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Dans le premier chapitre, dédié aux développements limités, nous éviterons autant
que possible les notations issues de la logique ainsi que de la théorie des ensembles
afin de rendre le contenu plus accessible au risque d’étre parfois imprécis.

Dans le second chapitre consacré a ’algébre linéaire, nous ne pourrons faire ces
économies. Nous utiliserons de maniére plutot informelle les symboles = d’implication
et < d’équivalence. Nous utiliserons aussi parfois les quantificateurs V (« pour tous
les ») et 3 (« il existe un »), voire méme 3! (« il existe un unique »). Nous utiliserons
la notion d’ensemble et d’élément ainsi que la relation d’appartenance x € FE pour
indiquer que I’élément x est dans ’ensemble E. Il ne faudra pas confondre avec la
relation d’inclusion F' C E entre deux ensembles qui indique que tous les éléments
de 'ensemble F' sont aussi des éléments de ’ensemble F.

Un grand merci & Vincent Guirardel d’avoir bien voulu mettre toutes ses notes a
ma disposition.






1.1

Définition/propriétés

Définition 1.1.1 Soit f une fonction réelle d’une variable réelle. Un développement
limité a l'ordre n de f au voisinage de 0 est une égalité ¢

ou P(z) := ap + a1z + asx® + ... + a,x" est un polynéme de degré au plus n
appelé partie réguliere et

o(z") = x"e(x) avec }EIE)I(I) e(z) =0

est appelé terme d’erreur.

a. Pour plus de rigeur, on devrait écrire “ f(z) = P(z) mod o(z™)” car o(x™) est une notation
générique.

Exemple Nous montrerons que

1 1
ex:1+x+§m2+6x3+o(:v3)

est un développement limité de e® a I'ordre 3 au voisinage de 0.
En prenant par exemple z = 0, 1, on aura donc

1 1
60’1 =1 + 0; 1 + E(Oa 1)2 + 6(07 1)3 + erreur

=1+0,14+0,005+4 0,00017...+ erreur
=1,10517... + erreur.

La calculette nous donne bien %! = 1,10517. . ..
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FIGURE 1.1 — Développement limité de e*
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Remarques Si

f(x) = ap + a1z + azx® + ... + a, 2" + o(z"),

alors

1. lim, o f(2) = ao.

2. La tangente a la courbe d’équation y = f(x) en x = 0 a pour équation
Y = a1 + ag.

Exemple On a lim, ,pe® = € = 1 et la tangente & y = €* en 0 a pour équation
(fare un dessin)

y=1x+ 1.
Si P(x) est un polynome, on notera P(z)<j le tronqué de P(x) & 'ordre k : si
P(z):=ap+ a1z + ...+ a,z"
(et k <mn), alors
k

P(z)<p :=a0+arx+ ...+ apz”.

Par exemple, si P(z) =1+ + 32% 4 $2°, alors P(z)<p = 1 + 2 + 32°.



1.1 Définition/propriétés %

Proposition 1.1.2 Si
f() = P(x) + o(a")
est un développement limité a I'ordre n au voisinage de 0 et k < n, alors

f(@) = P(z)<k + o(a")

est un développement limité a 'ordre k.

Démonstration. On a

f(x) = ag + a1x + asx® + ...+ apa® + ap ™+ A+ a4 2"e(2)
avec lim,_,o €(x) = 0. On a alors

f(z) =ap + a1z + asx® + ...+ aqpa® + 2F (g 4+ .. F apa"TF 4 2" Re(2))
et lim, so(aps1m + ... + a2 % + 2" Fe(x)) = 0. [ |

Exemple Si on sait déja que

1 1
e’ = 1+$+§x2+6$3+0(x3),

alors

1
e’ = 1—|—x+§x2+0(a¢2).

Proposition 1.1.3 Un développement limité de f a l'ordre n au voisinage de 0 est
unique (s'il existe).

Démonstration. On suppose que
f(x) =ag + a1w + axr® + ... + a,2™ + 2"e()

avec lim, ¢ €(x) = 0. On voit déja que ag = lim,_,o f(x) est uniquement déterminé
par f. De plus, si on pose

o) = 100

alors
9(z) = a; + asx + azz® + ...+ a2+ 2" ().
Par récurrence sur n, aq, ..., a, sont aussi déterminé par ¢ et donc par f. |
9 ? 9

Exemple S’il existe, le développement limité est unique, mais il n’existe pas tou-
jours :
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1. La fonction f(x) = |z| n’a pas de développement limité au voisinage de 0. Il

faudrait que a; = 1 lorsque x > 0 mais il faudrait aussi que a; = —1 lorsque
x < 0. Or a; est une constante!

. La fonction f(z) = zsin(1/xz) n’a pas de développement limité au voisinage de

0 (ni & droite, ni & gauche). Sinon, on aurait a; = lim;, . sin(t) mais cette
limite n’existe pas.

Proposition 1.1.4 1. Si

. Si

f(x)=P(x)+o(z") et g(x)=Q(x)+ o(z")

sont des développement limités a I’ordre n au voisinage de 0, alors

(f+9)(x) = (P+Q)(x) + o(z")

est un développement limité de f + g a l'ordre n au voisinage de 0.

f(z) = P(z) + o(z")

est un développement limité a l'ordre n au voisinage de 0 et ¢ est une
constante, alors

(cf)(x) = (cP)(x) + o(z")

est un développement limité de Af a 'ordre n au voisinage de 0.

Démonstration. On écrit

et

f(z) =ap+ a1z + asx® + ...+ ayz" + x"e(x)

g(z) = by + bz + box® + ...+ by 2" + 2"n(x)

avec lim, o €(x) = lim,_,on(z) = 0. On aura donc

(f+9)(z) = (ag+bo) + (a1 +b1)x + ... + (an + by)z" + 2" (e(x) + n(x))

avec lim, _o(e(x) + n(z)) =0 et

cf(x) = cag + carx + ... + capx™ + x"(ce(x))

avec lim, o (e(z) + n(z)) = lim, o (ce(z)) = 0. |

Remarques 1. Si f(z) = P(x)+o(z™) et ¢ est une constante, alors on aura aussi

f(cx) = P(cz) 4+ o(z").

En effet, si lim,_,o€e(z) = 0, alors lim,_,q c"€e(cx) = 0.
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2. Si f(z) = P(x) + o(2") et k est un entier, alors
f(a®) = P(a") + o(a™).
En effet, si lim,_,€(z) = 0, alors lim,_, €(z¥) = 0.

T

Exemples 1. En prenant f(x) = e” et ¢ = —1 dans la remarque, on trouve

(remplacer x par —z)

1 1
e'=1—x+ §{B2 - 6$3 + o(z?).

2. En prenant f(x) = e™* et ¢ = —1 dans la proposition, on trouve (multiplier
tout par —1)

1 1
—e " =—1+z— §x2 + axS + o(z?).

3. En ajoutant a e*, on trouve

1
e te " =2+ +o(z®) et e —e T =21+ gw?’ + o(z?)

4. En divisant par 2 (c’est a dire en muliptliant par 1/2), on trouve

1 1
ch(z) =1+ 5.7:2 +o(z®) et sh(z)=x+ 6:153 + o(z?).

5. On a (en multipliant e” par e)

(& (&
e =ee” =e+ex+ 5332 + gx?’ + o(z?).

6. On a aussi (en remplacant x par z?)
1 1
e =1+a2%+ §x4 + —6956 + o(z?).

Rappel 1.1.5 Une fonction est paire (resp. impaire) si f(—z) = f(z) (resp.
f(=x) = —f(x). Par exemple :

e 2% cos(x) et ch(z) sont paires,
e 13 sin(z) et sh(z) sont impaires,
e ¢” n’est ni paire ni impaire.

Un polynome est pair (resp. impair) si et seulement si tous ses coefficients sont
de degré pair (resp. impair). Par exemple :
1,2 :
e 1 — Sx” est pair,
1.3 : :
® r — zx°, est Impailr,
o 1+ + 2% 4+ 2% n'est ni pair ni impair.
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Proposition 1.1.6 La partie réguliére d’une fonction paire (resp. impaire) est un
polynéme pair (resp. impair).

