomorphic to the analytification v ofv.

(12.1.2) Itis a consequence of the unpublished work of Raynaud (see [Raynaud 74}, [Mehlman] and also
[Nagata]) that any proper scheme over K has a formal model X/ and that then, X is necessarily proper. Also,

replacing it by its maximal flat closed subscheme, we may always assume that a formal model is flat.

(12.1.3) It immediately results from Proposition 7.2 in [(Grothendieck 71] that if K is discretely valued,
then any proper flat formal V' -scheme X with one dimensional special fibre X is projective: There exists a
unique projective scheme Y over V' such that X is the completion of Y along its special fibre X. And then,

X is a formal model for YK.

(12.1.4)  Icannot show that (12.1.3) is still valid over an arbitrary complete ultrametric field K without as-

suming X geometrically distingnished (se¢ Theorem (14.6.2)).

(12.2) Lemma  Let C be a projective non singular curve over K and X a geometrically distinguished
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(14.3.2) formal model (12.1.1) for C with special fibre X. Then, the specialization (10.1.4) homomorphism

1

sp :H1

g —— Hpp(C)

1

Is injective. More precisely, if U is a smooth dense open subset of X, sp1 identifies Hrig(X) with the image of

the specialization (10.1.2) homomorphism

1
rig,c

spy + HL, ((U) —— HAR(C).

Proof.  Let U be a smooth dense open subset of X and Z its closed complement. Since Z is 0-dimensional,

1

we have Hrig(Z) =0. Also, it follows from Theorem (14.6.4) that the natural map

0

Hy;g(@) —— HOROZ{5)

is bijective. From the morphism of long exact sequences of (10.1.5), we therefore obtain a commutative dia-

gram with exact rows

0 1
Hrig rig
1
& Il 5P
1
1o gl SPc 1
pRUZ[x) — Hy;j, (U) —— Hpp(©)

1

) ? Hrig,c

(U—>H . X)——0

from which our assertion follows.d

(12.3) The Weight Filtration

We assume that k is perfect and let C/K be a projective non singular curve. Let X be a distinguished formal

model (12.1.1) for C with special fibre X.
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(12.3.1)  There is a unique filtration Fily on HYp(C) such that

) FilyHHR(O)) := HhR(C) and Fily/Hi: (C)) =0,

1
rig

1 1
rig(x) * Hrig

(X) with its image in Hfyp(C), FilgyHhp(C) = H., (X) and

if) using Lemma (12.2} to identify H rig

iii}  using the natural surjection H (X) which is surjective as mentioned in (8.5.1) to

1

identify Hy;,(R) with a quotient of FilgHpp (C),

GryHpR(©) = HL, /5.

(12.3.2) Definition The filtration defined in (12.3.1) is the weight filtration associated to X on HIIDR(C)'

{12.3.3) Remark Let g be the arithmetic genus (7.4.3) of C, d the geometric genus and t the cyclomatic

number (7.4.2) of X. It follows from lemma (8.3) and Theorem (8.4) that
dimy FilQHL (C) =2
K "HwhpRr &
dimy FilyyHpp(C) = 2d + 1,
dimy, FilZHL(C) =t
K FilywHpr(C) =t

(12.3.4) Notation We will be interested in the orthogonal to the weight filiration for the Poincaré pair-

ing
Hpp(C) X Hhp(C) —— K.

We will follow the usual conventions and write Fil_iL = {Fill'i]‘L.

(12.4) THEOREM (K of characteristic zero with perfect residue field)  Let C/K be a non singular pro-

Jjective curve, X a distinguished model for C and Fil' the weight filtration (12.3.2) associated to X on H%)R(C).
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Then, we have
Fi =Fil' nFil) and  Fil}! =FiI® + Fill,

Moreover, the filtration is auto dual {i.e. for all i, Filj_ = Fili+2) if and only if the special fibre X of X has

only ordinary multiple points with normal tangents (7.2.5) as singularities.
Progf. By definition, the specialization homomorphism

1 1
Hy;,(X) —— Hp(O)

identifies H:ig(X) with Fil! and, if X is the normalization of X, the kernel of the natural map

1

g0 —— H (D)

H rig

is Fil?,
Let U be a smooth dense open subset of X and U its inverse image in X. Consider the commutative square

1 1
Hrig(x) —_— Hrig(U)

| I

1

Hrig

1
(X) —— H,; (0).
We know from Corollary (11.5.2) that the bottom homomorphism is injective. This implies that Fil? is also

the kernel of the restriction homomorphism

13 1
Hy;y(X) —— H,

V).



92

We have seen in (10.2.3) that this restriction map factors as

1
rig

spl 1 CcO0S 1
H; (X) — Hpp(©O) — H, (V).
Thus, we see that Fil® is the intersection of Fil with the kemel of cos'. In order to prove that
Fil> = Fil' ~ Fil} it is therefore sufficient to show that the kernel of cos! is Fil®. From Corollary (11.5.3), it
results that the Poincaré dual to the kernel of cos! is the cokernel of spé. 1t is therefore sufficient to show that

the cokernel of spg is the Poincaré Dual Gt to Filﬂ}_. This is an immediate consequence of Lemina (12.2) where

we showed that the image of

1 1

1
Sp, : Hrig.c(U) — Hpp(C)

is exactly Fil'.
Thus, we have Fil” = Fil' ~ Fil’ and we immediately get that
Fil; ' = @)t = Eil' o Rt = @t + Gyt = wil + Fil

[t remains to prove the last assertion. Note that for i # 0 and -1, we always have Fil_il_ = Fil'*2, Moreowver, if
Fil] = Fil? then necessarily Fil} ! = (Fil’)" = Fil. Therefore, the filtration will be auto dual if and only if
Filﬂ)_ = Fil?'. From the first part of the proposition, we know that Filg > Fi12. The filtration will therefore be

auto dual if and only if dimy Fil” = dimy Fil),

Let g (resp. d, resp. ¢, resp. s) be the arithmetic genus of C (resp. the geometric genus of X, resp. the cyclo-
matic number of X, resp. the singular genus (7.2.4) of X). We have seen in (12.3.3) that dimy Fit? = t and that
dimy Fil' =24 + tand it follows that dim Fil] = 2g - 2d - 1. We thus soe that dimy, Fil? = dimy Fil® if and
only if g = d + t or, using Proposition (7.5) and Theorem (14.6.1), if and only if s = 0. We showed in (7.3) that

this happens exactly when X has only ordinary multiple points (with normal tangents) as singularities.0]
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(12.5) Remarks

(12.5.1)  Using Theorem (12.4), one can give another definition of the weight filtration (12.3.2): Fill is

the image of

1
rig,c

spe : Hby, ((U) —— HEp(©)
and P‘il2 is the intersection of Fil1 with the kernel of

cos! : HII)R(C)  — H},ig(U).

This definition makes sense even when k is not perfect and permits us to remove this assumption in the defi-

nition of the weight filtration.
(12.5.3)  Using Corollary (11.5.3), we can give a third definition of the weight filtration: Fil® is the kernel
of the restriction map
1 1
Hpp(C) —— Hpp(ZD
and Fil? is the intersection of Fil' with the image of the restriction map

Hpg ((ZD) —— Hipp(©).

This definition makes sense even when X is not reduced and permits us to remove this assumption in the

definition of the weight filtration.
(12.5.4)  Letus finally describe a very elementary way of defining the weight filtration: We have

1 1 1
Fil' = Ker [Hpp(C) ——s Hpg(xD]



and Fil” is the intersection of Fil' with its own orthogonal complement with respect to the Poincaré pairing.
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(13) NUCLEAR SHEAVES

In this section, we introduce the notion of a nuclear sheaf on affine K-space which allows us to use cohomo-
logical arguments in order to (re-) prove some basic results about nuclear operator on a K-vector space. In this

section, A%( denotes the affine line with a fixed origin 0.

(13.1) Trace of a Nuclear Sheaf

(13.1.1) Definitions Let T be a quasi-coherent sheaf on All(. A closed point on All{ \Ois an eigen-
vaiue for M. if dimy H;)(m) > (. The sheaf TV is nuclear if

i) Forall x e Ag\0,dimy HY(M) < and H(M) =0, and

ii) The eigenvalues for M are discrete in Pll( \ 0 for the underlying analytic structure (i.c. any closed disk of

P%( \ 0 contains only a finitc number of eigenvalues).

(13.1.2) Notations Since the origin of All( is fixed, there is a canonical isomorphism AII(E spec K[z].
If x is a closed point on A11<, then tr x is the trace of z(x) € K(x) over K and det(1-tx)) := t9°8* P(1/t) where P is

the characteristic polynomial of z(x) over K.