Démonstration. On sait que si f(z) = P(z) + o(z"), alors

f(=x) = P(=x) +o(z") et — f(x)=—P(x)+o(z").

Si f est paire, alors f(—z) = f(x) et donc, par unicité, P(—x) = P(z) si bien que
P est pair. De méme, si f est impaire, alors f(—x) = —f(x) et, par unicité encore,
P(—z) = —P(z) si bien que P set impaire. |

1.2 Formule de Taylor-Young

Rappel 1.2.1 Si f est n fois dérivable, on désigne par f’ la dérivée de f, par f” la
dérivée de f', par f©® la dérivée de f”, et plus généralement par f la n-iéme
dérivée de f. Par exemple,
o Avec f(z) =€, ona f'(z) =, f"(x) =€, ..., f(z) = ¢, ...
o Avec f(x ) = cos(x), on a f'(x) = —sin(z), f"(z) = —cos(z), fO(z) =
sin(z), f®(z) = cos(x), fO)(x) = —sin(z),.. .,
o Avec f(z) = (14+z)* ona f'(x) = a(l+z)* 1, f/(z) = a(a—1)(1+2)*2, ...

fY@)=ala—1)(a—2)... (a —n+1)(1+2)*™" ...
Rappel 1.2.2 Si n est un entier naturel, sa factorielle est
nl=nxm—-1)xn—-2)x...

Par exemple, 5! =5 x 4 x 3 x 2 = 120. On pose aussi 1! = et 0! = 1.

Théoreme 1.2.3 — Formule de Taylor-Young ®. Si f est (continue et) n fois dérivable
en 0, alors

£(&) = F0) + F/(0) + 5 F(O0) + ...+ = [ (O0)a" + ofa").

a. Aussi appelée formule de Maclaurin

Démonstration. On utilise la proposition 1.2.4 plus bas et on procéde par récurrence
(le cas n = 0 étant immédiat) en intégrant

f'(x) = f(0) + f(0)x + %f@ (0)a? + ...+ . 1)!f(”)(0)w” +o(z"). W
Exemples 1. Avec f(z) =€, on a

FO) =1f0)=1,....f"(0) =1.
On en déduit que

T 14 +12+ +1”+(")
e = X —T —X o\ .
2 n!
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2. Avec f(x) = cos(z), on a

F(0) =1, f(0) =0, f"(0) = =1, f(0) = 0, fV(0) = 1,...

ou encore f9(0) = (—1)* et f**1(0) = 0. On en déduit que

cos(z) =1 - L + LI + (_1)k$2’“ + o(z?* 1)
2" T ogt T T @k :

On montre de méme que

SiH(iIZ‘) - r— 11.3 + LHZ'E) o 4 ﬂx2k+l + O(x2k+2)
67 1200 7 (2k+1)! '

3. Avec f(x) =(14+x)* on a

ala o
l+x)*=14+ar+ —=x +...—|—(n)x"—|—0(x").

En posant o = —1, on obtient

1

1+x:1—x—i—x2—x3+...+(—1)”x”+0(ac”).

En remplacant x par —x, on trouve

1
1—=x

=l4+z+22+2°+... +2" +o(z")|

En prenant o = %, on trouve

1 1 1/2
\/1+x—1+§x—§x2+...+(/):L‘"—l—o(x").
n

Proposition 1.2.4 Si
f(z) =ap+ a1z + asz? + ... + a,z" + o(z™)

et si F' est une primitive de f (c’est a dire que f = F’), alors

1 1
F(CE)ZF(O)—i-aox—l—§a1$2+§a3x3+...—|—n+1

anxn-i-l + O(ZL‘"+1).

Démonstration. On rappelle d’abord que

1

k+1

/0 " F(e)de = F(z) — F(0) et / Cehde =
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Par hypotheése, on a

F&) = a0+ a1+ ad® + ...+ a,&" + £"e(§)

avec limg_,0€(§) = 0. On intégre pour trouver

1 1
F(z) — F(0) = apxr + §a1m2 +...+ {0 + 2"n(z).

avec

n(r) = - /0 Cerle(e)a.

x?’L

Il reste a s’assurer que lim,_,on(z) = 0. Cela résulte de la majoration

= Cetag

Exemple Puisque la dérivée de In(1 + x) est

In(a)] < x stip |e(€)] = = siip [e(£)]. n
0 n o

1
1+=z

=l—-a+2* -2+ ... +(=1)"z" + o(z"),

on a

1 1 1
In(l+z)=x— Exz + 5933 +o (=DM 2™ 4 o(a™) |
n

1.3 Produit et composition

Proposition 1.3.1 Si
f(x) = P(z) +o(z") et g(z) =Q(z)+ o(z")

sont des développement limités & I'ordre n au voisinage de 0, alors

(f9)(z) = (PQ)(x)<n + o(z")

est un développement limité de fg a I’ordre n au voisinage de 0.

Démonstration. On écrit
f(z) = Px)+a"e(z), g(z) =Q(z)+a"n(z), (PQ)(z)=(PQ)<n(z)+z"A(z)
avec lim, o e(z) = limy_o7(x) = lim, 40 A(z) = 0. On aura donc
(f9)(@) = (PQ)(@)<n + 2" (A(@) + €(2)Q(x) + n(x) P(x) + 2"e(x)n(x))
et clairement

lim(A(z) + (2)Q(x) + n(2) P(z) + " e(2)n(x)) = 0. n

x—0
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Exemple Déterminer ! le développement limité de f(z) = In(1 + x) cos(z) en 0 a
I'ordre 3.

On a
Lo 13 3 L, 3
ln(1+x):x—§x —|—§x +o(z°) et cos(x)zl—ix + o(z°).
On calcule

f(z) =In(1 + ) cos(x)
= (1’ - %xz + %aﬁ’) (1 — %gﬂ) + o(2?)

1 1 1

=z — §x3 — 5262 + gxg + o(z%)
1 1

=z — 59[:2 — 6$3 + o(z?).

Proposition 1.3.2 Si
f(u) = P(u) +o(u™) et wu(zr)=Q(z)+o(z")

sont des développement limités a 'ordre n > 1 au voisinage de 0 et lim,_,o u(z) = 0,
alors

fu(z)) = P(Q(z))<n + o(2")

est un développement limité de a ’ordre n au voisinage de 0.

Démonstration. Nos hypothéses sur u impliquent ’existence d’un développement
limité a 'ordre 1 de la forme

u(z) =04 bx +aA(zx) =z(b+ A(z)) avec ylcliI(lJ A(z) =0.

D’autre part, notre hypothése sur f nous dit que f(u) = P(u) + u"e(u) avec
lim, 0 €(u) = 0. On a donc

fu(@)) = P(u(x)) + u(z)"e(u(z))) = P(u(z)) + 2" (b + A(x))"e(u(x)))
et

lim (b + A(x))"e(u(z))) = 0.

x—0

On peut donc dans la suite remplacer f par P (et ajouter ensuite le terme correcteur).
En utilisant la proposition 1.1.4, on peut méme supposer que f(u) = P(u) = uF
(puisque P et une somme de multiples de puissances) et il s’agit donc de montrer que

u(@)" = Q(2)%, + o(z").

1. On pourrait aussi utiliser la formule de Taylor-Young mais ce serait trop long.
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Oron a
u(z) = Qx) +a"n(x) avec limn(r) =0
et donc
u(;,;)k = (Qx) + 2" n(x))"
Q)" + kQ(z)* e n(x) + ... + (a"n(x))*
= Q(2)" + 2"(kQ(z)* () + ... + 2" Vn(x)*)

et lim,_,o(kQ(z)* n(x) + ... + 2"*Dy(2)k) =

Exemples 1. Déterminer le développement
Onae'*=1+u+ %UQ + %ug + o(u?) et sin(x) = x — %x:g
alors

; 1 1
sin(z) _ 1 ;| L
e + (x 6x ) + 5
1 1 1
=14+a— -3+ + 2%+
6 2 6
1
=1l+z+ 5352 + o(z?).

2. Déterminer le développement limité de e
On remarque que

}:ILI(I)COS(JI) =1#0.

On procede alors comme suit. On a

1
e'=14+u+ §u2 +o(u®) et cos(
et donc
1 1
cos(z)—1 __ 1 o2 -
e + ( 2:76 ) + 5
L 2
=1— =2+ o(z?)
2
On en déduit que
cos(z) __ _ cos(z)—1 __ _ ) 2
e =ee =e—3T + o(z?).

. Déterminer le développement limité de
On a

1
1+u

%)

=1—u+u®+o(u

1 2
(-5 +

cos(

0.

limité de e5™®) en 0 & Pordre 3.

+ o(2%). On calcule

1

6

o(z*)

) en 0 & lordre 2

()enOalordreél
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1.4 Applications

17

et

(vu comme fonction de z?). On calcule alors

1 1
cos(z) 1+ (cos(x) —1)

1 1

=1+ 51’2 - ﬂaf + Zx‘l + o(z?)
5

=1+ 21’2 + ﬂa:‘l + o(z?)

On a
tan(z) = sin(x)
cos(x)
()% —
= sin(x
cos(x)
1
— (ac - 6953 + mﬁ) <1 + §x2 + ﬂx‘l) + o(2°)
:x—lxg—l— L 5+1x3 2° + —° + o(2”)
6 120 2 12 24
2
=+ §x3 + Ex5 + o)
car
1+1 -14+3 1 1 1+5 1-10+25
_— —_ = = — e —_— _—_ —_—-mmn =
6 2 6 3 120 12 24 120
Applications

T _ esin(w)

Exemple Calculer im ———.
=0 x —sinx
On sait que

1 1
e =1+x+ 2>+ ~2° + o(z?)
2 6
et on a déja calculé
. 1
@ =1 pg 4 5.%2 + o(z?).
On en déduit que

. 1
e — 6sm(m) — 6x3 + O(ZL’3).

2

15



18 Chapitre 1. Développements limités

D’autre part, on sait que sin(z) = z — g2® + o(z?) si bien que

1
r —sinx = éx?’ + o(z?).

On en déduit que

e Lt o(1)

T _ esin(@) _ t2® + o(a?) _ s
r—sinz % +o(x?)  :40(1)

=1

oo -

(on rappelle que o(1) désigne une fonction qui tend vers 0 quand z tend vers 0).

Rappel 1.4.1 Regle de I’Hopital : si u et v sont dérivables et

lim u(z) = lim v(z) =0,

T—TQ Tr—xTQ
alors
!
lim w() =/ = lim (z) =/
T—T0 U’(ZE) T—T0 U($)
—1
Exemple Calculer lim cos(:vz

x—0 €x
1. Avec larégle de 'Hopital : on a (en vérifiant bien a chaque fois que le numérateur
et le dénominateur tendent bien vers 0)

lim cos(z) — 1 _ lim sin(z) i = cos(x) _ 1
x—0 172 x—0 2;13 x—0 2 2
2. Avec les développements limités
cos(z) —1  —1a? + o(a?) 1 1
- == +o(l) — —=.
x? x? 2 +oll) 2

Remarque Si
f(z) = ap + a1z + apz™ + o(z") avec n>2 et a, #0,

alors la tangente en z = 0 & la courbe d’équation y = f(x) a pour equation
Yy = a1x + ag et la position de la courbe par rapport a la tangente est donnée par le
tableau ci-dessous? (faire un dessin) :

n pair n impair
a, >0 | Dessus | Dessous/dessus
a, < 0 | Dessous | Dessus/dessous

De plus, on a un minimum local si a; = 0, n est pair et a,, > 0 (faire un dessin). On
a un mazimum local si a; = 0, n pair et a, < 0 (faire un dessin).

2. Quand n est impair, on dit que 0 est un point d’inflexion.
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Exemples 1. Déterminer I’équation de la tangente en z = 0 a la courbe d’équa-
tion y = sin(x) ainsi que la position de la courbe par rapport a sa tangente ?

On a sin(z) = © — g2 + o(2®) si bien que la tangente a pour équation y = =

et la courbe passe au dessus puis au dessous de la tangente (faire un dessin).
2. Déterminer I’équation de la tangente en x = 0 & la courbe d’équation y = cos(z)

ainsi que la position de la courbe par rapport & sa tangente ?

On a cos(z) = 1 — 222 + o(2?) si bien que la tangente (horizontale) a pour

équation y = 1 et la courbe est en dessous de la tangente. C’est un maximum

local (faire un dessin).

Remarque Tous les résultats de ce chapitre ont un analogue au voisinage de a # 0 :
il sufit de poser h =  — a (ou de maniére équivalente x = a + h) et remplacer = par
h. En effet, z est au voisinage de a si et seulement si h est au voisinage de 0.

Exemples 1. Déterminer la position de la courbe d’équation y = e* par rapport
a sa tangente lorsque z =17

On pose x =1+ h. On a déja vu que
e =cteh+ ghQ + o(h?).
On en déduit que la tangente & pour équation
y=eh+e=clx—1)+e=ex
et que la courbe est au dessus de la tangente.
2. On peut aussi écrire la formule de Taylor-Young au voisinage de a # 0 :

L (a)( — a)”

n!

f(x) =f(a) + F/(a)(x — @) + 5 f"(a)(x — )’ + ...+

+ (z —a)"e(x) avec lime(z)=0.
T—a
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1.5 Exercices (6 janvier 2026)

On pourra utiliser la notion o ou la notaion € au choix.

Exercice 1.1 Déterminer le développement limité au voisinage de 0 de

1. 2* — 223 + 522 — 3 a lordre 2, 2. —24x% 4+ 13z + 7 a l'ordre 4,
3.sin(z) a l'ordre 3, 4.sin(x) a lordre 4,

5. —1In(1+ z) a l'ordre 3, 6.In(1 — x) a Pordre 3,
7.2cos(x) a l'ordre 3, 8. cos(2zx) a l'ordre 3,

9. /1 + 3z a l'ordre 2, 10. v/1 + 22 & l'ordre 4.
Exercice 1.2 Déterminer le développement limité au voisinage de 0 de

1. sin(2x) — 2 cos(x) a lordre 4, 2.(z + 2%)? + cos(z) a Pordre 3,
In(1 + z)

3.v1+2x — /1 + 3z a lordre 2, 4. a l'ordre 3.

X

de
1. In(1 + x) cos(x), 2. (1 + 2?%) cos(z), 3. e%sin(x),
4. cos?(x), 5.e¢* In(1 + z).

B) Déterminer le développement limité a 'ordre 2 au voisinage de 0 de
] e” sin(z) 5 e In(1 + x)

i €T

Exercice 1.4 Déterminer le développement limité a 1’ordre 2 au voisinage de 0 de

1 3

1 2. 3../2
1+ 3z r_2 T

4. v/2 + 3z, 5.1n(5 + 3x), 6. 32,

‘ Exercice 1.3 A) Déterminer le développement limité a 'ordre 3 au voisinage de 0

Exercice 1.5 Déterminer le développement limité a ’ordre 3 au voisinage de 0 de
L. sin(In(1 + z)), 2. 1In(1 + sin(2x)).