(13.1.3) Definitions Let M be a nuclear sheaf on All(. For a closed point x € A%( N\ O, let

8, =dimy Hg(m.)/deg x. Since ltr x| < Ixl and 8, is an integer, the series

rfM:= X 3d.trx
xe A\0 X

converges towards an element of K called the trace of M . Now, if we write

degx

det(1-tx) = 1+a t+ . . +aegx! then we have la,l < Ix! for all i = 1, .., degx and it follows that the infinite

product
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Dy, (©) := det(1-x)%

1
XE AK\D

is an entire serics calted the Fredholm Determinant of L.

(13.1.4) Remark IfE is a K-vector space and u an endomorphism of E, there exists a unique quasi-coher-
ent sheaf . on A%( = Spec K(z] such that I"(AII<, M) =E and that for m € E, zm = u(m), If M, is nuclear, we
will say that u is a nuclear operator and write tr u := tr MU and det(1-w) := D (1} := Dy (t). The translation of the

next results in this more conventional language is left to the reader.

(13.2) Direct Image of a Nuclear Sheaf

(13.2.1) LetM be a nuclear sheaf on All( and f a non zero regular function on All( such that f(0) = 0. If we

think of f as a finite map £ A i( — A IK , we have, for all closed point y € A %(,

H)i,(f*fﬂ'l,) = f(? Hi(m.) and it follows that f4T is nuclear. For a closed point x on Ail( \ 0, we write as in
x)=y

(13.1.3), Sx = dimy Hg(m)/deg x and we set tr, := U x)/K- Then, we have
— ; 0
tr fJN = ye E%( " (dim Hy(f*m)/deg yyory

_ L0
= e }2\:}1( " f(xz):=y (dimg H (M )/deg x) (degx/degy) ry

Therefore, if we think of f(x) as an element of K(x) via the natural embedding K(f(x)) &~— K(x), we have

rfzM = 8. tr, f(x).

Zy
XE AK\O

(13.2.2) (We assume that K has characteristic zero)  Let T\ be a nuclear sheaf on All(. For f=12", with

r>0,let M =[x0N, Then, we have the identity of formal power series

Dp®=expl- X (M) .
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Proof.  Since both power series have constant term 1, it is sufficient to show they have the same logarithmic

derivative. On one hand, we have
diog D (0) /dt= ‘e E%( " 8, dlog (det(1-xx)).
On the other hand, it follows from (13.2.1) that
- T - r-1 - T ,I-1
- =- = X - .
dlog{exp[ IEI (r M)/} /de rf‘;l rm e c AII<\0 & ( r§1 (rx)t )

and we are reduced to the well known (and easy to check) statement that det(1-tx) = exp[- £ - (r,x") 1.0
Ir=

(13.3) Lemmas

(13.3.1) LetM be a quasi-coherent sheaf on All( and f a defining equation for a closed point x on AII(.
Then, we have
i) Any element of H}?(m) is killed by some power of f and any power of { is surjective on H){(‘.m.).

ii) If there is a short exact sequence

0 sN—— T(Ag, M) —— W > 0,
with f bijective on W and such that a power of £ kills N, then H;)(JTL) =N and Hi(!l"l) =0,

Proof. Since M is guasi-coherent, asseriion i} is an immediate consequence of the existence of an exact se-

quence

0 —— HOOM) —— T(Ag, M) — T(A§ \ x, M) —— HAN) —— 0.

The hypotheses in assertion ii) imply that the localizations at f of N and W are respectively 0 and W. Since
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localization at f is an exact functor, we see that F(All( \x, MV =wh

(13.3.2) If{M.). N isadecreasing sequence of nuciear sheaves, then the quasi-coherent sheaf ™. associated
ilieN

, 1 . 0 0
with . er\Nl"(AK, M) is nuclear and we have, for all x # 0, H,(M) = . QNHx(m' D
Proof.  Let x #0 be a closed point of Ail(. We have an inverse system of short exact sequences
0 —— HIM ) —— F(Af, M) —— PAL \x, M) — 0,

Since, for all i € N, M., is nuclear, we know that HE(:m, ;} is finite dimensional and it follows that the in-

verse system [}g?(mi)}ieN satisfies the Mittag-Leffler condition. There is therefore a short exact sequence
0 1 1
00— iQN HO)—— A, M) —— iQN FAg\x, M ) —— 0.
It follows from part i) of Lemma (13.3.1) that a defining equation f for x will be bijective on
.\ T(AL\x, M) and that .~ HO@M.) is killed by a power of f. Part ii) of Lemma (13.3.1) tells us that
ieN 1 ieN X 1