Exercice 1.6 Déterminer le développement limité a 1'ordre 2 au voisinage de 0 de
1. In(cos(z)), 2. e,

Vet + cos(x), 4.1n (% + Sin(x)).

x+3 e’ 1
9. , 3.~
x4 2 cos(z) 1 — sin(x)
In(1 + 2x)

Vit+ar - sin(2x)

I

| Exercice 1.7 Déterminer le développement limité a 1'ordre 2 au voisinage de 0 de
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2]

Exercice 1.8 Calculer
In(1+ x)

1. 1i

230 sin(x)

. ef—=1—x
s alslgtl) 2+ 28
5 i sin(2x)

o (V14 2z —1)zsin(x)

20 tan(z) — ’
6. lim sin(x) — tan(x)'
z—0 2 + g3

Exercice 1.9 Dans chacun des cas suivants, déterminer une équation de la tangente
en z = 0 a la courbe d’équation y = f(z) ainsi que la position relative de la courbe
par rapport a sa tangente. Dire s’il s’agit d’un minimum ou d’un maximum local.

1. f(x) =sin(2z) — 2 cos(x),
2. f(x) =In(l+ )+ €*,

3. f(z) = +/cos(z).

Exercice 1.10 Dans chacun des cas suivant, déterminer ’allure du graphe de la

fonction f au voisinage de x = 0.

1. f(x) = =1+ 4z — 32% + 223 + o(2?),
2. f(x) =1—2%+22% + o(x?),

3. f(x) = —x — 23+ o(2?),

4. f(z) = 2% — 2> + o(z?),

5. f(x) =1—2x + 2% — 23 + o(a?),

6. f(x)

7. f(z)

8. f(x)

y ’ ,xa_QZ, \a3
bl A ‘ b2 N b3

cl/”l ,7_C_2_/7 \-\\03






2.1

Vecteurs

Définition 2.1.1 Un vecteur (colonne) de longueur n est une liste de n nombres

appelés composantes de 1.

a. C’est la liste qui compte, les crochets sont 14 comme délimiteurs.

On désigne par R™ leur ensemble et on écrira donc 4 € R™.

Exemples 1. Lorsque n = 1, un vecteur est tout simplement un nombre (réel)
et on note leur ensemble R.

2. Lorsque n = 2, un vecteur est un couple de nombres

- Uu 2 3 1
u.—[U}ER, par exemple [2} ou {_1}

(faire un dessin).

Remarque Pour des raisons de commodité, un vecteur (colonne) s’écrit aussi sous
la forme @ = (u1,usg, ..., u,). On peut d’ailleurs aussi considérer la notion équivalente
de vecteur ligne [ a; Qg ... Gy ] de longueur n et tout ce qui suit s’applique
mutatis mutandis.
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Définition 2.1.2 La somme des vecteurs @, 7 € R™ est le vecteur @ + ¢ € R™ défini
par

Uy U1 U + vp
. Us . Uy L U + V2
U= , U= = U+UvU:=

Un, Un Up, + Up

Exemple Dans R?, si @ := { g } et U := [ _i ], alors 4 + U = [ 411 } (faire un

dessin).

Définition 2.1.3 Le produit d’'un vecteur @ € R™ par un nombre ¢ est le vecteur
tu € R™ défini par

Uy tul
. Us tug
U= = tu:i=| .
Unp, tun
1 — 1
Exemple Dans R?, si @ := ;’ , alors 4u = [ 182 1, —2u = { Z;l } et 511 =

3/2 . :

[ { ] (faire un dessin).
Définition 2.1.4 On dit que tuy + totls + ... + tui,, € R™ est la combinaison
linéaire de uy, s, ..., U, € R™ avec coefficients ti,ta,...,t,, € R.

Exemple 1. tu + st est la combinaison linéaire de U et v avec coefficients t et s.

2. Plus concrétement, dans R?, si @ := { ;) } et U:= [ _} ], alors

2ﬁ+35=2{§}+3{—”:{ﬂ

est la combinaison linéaire de @ et ¢ avec coefficients 2 et 3 (faire un dessin).

On écrira
0 U1 —U1
. 0 Us —U2
0:= et — =
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Proposition 2.1.5 R™ est un espace vectoriel : on a toujours :

l. U+ 0 =v+4,
2. (W+0)+ W =u+ (V+ W),
3. 4+ 0=1,
4. i@+ (=) =0,
5. 1u = 1,
6. t(@ + 7) = td + t7,
7. (t+ s)u = td + s,
8. (ts)u = t(stu)
Démonstration. Laissé en exercice. [ |

Remarques 1. Un espace vectoriel est un ensemble muni d’une addition et
d’une multiplication par les constantes qui satisfait les huit propriétés de la
proposition (ce qui inclut l'existence de 1’élément nul ainsi que de 'opposé de
n’importe quel élément).

On écrit tout simplement @ + U + w sans les parentheéses.

On écrit @ — U := 4 + (—7).

AR R

Simplification : on a toujours @ + W = v+ W < U = v.

Simplification : on a toujours (exercice

Définition 2.1.6 Un élément de R™ s’appelle aussi un point et on dit alors coor-
données au lieu de composantes. Si P et () sont deux points de R", le vecteur

Pﬁ € R" est défini par

a b by —a
P = .2 et Q:= ? = F@ = ? ?
A, bn bn — Gn

La translation de vecteur u € R™ associe au point P € R" le point P + u € R"

défini par
Uy ay ap + uy
. Us a . ag + Ug
U= . et P:.= = P+4+u:= .
Un, G, ap + Up

Remarques 1. On a donc @ = @ < @ = P + 4 (faire un dessin).
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2. En particulier, en considérant le point

onai=0P&P=0 + 1 (on identifie un point avec 'extrémité du vecteur
placé a l'origine).

3. Contrairement aux vecteurs, on ne peut pas ajouter des points entre eux ou les
multiplier par des constantes.

Exemple Dans R?,
1. si P:= [ ? ] et Q := { Z ], alors ]@ = { ;) } (faire un dessin),

2

2. siP::{1

} et 4= { zl)) ], alors P + 4 = { i ] (faire un dessin).

2.2 Droites et plans

Définition 2.2.1 Une équation cartésienne plane est une équation de la forme
ax + by = ¢ avec a, b, ¢ non tous nuls. La droite associée est

D::Hﬂ ERQ/aa:ery:c}CRQ.

Exemple La droite d’équation 2z — 3y = 6 passe par les points P := [ _(2) ] et

2
Q = { g } (faire un dessin). Attention, 1’équation gx —y = 2 définit la méme droite!

Définition 2.2.2 Une représentation linéaire paramétrique plane est un systéme de
la forme

r=at+f
y=vt+0

avec «, vy non tous nuls. La droite associée est

D::{[?ﬁig] :tER}CR2.

De maniére équivalente, on a

D:={P+tu :t€R} avec Pz[?] etﬁ:[?;]

On dit alors que (P, %) est un repére pour D ou plus informellement, que D est la
droite passant par P et dirigée par .
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=3t .. |
Exemple { =2t —2 qui s’écrit aussi [ Y } [ } +1 [ } (faire un dessin).
TRES

C’est donc la droite passant par P := [ _(2) ] et dirigée par [ 9 } . Attention,

x=3t/2+3

la représentation { Y=t par exemple définit la méme droite !

Remarque 1. (Paramétrer) On peut passer d’une équation cartésienne a une
représentation paramétrique comme suit :

_ 3y — _3
2$_3y:6<:>{2$ 3y =6 @{x 3t +3
y=1t y = 1.

2. (Eliminer) On peut passer d’une équation paramétrique a une équation carté-
sienne comme suit :

{x:3t é{x=3(y/2+1) v—Sy—3

y=2t—2 t=y/2+1 2

3. On a une situation analogue dans 'espace (faire un dessin) :

ESPACE Plan Droite

ar +by+cz=d
{ adrx+by+cdz=d
Paramétrique P+ tu + sv P +tu

Cartésien ar +by+cz=d

On remarquera la propriété fondamentale suivante : « nombre d’équations » +
« nombre de paramétres » = « dimension de ’espace ».

Exemples 1. Déterminer! le plan P d’équation z +2y +32=17 On a

x
y | eEPer+2y+32=1
z
r=1-—2t—3s
S y=t
Z2=35
T 1 -2 -3
Sly | =101+t 1| +s 0
z 0 0 1
1 —2
C’est donc le plan passant par P := | 0 | et dirigé par @ := 1 | et par
0 0
-3
U= 0
1

1. Comprendre « Paramétrer ».
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1
2. Déterminer une équation du plan P passant par P := | 2 | et dirigé par
3
1 -1
u:=| —1 | et v:= 217
1 -3
On a
T 1 —1
y | ePe +t] =1 | +s 2
z 1 -3

r=1+1t—s
y=2—1t+2s
z=3+1t—3s
t=v+s—-1
y=2—(r+s—1)+2s
z=3+(x+s—1)—3s
y=3—x+s
z=24+x—2s
s=x+y—3
z=2+x—2(x+y—3)

S2z=8—r—2

S+ 2y+z2=28.

=

2.3 Systémes linéaires

Définition 2.3.1 Un systéme linéaire® est une liste de n équations linéaires & m

mconnues :

111 + a9 + ... + ATy = bl
a1 + 22%2 + . .. + Ao Ty = by

121 + ApaTo + . .. + QT = by,
Le systeme homogéne associé est
a;nry +aprs+ ...+ QT = 0
g a91T1 + A92xo + ... + AomTy = 0
0: .

Ap1T1 + Qoo + ... + Apm®m = 0.

Si S =5, on dit que le systéme est homogéne.

a. On devrait dire « systéme d’équations linéaires ».

On dispose de la notation vectorielle
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11 a2 Q1m by

21 a22 a21 by
S:xl . +$2 . ++xm . = . 9

an1 [02%%)) Anm bn

ou encore la notation en ligne

Siiﬂlﬁl—l-l'gﬁg—i-...—FQ?mﬁm:b

avec
a11 a12 A1m by
. a21 . 22 . 21 - by
uy = , Uy = ey Up = et b:=
an1 an2 Anm bn

On préférera en pratique la notation matricielle :

Définition 2.3.2 Une matrice a n lignes et m colonnes (on dira aussi n X m) est
un tableau * de nombres

a;pr a2 ... QAim

21 A29 ... QA9m
A=

ap1 Ap2 ... Apm

appelés coefficients. Lorsque m = n, on dit que A est une matrice carrée de taille
n.

a. Ici encore, ce sont les nombres qui comptent, les crochets étant 14 comme délimiteurs.
Remarque On peut voir un vecteur (Colonne) comme une matrice & une seule

colonne et un vecteur ligne comme une matrice & une seule ligne. De méme on peut
voir - et on verra - une matrice comme une suite horizontale de vecteurs (colonnes)

Az[ul Uy ... um]
ou comme une suite verticale de vecteurs lignes.

On écrira alors notre systéme sous forme stylisée

a;pr a2 ... QAim T b1
21 A29 ... QA9m To bg

S = ,
Al Qp2 .. Qpm T b,

2. Cette notation sera justifiée plus tard.
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ou encore en notation compacte

S AE=10b
T bl
. T2 - ba . .
avec T 1= ) et b:= _|. On dit que A est la matrice du systéme et que
Ton b,
ayy @iz ... Qum b
. . o = 21 A22 ... QA9m bg
[ A b} = [ Uy Us Uy b | = . )
apn1 Apn2 ... Apm bn

est la matrice augmentée.

Exemple On considére le systéme

C’est un systéme linéaire a deux équations et trois inconnues et le systéme homogeéne
associé est

SO:{:U—#y:O ‘

r—2z2=0
En notation vectorielle, on a

so[ ]3]+ [4]-1]

et en notation matricielle
x
11 0 1
slie A=l
z
La matrice augmentée est
11 01
10 —1 1]

On désignera par Sol(S) C R™ I'ensemble des solutions du systéme linéaire S.
Par définition, on a donc

S:ZeSol(S) et Sy:ieSol(S).
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Proposition 2.3.3 1. Sol(Sy) # 0 et si T, 5 € Sol(Sy), alors tZ + sy € Sol(Sp).
2. 8i P € Sol(S), alors P+ & € Sol(S) & & € Sol(S).

La premiére assertion dit que toute combinaison linéaire de solutions de Sy est
encore solution (de Sp). La seconde dit que « les solutions de S s’obtiennent en
ajoutant la solution générale de Sy & une solution particuliére de S ».

Démonstration. On utilise la notation vectorielle. Pour la premiére assertion, on
remarque d’abord que 0 € Sol(Sp). On suppose ensuite que

$1ﬁ1+$2ﬁ2+...+$mﬁm :6 et ylﬁl—l—ygﬁg—i—...—i—ymﬁm :6
On multiplie respectivement par ¢ et s, on additionne et on factorise pour obtenir
(txy + sy1)ty + (tzg + sya)ta + ... + (tTm + SYm ) U = 0.

Pour la seconde assertion, on procéde de méme et on suppose donc que 'on a une
solution particuliére

ClUy + Colis + ...+ Cplly, = b.
Maintenant, dire que ¥ € Sy signifie que
LUy + XUy + ... + XUy, = 0.
En additionnant et en factorisant, c’est équivalent a
(1 + 21)i1 + (o + T2)To 4 - . . + (Co + Ty )T = b. |

Exemple On considére le systéme

S { rry=1
r—z=1
On cherche d’abord une solution « évidente » :
1
0
0

On résout ensuite le systéme homogéne

vty =0 r=t x 1
SO:{ =" o y=—t < |y |=t| -1
r—2z2=0
z=1 z 1
On en déduit que
1 1 t+1
Sol(S) = O|+t| -1 |:teR} = —t |:teR
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2.4 Méthode du pivot

Définition 2.4.1 1. Dans une matrice, le pivot d’une ligne est le premier coeffi-
cient non nul.

2. Une matrice est échelonnée® si « le pivot se décale vers la droite ligne par
ligne ».

3. Le rang d’une matrice échelonnée est le nombre de pivots.

a. Il existe aussi une notion de matrice échelonnée réduite que nous ne verrons pas ici.

Exemple Voici une matrice échelonnée (de rang 2) et deux matrices non-échelonnées :

012 3 4 000 5 6 00 000
0005 6], 012 3 4], 01 2 3 4
00000 00 000 000 5 6

Définition 2.4.2 Un systéme linéaire

S:AT=0b
est dit échelonné si la matrice augmentée [A l;] est échelonnée. Le rang du systéeme
S est alors le rang de la matrice A. S’il y a un pivot sur la jéme colonne de A, on
dit que x; est une wvariable pivot. Sinon, on dit que x; est une variable libre.

Exemples 1. Le systéme a 3 équations et 3 inconnues

2v+y+2=95
S —8y—2z=-12
z=2

est échelonné de rang 3 (sans variable libre). La troisiéme équation fournit
z = 2. On remplace dans la seconde qui s’écrit —8y —4 = —12 et fournit y = 1.
On remplace dans la premiére qui s’écrit 2¢ + 1 + 2 =5 qui fournit z = 1. Il
existe donc une unique solution, c¢’est le point

1| eR

2. Le systeme a 4 équations et 5 inconnues

1L'1+$2+£L'3+I’4+1L’5:O
1‘3—275:0

204 + x5 =1

0=0

S

est échelonné de rang 3 avec deux variables libres x5 et x5. On pose t := x5
et s := x5. On remplace dans la troisieme équation pour trouver 2z, +s =1
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et donc x4 = % — %s. On remplace dans la seconde pour trouver r3 — s =0 et

donc x3 = s. Enfin, on remplace dans la premiére pour trouver

+t—|——|—11+—0t —1t3
1 s 5 25 s = et x1 = 5 23.

En écriture vectorielle, notre systéme est donc équivalent a

T —3—t—3s -3 -1 —4
T3 | = s = 0]+t 0] +s 1
v E- ks : 0| |-
Ts s 0 0 1

L’ensemble Sol(S) est donc le plan dans R® passant par P et dirigé par @ et ¢
avec

i)
I
oI~ O ONI-
Sl
I
S OO =
@
—+
<y
I
— = = O oW

Lemme 2.4.3 Soit S un systéme linéaire échelonné a n équations et m inconnues.