Hm) = O HI@M. ) and HA(OM) = 0. In particutar, KON ) is finite dimensional and zero when one of the

Hg(mi) is. Thus, we see that the sheaf M is nuclear.l)

(13.4) Proposition  The category of nuclear sheaves on AII( is stable under kernel, cokernel and

extension. Moreover, if 0 >IN’ >y M m " 3> (} is a short exact sequence of nuclear

sheaves, then t . = tr M'+ tr M" and Dyy (6) = Dyyy (D). Dy (D).

Proof. Let0 » M, > M LI — 0 be a short exact sequence of sheaves on A]1<.

Then, for all closed point x on AI%(, we have an exact sequence

0 - Hoy — 12my - 1l > wlony - Hion) > Hian - 0.
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It immediately follows that when JIL' is nuclear, the nuclearity of T is equivalent to the nuclearity of ",

Let us now show that if FL and L " are nuclear, so is M.". We use part i} of Lemma (13.3.1). Letfbe a
defining equation for a point x on All( \ 0. Since Hg(fﬂ'l.) and }g?(m') have finite dimension, there exists a power

f' of f which annihilates both. It follows from the right exactess of
Ho() —— HYM") —— HX(M) —— 0,

that £* also annihilates H(ML"). Since ' is always surjective on HA(M."), this implies that H.(M.") = 0. Finally,
we see that dimy HE(T'L') < oo and that any eigenvalue (13.1.1} for M’ is an eigenvalue for M, This shows that

M is nuclear.

To conclude, it is sufficient to show that if M ——— . is a morphism of nuclear sheaves, then the image
4 of M in N is nuclear. Let x be a closed point on All( A0, Since M —— 4 is surjective and M nuclear,
then necessarily H,I{(Jl) = (0. On the other hand, since & ———3 N is injective, we see that

dimg Hg(él) < oo and that any eigenvalue (13.1.1) for & is also an eigenvalue for .

The second assertion follows from the fact that, for all closed point x on Alli, there is an exact sequence

0 —— HYM) > HO(M,) » HOM") — 00
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(14) DISTINGUISHED FORMAL SCHEMES

In this section, we introduce the notion of distinguished formal V" -scheme. This will allow us 1o use
rigid analytic geometry to remove Noctherian hypothesis from several theorems about formal schemes. We will

write [BGR] for the reference [Bosch-Giintzer-Remmert].

(14.1) Algebraic and Analytic Reduction of a Formal Scheme

Let A be a complete V -algebra (always assumed topologically finitely presented). We set
Ay =A@ Kand A=A @, kand letll - Il be the spectral semi-norm on HAg. Itis a power multiplicative

semi norm (i.e. it commutes with powers). We set

A= (fe Ag /1), A% :i=(fe Ag/INI<1)

and A 1= A%AC,

(14.1.1) A’isthe integral closure of (the image of) A in Ag.

Proof.  Choose an epimorphism V' {1} —» A with £ = (t;, ¢,, .. . ,t ) and consider the induced epimor-
phism K{t} —» A k. Given any fe Ay, it results from Proposition 4, § 6.2.2. of [BGR], that there is an
integral relation

14

fr+g1 v g =0

Illli

for f over K{1} such that lIfil = max lig;Il""". In particular, if lifil < 1 then for ati i, gl < 1and g, € V (1}.

Hence f is integral over V" {1} and a fortiori over 4.
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Conversely, any f integral over A& satisfies an integral relation f + glfr 1o 4 g =0over V {t} and it re-

sults from the nltrametric inequality that
1fi
HEll < max lig ™" < 1.0

(14.1.2)  Since A" is an ideal in A° containing m.A4°, we see that A is a k-algebra and that there is a

natural map

(14.1.3) Definition The k-algebras A and A are called respectively the algebraic and analytic reductions

of A.

(14.1.4) Note that A is reduced. (Since Il - Il is power- multiplicative , we have for f € AC,

N < 1 = " < 1= Nfll < 1)

(14.2) Distinguished Complete V -Algebras

We keep the notations of (14.1).