1. S’il y a un pivot sur la derniére colonne de la matrice augmentée, alors le
systéme n’a pas de solution,

2. sinon, les solutions s’écrivent de maniére unique
P+ t10) 4+ tot + - - - + tauy

avec P, Uy, 7,,...,U; € R™ fixés (mais pas uniques) ou d est le nombre de
variables libres.

Démonstration. S’il y a un pivot p sur la derniére colonne, alors la derniére ligne
non nulle s’écrit

Ox1+0x2++0mm:p,

ce qui est impossible.

On suppose dorénavant que ce n’est pas le cas. Les variables libres x; peuvent
prendre n’importe quelle valeur ¢4, ...,t;. On procéde alors en remontant comme
suit. Si z,, est libre, alors x,, = t4. Sinon, c’est une variable pivot et la derniére ligne
non nulle s’écrit a, ,,,z,,, = b, si bien que

br

ar,m

T = Cp 1=

On passe ensuite & z,,,—1, etc. La ligne correspondant a x; s’écrira

Qi jTj + Q1T+ ot AT, = b;
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avec a;; 7 0. On aura donc
b; A 541 Aim

- Tjy1+...— T,
i, j i, j i, j

=Cj +Cj1t1 + ... +detd

C(Ij:

aprés simplification par recurrence descendante. Il suffit alors de poser

C1 C11 C12 Cid
Co . Ca1 . C22 . Co;

P = ) 1= . ) 2 = 5 ) Vg = . |
Cm Cm1 Cm2 Cmd

Définition 2.4.4 Les opérations élémentaires sur les lignes d’une matrice sont les
suivantes :

1. ajouter (ou retrancher) a une ligne un multiple d’une autre ligne (L; <
L; +cL; avec j # 1),
2. échanger deux ligne (L; <> L;),

3. multiplier (ou diviser) une ligne par une constante non nulle (L; < cL; avec

c#0).

Proposition 2.4.5 Les opérations élémentaires sur une matrice augmentée ne
changent pas les solutions du systéme linéaire correspondant.

Démonstration. Montrons qu’une solution reste solution lorsqu’on effectue une opé-
ration élémentaire :

1. (L; = L; + cL;) Si
;171 + QT2 + ...+ AT, = by et aj171 + ajors + .+ ATy, = b;
alors
(a1 + cajr)zy + (@2 + cajo)xa + ...+ (Qim + CQjm) T = b; + cbj.
2. (L & L)) Si
;11 + Aoy + ...+ Qi T, = b; et aj121 + ajoTe + ..+ QT = b;
alors
171 + ajoTo + ...+ QimTym = b; et anxy + apva + . ATy, = b
3. (L; < cL;) Si
a1 + apTs + ...+ ATy = b;
alors

ca;1Ty + capTa + ...+ cQpn Xy = cb;.
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Pour la réciproque, on remarque que les opérations élémentaires sont réversibles :
1. Avec L; < L; + cL;, il suffit de faire L; <~ L; — cL;,
2. Avec L; <+ Lj, il suffit de faire L; <+ L;,

1
3. Avec L; < cL;, il suffit de faire L; < —L;. [ |
c

Exemples 1. Résoudre

20+y+2=25
S dxr—6y=-2 ?
—2r+Ty+22=9

On échelonne la matrice augmentée en appliquant la méthode du pivot :

2 11 5
4 —6 0 -2 L2 — LQ — 2L1
-2 72 9

2 1 1 5
0 -8 —2 —-12 Ly<+— Ls+ L4
-2 7 2 9

2 1 1 5

0 —8 —2 —12 Ly <— L3+ Ly
|0 8 3 14
[2 1 1 5]

0 -8 —2 —12

0 0 1 2 |

On en déduit que

2x+y+z=95
S (¢ 8y —2z=-12 .
z =2
1
On sait alors que le point | 1 | est I'unique solution.
2

2. Résoudre

131+Z)32+3L’3+ZL'4+(L’5:O
ZL’1+I2+ZL‘3—|—3$4+21}5:1 2
201 + 229 +3x3 +2x4 + 25 =0
$1+$2+2$3+3$4+£L‘5:1

On échelonne la matrice augmentée en groupant au maximum les opérations :

111110 Ly Lo— I
1 11321

L3 < L3 — 21,
223210 Lo Lo I
112311 4 4
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1111 10
0002 11
0010 —10]| L2eLls
0012 0 1]
1 1 11 1 0]
0010 —10
0002 11| fcla-lo—Ls
0012 01 ]
11 11 10
0010 —10
0002 11
0000 00
On a donc
X1+$2+$3+l‘4+$5:0
X3—l'5:0
S<:> 2X4+$5:1
0=0.

On sait alors que Sol(S) est le plan dans R® passant par P et dirigé par @ et @
avec

s
I
OV~ O ONI-
1
I
O OO = =
@D
-+
<L
I
—_ N — O Now

3. A quelle condition sur a, b, ¢ le systéme

r+2y—z+t=a
20+ Ty+4z+2t=10
—r+4y+ 13z —t=c

admet il une solution ?
On échelonne la matrice augmentée

12 -1 1 a L2<—L2—2L1
27 4 25b Ly« L3+ L
| -1 4 13 -1 ¢ o
(1 2 -1 1 a
0 3 6 0 b—2a L3<—L3—2L2
(06 12 0 a+c
(1 2 -1 1 a
03 60 b—2a
_() 0 0 0 ba—2b+c

La condition est donc 5a — 2b + ¢ = 0 (pas de pivot sur la derniére colonne).
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Théoreme 2.4.6 — du pivot de Gauss. On peut toujours échelonner une matrice
en effectuant des opérations élémentaires sur ses lignes.

Démonstration. 11 s’agit de la méthode du pivot. Le premier pivot p; est le premier
coefficient non nul de la premiére colonne non-nulle :

_O 0 0 ke * ]
0
P1
k

| 0 0 * = *

On échange la ligne du pivot avec la premiére ligne pour obtenir une matrice de la
forme

. . - . .
0 0 ¢, = *

avec p; # 0. On effectue ensuite les opérations L; < L; — %Ll pour obtenir une
matrice de la forme

0 .

On conserve dorénavant L; et on effectue les mémes opérations sur la matrice
constituée de Lo, ..., L,. [ |

Définition 2.4.7 1. Le rang rang(A) d’une matrice A est le rang (nombre de
pivots) de la matrice aprés échelonnement °.

2. Le rang rang(S) d’un systéme linéaire S est le rang de la matrice A du
systéme.

a. Par la méthode du pivot.

Exemples 1. Le rang de

2v+y+2=5 2 1 1
S dxr—6y=-2 ou de 4 —6 0
—2x+Ty+22=9 -2 7 2

est 3.
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2. Le rang de
x1+$2+x3+$4+x520 1 1 111
g. 1+ 29+ a3+ 314+ 205 =1 ou de 111 3 2
' 2$1+2$2+31’3+21’4+LL’5:0 2 2 3 2 1
I1+[E2+2[E3+3ZL‘4+CL’5:1 ]_ ]_ 2 3 1

est 3.

Remarques 1. Un systéme linéaire peut n’avoir aucune solution, en avoir une
seule, ou alors une infinité.

2. Un systéme linéaire avec méme nombre n d’équations que d’inconnues est de
rang n si et seulement si il posséde une unique solution.

3. Un systéme linéaire homogéne de n équations & m inconnues avec n < m a une
infinité de solutions.

Définition 2.4.8 Une matrice A & n lignes et n colonnes de rang n est dite non-
singuliere. Un systéme linéaire S a n équations et n inconnues de rang n est appelé
systeme de Cramer.

Remarque Un systéme linéaire S est un systéme de Cramer si et seulement si la
matrice A du systéme est non-singuliére. Cela signifie que la matrice échelonnée est
de la forme

o . -
0 D2 *
0 O
: T %
0 - - 0 pp
avec p1, pa, . . ., Pp, noN nuls.