(14.2.1)  Iflt- |l o is the quotient norm for an epimorphism K(1} ——»Ay induced by an epimorphism
V() —» A, then

D Al =K,

i) A=(fe Ag/fieg< 1} and

i) mA={fe Ay /Mg < 1),

Proof.  Given any f € Ay, it results from Corollary 8, § 5.2.7 of [BGR] that there exists g € K{t} whose
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image in A is f and such that lifll e = llgll. Since IK {1}l = IK1, this implies that A ilres = IKI. Moreover,

iffesSl o ligl<ioge Y{ljofe A

(resp. Ifleg <l @ lgl<l o ge mV (i) & fe mA)D

(14.2.2)  If Ais reduced, the quotient norm |l - lgog for an epimorphism K{{) ——» A induced by an

epimorphism V' {1} ——» A is power-multiplicative.

Proof.  Using the Remark following Proposition 1, § 1.5.3. of [BGR], we have to show that

(i) Givenfe Ay, there exists o € K and n € N such that o leg = lof 17Mlpeg = 1,

@)  Thealgebra {fe Ay /Mlleg <1}/ {f€ Ay /Mllpg < 1} is reduced.

Both conditions are consequences of (14.2.1): Condition (i} follows from the fact that A ¢ llreg = IKI and

condition (ii) from the fact that {f€ Ay /Il <1}/ {fe Ak /lMfiloq <1} =AD

(14.2.3) Definition An epimorphism V" {t} ——» A is distinguished if the induced epimorphism
K{t} —» A is distinguished. This means (e.g. Definition 6.4.1 in [BGR]) that the quotient norm coincides
with the spectral semi-norm. The algebra A is distinguished if if there exists such an epimorphism.

(14.2.4) It follows from (14.2.1) that if A is distinguished, then A = A°, mA = A and A = A.

(14.2.5)  If A isdistinguished, then Ay and A are reduced.

Proof.  In this case, | - l is power-multiplicative and it is a norm. Therefore, for f € Ay, we have
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P=01MM=0=0"=0=Ill=0= f=0.

On the other hand, we have seen in (14.2.4) that A = A, which is reduced by (14.1.4).0

(14.3) Distinguished Formal Schemes

(14.3.1) Proposition For aflat formal V -scheme X, the following are equivalent:

(1) X has reduced fibres.

(ii)  Any epimorphismm. V {1} ——» A with Spf A an affine open subscheme of X, is distinguished
(14.2.3).

(iii)  There exists an daffine open covering X = L Spf A, with all the A['s distinguished.

Proof. Of course, (ii) implies (iii) and it results from (14.2.5) that (iii) implies (i). Let us show that

(1) implies (ii):

The question is local, so we are given a complete flat V" -algebra A with Ay and A reduced, and an epimor-

phism V" (t} ——» 4. We have to show that the induced epimorphism K {1} — Ay is distinguished.

We have seen in (14.2.2) that, when A is reduced, Il - Il is a power-multiplicative norm on Ay, On the
other hand, it is shown in Proposition 4 (iii} , § 6.2.1. of [BGR] that, when A is reduced, Il - Il is a power-
multiplicative norm on A . But, we know from Lemma 3, § 3.8.3 of [BGR] that there can only be one power-

multiplicative norm on Ay [

(14.3.2) Definition A flat formal V -scheme X is distinguished if it satisfies the equivalent conditions of
Proposition (14.3.1). It is geometrically distinguished if given any finite extension K' of K with valuation ring

V', the formal scheme X ®qr V' is distinguished.
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(14.4) Formal Analytic Spaces

The reference for the theory of formal analytic spaces is [Bosch 77, Manuscripta Math.].

(14.4.1) Construction and Definitions Let R be an affinoid K-algebra and Il - Il the spectral semi-
norm on R. A strict Laurent domain in Spm R is a subset of the form Ds= {x € Spm R /If(x)l = 1} with
fe Rand lIfif = 1. These subsets form a basis for a topology called the formal topology on SpmR. The formal
space of R is the locally ringed space S = Spf R whose set of points is Spm R, whose topology is the formal
topology and whose structural sheaf satisfies I'(Dy, ©) = R{f 1} {with the obvious compatibilities for different
f's). The locally ring space Spf R is called a formal affinoid space. A formal analytic space is a locally ringed

space which is locally isomorphic to a formal affinoid space.

(14.4.2) Definitions The reduction of an affinoid algebra R is the k-algcbra R = R%/R°°, where

R%:= [fe R/ifl<1) and R°®:=(fe R/Ifl<1).

The reduction S of $ := Spf R is Spec R. The reduction S of a formal analytic space S/K is the k-scheme

obtained by pasting the reductions of the formal affinoid subspaces of .

(14.4.3)  Let S/K be a formal analytic space. By functoriality, any point x on S (thought of as a morphism
Spf K' ——— S with X' a finite extension of K) gives rise to a closed point X on S. Thus, we obtain the
reduction map

rS—_.

It is shown in [Bosch 77, Manuscripta Math.] to be continucus and surjective on closed points.
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(14.5) Formal Analytic Spaces and Formal Schemes

(14.5.1)  Let S/K be a formal analytic space and O the subsheaf of @ g satisfying I'(U, &) = R® for any

formal affinoid subspace U := Spf R of S. Then the locally ringed space Sq := S, O g) is a flat formal

scheme (not necessarily topologically of finite type) and we have S = Sy By K)oy

{14.5.2) If§S = Spf R, is a covering of a formal analytic space § by formal affinoid subspaces, then one
1

can glue the S;" = Spm R; to get a rigid analytic space $™ (independent of the covering). By construction, if

Sq is finitely presented, we have §M = Sqr)k-

(14.5.3) Definition A formal analytic space $ is distinguished if, whenever Spf R is a formal affinoid
subspace of §, then R is a distinguished affinoid algebra. In this case, Sqy is a distinguished (14.3.2) formal

scheme,

(14.5.4) Let X/ be a distinguished formal scheme and X° the locally ringed space whose set of points is
the set of points of X, whose topology is the inverse image of the topology of ¥ under the specialization map
sp: X —» X and whose structural sheaf is the restriction of the structural sheafl of L. Then X%is a dis-

tinguished formal analytic space.

Proof.  Since the question is local, we may assume that X is affine, say X = Spf ,A. The point is to check
that X © has the right topology. A basis for this topology is given by the

sp'l(D(t)) = {x € Spm Ay /If(x)|= 1} with f € A and we have seen in (14.2.4) that A = A°[]

(14.5.5)  The functor § ——— S, and X — X° establish an equivalence between the category of
distinguished formal analytic spaces and distinguished formal schemes. Morcover, under this equivalence, we

have §*" = X . It also follows from (14.2.4) that if X is the special fibre of 3, then S = X.
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(14.6) Applications of Rigid Analytic Geometry to Formal Schemes

Using the equivalence of (14.5.5), one deduces the following theorems from the corresponding results in rigid

analytic gcometry.

(14.6.1) THEOREM Ifa proper flat formal scheme has geometrically reduced curves as fibres, its fibres

have the same (arithmetic} genus.
Proof.  Follows from Theorem 2.8 ¢) of [Bosch M.M. 7710

(14.6.2) THEOREM A proper flat formal scheme whose fibres are geometrically reduced curves is pro-

Jective.
Proof.  Follows from Théoréme 2 in Chapitre 7 of [Fresnel].d

(14.6.3) THEOREM A geometrically reduced projective scheme over K has, after a finite extension of

K, a flat formal model with geometrically reduced special fibre.

Proof.  Follows from Proposition 1.3 in [Bosch-Liitkebohmert I] (Using the main theorem of [Raynaud] or

[Mehiman]).00

(14.6.4) THEOREM [n a flat formal scheme with geometrically reduced fibres of pure dimension, the

tube of a point is connected.

Proof.  Follows from Satz 6.1 in [Bosch 77 Math. Ann. 77).0



108

REFERENCES

BERTHELOT, P. Géoméirie rigide et cohomologie des variétés algébriques de caractéristique p, in

Introduction aux cohomologies p-adiques, Bull. Soc. Math, Fr., Mémoire n? 23, (1986).

BERTHELOT, P. Cohomologie rigide et cohomologie rigide a support propre. To appear (19897?).

BOSCH, S. Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Rdume, Math, Ann. 229,

25-45 (1977).

BOSCH, S. Zur Kohomologietheorie rigid analitischer Riume, Manuscripta Math, 20, 1-27 (1977).

BOSCH, 8. ; GUNTZER, U. ; REMMERT, R. Non-Archimedean Analysis. A Systematic Approach

to Rigid Analytic Geometry, Springer (1984).