Sous-espace vectoriel
Définition 2.5.1 On dit qu'une partie £ de R™ est un sous-espace vectoriel si
1.0e E,
2., ve E=u+veEEF,
. ue E,iteR=tuc k.

Exemples 1. R" et {0} sont des sous-espaces vectoriels de R™.

2. F = { z €ER? /z—y= O} est un sous-espace vectoriel de R2.
E = { ;j €R? /x —y =1} nest pas un sous-espace vectoriel de R%.
ER 2 2 5 : 2
E = { y ER* /2t —y= O} n’est pas un sous-espace vectoriel de R=.
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r ‘
3. £ = { ; 1 te R} est un sous-espace vectoriel de R2.
E= { tf 1 ] 't e R} n’est pas un sous-espace vectoriel de R?.

t .
E = { /2 } 't e R} n’est pas un sous-espace vectoriel de R?.

Proposition 2.5.2 Une partie E/ de R™ est un sous-espace vectoriel si et seulement si
1. E+#0,
2. U, v e E,t,seR=tui+ sv € E.

Démonstration. Supposons tout d’abord que E est un sous-espace vectoriel. Puisque
0cE,onak # (. De plus, si on se donne 4,7 € E et t,s € R, alors ti € F et
tv € E si bien que tii+ st € E. Réciproquement, puisque E # (), il existe au moins un
vecteur @ € E et alors 0 = 0% € E. Si on se donne @, 7 € E, alors ii+¢ = li+17 € E.
Enfin, sivw € E et t € R, alors tu = tu + 0u € E. [ |

Remarque Pour une partie £’ de R", les conditions suivantes sont équivalentes :
1. E est un sous-espace vectoriel,
2. F est stable par combinaison linéaire,

3. E est un espace vectoriel (les huit propriétés de la proposition 2.1.5) pour
I’addition des vecteurs et la multiplication par des constantes.

Proposition 2.5.3 1. Si Sy est un systéme linéaire homogene a n inconnues, alors
Sol(Sp) est un sous-espace vectoriel de R™.

2. Si iy, U, ..., U, € R™, alors

Vect(ﬁl,ﬁ2, C. ,ﬁr) = {tlﬁl + totiy + ... + t U, : ti,80,..., 8, € R}

est un sous-espace vectoriel de R”.

Démonstration. La premiére assertion résulte de la proposition 2.3.3. Pour la seconde,
on pose F := Vect(u;, Us, ..., u,) et on remarque d’abord que

0 = 06y + Ol + ... 0%, € E.
Ensuite, si
tity + totly + ...+t € E et sy + Sotis + ... + 8,1, € F,
alors
(t1 4 s1)ty + (ta + s2)tis + ... (t, + s,.)U, € E.
Enfin, si
Lty +tatly + ... LU, € E
alors

ttiuy + ttgts + . . .t € E. [ |



40 Chapitre 2. Algébre linéaire (partie 1)

Définition 2.5.4 Soient E un sous-espace vectoriel de R™ et wy, iy, ..., Uy € E. On
dit que B := (U1, Uy, ..., U;) est une base de F si tout b € E s’écrit de maniére
unique comme combinaison linéaire

$1’171 —|—Q?2’172 —+ ... +xdﬁd =b.

On dit alors que x1,xa, ..., T4 sont les composantes du vecteur b dans la base B
et on pose
g
B = |
Td

Remarquons que, dans ce cas, on aura
E = Vect(l_él, ﬁg, Ce ,ﬁd)

mais que notre condition est plus forte car on requiert 'unicité de I’écriture.

Exemples 1. Dans R?, on a

- 1 " (0] [z]
0 y 1] |y ]
. [ 1] [0 ] 9
On voit donc que 0 et 1 forment une base de R* et que les composantes

de [ :?j } dans cette base sont x et y.

2. Plus généralement, dans R™, on pose

1 0 0
0 1 0
51 - 0 5 €2 - 0 5 ey gn -
: : 0
i 0 | i 0 | i 1 |
Alors, B := (€}, €5, ...,6,) est la base canonique de R™ et [5]3 = b. En effet, on
a
by

by -
. <:>b151+62€2++bn€n:b

Sl
I

bn

(écriture en ligne).
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3. Dans R?, si deux vecteurs % et ¥ ne sont pas multiples I'un de l'autre, alors
B = (@, V) est toujours une base Concrétement, on peut prendre par exemple

—

u = { g ] et v:= [ _1 } Quelles sont alors les composantes de b= [ ) }

1
dans la base B?
On cherche z,y tels que

_,_’__._5@34_ Iy 19
xU + yv = T, vyl 1=

N 3:1:+y:9<:> 3:16—|—(2:zc—1):9<:> a::2'
2r—y=1 y=2r—1 =

On trouve donc [l;]B = { 223 } .

4. Déterminer une base de I'ensemble E des solutions du systéme homogéne

r—2y+2=0
S[)Z x+y—22=0’7
20 —y—2=10

On applique la méthode du pivot

1 -2 1 1 -2 1 1 -2 1
1 1 -2]—=]10 3 -3|—=-10 1 -1
2 -1 -1 0 3 -3 0O 0 O
On en déduit que
T r=t x 1
_9 -
Yy €E®{$_2y_+02 0 y=t |y |=t]|1
z Y a 2=t z 1
1
On voit ainsi que | 1 | est une base de E.
1
Remarque Si on pose
A= [ Uy Us Uy ] ,
alors B := (i, s, ...,U) est une base de F si et seulement si, pour tout b e E,

I’équation
S:AZ=1b

a une unique solution.
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Proposition 2.5.5 Soit
S:A¥=0>
un systéme linéaire avec méme nombre n d’équations que d’inconnues. Alors, les
conditions suivantes sont équivalentes
1. S a une unique solution,

2. S est un systeme de Cramer,

3. A est non-singuliére,

4. les colonnes de A forment une base de R™.

Démonstration. Par définition, on a (4) = (1). D’autre part, on sait déja que
(1) < (2) < (3) et on sait que (4) = (1). Mais comme (3) ne dépend pas de b, on
peut remplacer b par n’importe quel vecteur @ € F dans implication (3)= (1) et
on a donc aussi (3) = (4). [

Dimension

Lemme 2.6.1 Soient E et F' deux sous-espaces vectoriels de R™ ayant pour bases
respectives B := (iy, Uy, . .., Uy) et C := (V1,0s,...,0,). Si F C E, alors r < d.

Démonstration. On procéde par ’absurde et on suppose que d < r. Puisque B est
une base de E et que 9y, s,...,0, € E (car ' C E), on peut écrire

V1 = anﬁl + aqgyus + ...+ adlﬁd

U 1= 12Ul + Q22U + ...+ AqgoUd,

Up i= Q1pU1 + Q20U + . .. + Qgrlg.
Le systéme

111 + a19T9 + ...+ a1,2, = 0
a21T1 + A22%2 + ... + Qop Ty = 0

agx1 + agrs + ...+ agrr, =0

a une infinité de solutions puisque d < r. Pour chacune de ces solutions, on aura (en
additionnant et factorisant)

1T, + 29T + . .. 4+ 2,0, = 0ify + 0ty + ... + 0iig = 0

et donc plusieurs fagons d’écrire le vecteur nul comme combinaison linéaire de
U1, Vg, ..., Up, ce qui contredit le fait que C est une base de F. [ |
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Lemme 2.6.2 Soient F et F' deux sous-espaces vectoriels de R" avec F' C E. Si
C := (uy,Us,. .., u,) est une base de F', alors il existe une base de E de la forme
B = (ﬁl, 712, 000 ,ﬁr,ﬁr+1’ ﬁr+27 600 ,ﬁd).

Démonstration. Tout d’abord, puisque F' C R™ et que la base canonique a n vecteurs,
le lemme 2.6.1 implique que r < n. Maintenant, si F' # E, alors il existe 4,1 € R"
avec U,41 € F mais i1 ¢ F. On peut alors remplacer F' par le sous-espace qui a
pour base (i, s, ..., U-4+1). On aura donc r + 1 < n. Le processus doit s’arréter et
a un certain moment et on trouve F' = E. [ |

Théoreme 2.6.3 Tout sous-espace vectoriel F de R™ posséde une base. Deux bases
quelconques ont méme nombre d’éléments.