BOSCH, 8. ; LUTKEBOHMERT, W. Stable Reduction and Uniformization of Abelian Varieties, 1 and

II. Math. Ann. 270, 349-379 (1985), and Invent. Math, 78, 257-287 (1984)

DELIGNE, P, ; KATZ, N Groupes de monodromie en géométrie algébrique, SGA 7, Tome 1, Exposé

XIII, Lecture Notes 288, Springer (1973).

DELIGNE, P. ; MUMFORD, D. The irreducibility of the space of curves of given genus, Publ. Math.

THES 36 (1969).

ELKIK, R. Solution d’ équations & coefficients dans un anneau hensélien, Ann. Scient. Ec. Norm. Sup. 6,

n° 4, 553-604 (1973).



109

ETESSE, ).Y. Rationalité et valeurs de function L en cohomologie cristalline, to appear.

FALTINGS, G. p-Adic Hodge Theory,J. Amer, Math Soc. 1, no. 1, 255-299 (1988).

FONTAINE, J.-M. Sur certaines représentations du groupe de Galois d’ un corps local; Construction d’ un

anneau de Barsotti-Tate, Ann. of Math, 115, 3, 529-577 (1982).

FRESNEL, J. Géométrie analytique rigide, Cours de troisidme cycle, Bordeaux (1983).

GROTHENDIECK, A. Revétements étales et groupe fondamental, SGA 1, Exposé III, Lecture Notes

224, Springer (1971).

GROTHENDIECK, A. Groupes de monodromie en géoméirie algébrigue, SGA 7, Tome 1, Exposé

VII-IX, Lecture Notes 288, Springer (1973).

GROTHENDIECK, A. ; VERDIER, J.-L. Condition se finitude. Topos et sites fibrés. Applications
aux questions de passage a la limite in Théorie des topos et cohomologie étale des schémas, SGA 4, Tome
I1, Exposé VI, Lecture Notes 270, Springer (1972).

GRUSON, L. Théorie de Fredholm p-adique, Bull, Soc. math. France 94, 67-95 (1966)

KIEHL, R. Die de Rham Kohomologie algebraicher Manifaltigkeiten iiber einem bewerteten Kirper,

Publ. Math. THES 33 (1967).

KIEHL, R. Theorem A und Theorem B in nichtarchimedischen Funktionentheorie, Inv. Math, 2,

191-214 (1967).

KOPF, U. Uber eigentliche Familien algebraicher Varietdten iiber affinoider Réumen, Schriftenreihe Math,

Inst. Univ. Miinster, 2. Serie, Heft 7 (1974),



110

LE STUM, B. Cohomologie rigide et variélés abéliennes, Thése de troisiéme cycle, Rennes (1985) and

Note aux C. R, Acad. Sci. Paris, t. 303, Série 1, n® 20, (1986).

LIU, Q. Ouverts analytiques d’ une courbe algébrique en géométrie rigide, Proceedings of the conference on

p-adic analysis (Houthalen, 1986), 97-100, Vrje Univ. Brussel, Brussels (1986).

MEHLMAN, F. Ein Beweis fiir einen Satz von Raynaud iiber flache Homomorphismen affinoider Algebren.

Schriftenreihe Math. Inst. Univ. Miinster, 2. Serie, Heft 9 (1981).

MESSING, W. Sur les représentations p-adiques associées aux corps locaux, cours de troisigme cycle,

Rennes (1980).

MONSKY, P. ;WASHNITZER, G. Some Properties of Formal Schemes, notes from a seminar given

at Princeton in 63-64 (1964).
NAGATA, J. Embeddings of algebraic varieties. J. Math Kyoto Univ 2 (1962).
RAYNAUD, M. Variéiés abéliennes et géométrie rigide, Proc. Int. congr. Nice 1, 473-477 (1970).

RAYNAUD, M. Géométrie analytique rigide d’ aprés Tate, Kiehl, , . (Table ronde Anal, non archim.1972,

Paris), Bull. Soc. Math. Fr., Mémoire n® 39-40, 319-327 (1974).

VYERDIER, l.-L. Cohomologie dans les topos in Théorie des topos et cohomologie étale des schémas,

SGA 4, Tome II, Exposé V, Lecture Notes 270, Springer (1972).

Bemard Le Stum

School of Mathematics, University of Minnesota
127 Vincent Hall, 206 Church Street SE
Minneapolis, MN 55455 U.S.A.