Démonstration. Pour la premiére assertion, il suffit d’appliquer le lemme 2.6.2 avec
F = {0}. Pour la seconde, il suffit d’appliquer le lemme 2.6.1 au cas F' = F. [ |

Comme conséquence immédiate, on obtient une caractérisation des sous-espaces
vectoriels :

Proposition 2.6.4 Pour E C R", les conditions suivantes sont équivalentes
1. E est un sous-espace vectoriel de R",

2. il existe un systéme linéaire homogéne a n inconnues Sy tel que E = Sol(Sp),

3. il existe w1, Us, ..., U, € R™ tels que E = Vect(uy, s, . .., U,),

Démonstration. On a vu dans le lemme 2.5.3 que (3) = (1) et (2) = (1) et il résulte
du théoréme 2.6.3 que (1) = (3). Il reste donc seulement a montrer que (1) = (2).
On introduit la notion de produit scalaire -y € R™ de deux vecteurs en posant

X1 Y1

. X2 . Y2 Lo

T .= : NTRES : = XY =21Y1 +T2Y2 + ...+ TpYn.
Tn Yn

On vérifie ensuite que 1’orthogonal
Et:={7eR"/ViecE i -i=0}
est un sous-espace vectoriel de R" et on choisit une base

a11 a21 aq1
12 22 Aq2

Sl
|
S
[}
Il
S
IS
Il

Q1n Q2n, Adn
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de E+. On considére alors le systéme
1121 + ajoxe + ... + ATy = 0

g (9121 + Q929 + ... + Aop Xy, = 0
o -

ag1x1 + apato + ... + agnx, = 0.

et on vérifie que Sol(Sy) = E. Les détails sont laissés en exercice (on utilisera pas ce
résultat par la suite). |

Définition 2.6.5 La dimension dim(FE) d'un sous-espace vectoriel £ de R" est
le nombre d’éléments d’une base. Si dim(E) = 1, on dit que E est une droite
(vectorielle). Si dim(E) = 2, on dit que E est un plan (vectoriel).

Exemples 1. dim(R") =n.

2. Si
rT—2y+z2=0
S()i l’+y—22’:0
2 —y—2=0

alors, Sol(Sp) est une droite.
Remarques 1. Si des vecteurs appartiennent a une méme droite (resp. un méme
plan), il sont dits colinéaires (resp. coplanaires).

2. Un vecteur @ d’'une droite est une base si et seulement si @ # 0. Deux vecteurs
@ et ¥ forment une base d’un plan si et seulement si ils ne sont pas colinéaires.

Proposition 2.6.6 Soient E et F' deux sous-espaces vectoriels de R™ avec F' C E.
Alors dim F' < dim E avec égalité si et seulement si F = F.

Démonstration. Résulte du lemme 2.6.1. n
Exemples 1. Les sous-espaces vectoriels de R? sont {0}, les droites vectorielles
D et R%

2. Les sous-espaces vectoriels de R® sont {0}, les droites vectorielles D, les plans
vectoriels P et R3.

3. Si Dy, Dy sont deux droites et Dy C D,, alors Dy = Ds.
4. Si Py, Py sont deux plans et P; C P, alors Py = Po.

Théoreme 2.6.7 —durang. Si Sy est un systéme linéaire homogéne a m inconnues,
alors

dim(Sol(Sy)) + rang(Sy) = m.

Démonstration. On peut supposer que le systéme est échelonné auquel cas cela
résulte du lemme 2.4.3. |

Remarque La dimension de I'espace des solutions est égale au nombre de variables
libres du systéme échelonné.
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Définition 2.6.8 Soit A une matrice & n lignes et m colonnes.

1. Le noyau de A est 'ensemble ker(A) des & € R™ qui sont solution du systéme
homogéne Ax = 0.

2. L’image de A est 'ensemble im(A) des b € R" tels que le systéme AZ = ba
au moins une solution.

Remarques 1. On a donc
FekerAe AT=0 et beim(A) < IFeR™, AZ=1b.
2. Si on désigne par S le systéme Ax = l;, on voit donc que

Sol(Sy) = ker(A) et Sol(S) #0 < b e im(A).

3. Si A= [ Uy U ... Unp },alors
geim(A)@Hxl,...,xm, Ty + Tolly + oo A Tyl = b
et donc im(A) = Vect(uy, U, . .., Upy).

4. En d’autres termes,

Vect(ﬁl,ﬁz,...,ﬁm):im([1_[1 172 ﬁm :|)

Exemple 1. Determiner le noyau de {

=
(G200 \V]
Sy W
||
~

On doit donc résoudre

[123] Z _8
456" .

On échelonne la matrice
1 2 3 N 1 2 3
4 5 6 0 -3 —6|°

On pose z = t (variable libre) et on aura donc —3y + —6t = 0 qui donne
y = —2t puis x — 4t + 3t = 0 qui donne x =t et donc finalement

z t 1

y | = -2 | =t]| -2

z t 1
si bien que
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12 -1 1
2. Déterminer 'image de 27 4 2|7
-1 4 13 -1
On échelonne la matrice augmentée
12 -1 1 a 12 -1 1 a
27 4 20| —->103 60 b—2a
-1 4 13 -1 ¢ 00 00 d5a—2b+c
On voit donc que
a 12 -1 1
b | €im 27 4 2 & ba—2b+c=0.
-1 4 13 -1

L’image est donc le plan d’équation 5z — 2y + 2z = 0.

Proposition 2.6.9 Si A est une matrice a n lignes et m colonnes, alors

dim(im(A)) = rang(A).

Démonstration. On vérifie d’abord que si P est une matrice inversible, alors
dim(im(A)) = dim(im(PA)).

Plus précisément (v, Uy, . . . , U,.) est une base de im(A) si et seulement si (P9, Pty, . .., Pt,)
est une base de im(PA). Il en résulte que dim(im(A)) ne dépend que de la forme
échelonnée de A. En effet, effectuer une opération élémentaire sur A revient a rempla-
cer A par EA ou F est la matrice (inversible) obtenue en effectuant cette opération
sur /. Enfin, si la matrice est échelonnée, il est aisé de voir que les colonnes avec
pivot forment une base. Les détails sont laissés en exercice. [ |

Remarques 1. La démonstration de la proposition 2.6.9 montre que si A =
[ Wy Uy ... Up }, alors les vecteurs correspondant aux colonnes des pivots

de la matrice échelonnée forment une base de im(A).

2. On peut écrire le théoreme du rang sous la forme
dim(ker(A)) + dim(im(A)) = dim(R™).

3. Si A est échelonnée, alors dim(ker(A)) est le nombre de variables libres et
dim(im(A)) est le nombre de variables pivots.

Exemple On considére la matrice

O =N

1 01
A= 2 20
0 1 1
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On pose
1 2 0 1
U= | 2|, U= 14|, tUs:=1|2 et U;:=10
0 0 1 1
On échelonne
1 2 0 1
A= 2 4 20 Lo+ Loy —21,4
00 1 1
[1 2 0 1 1
A= 00 2 =2 L3 — L3 — 5[12
001 1
1 2 0 1
A=10 0 2 -2
000 O

Les pivots sont sur la premiére et la troisiéme colonne. On en déduit que (i, u3) est
une base de im(A).

Proposition 2.6.10 Pour une matrice carrée A de taille n, les conditions suivantes
sont équivalentes :

1. A est non-singuliére,
2. ker(A) = {0},
3. im(A) = R™

Démonstration. La matrice A est non-singuliére si et seulement si le systéme AZ = 0
a une unique solution. Or on sait que A0 = 0. Cela veut donc dire que ker(A) = {0}.
De plus, par le théoréme du rang,

ker(A) = {0} < dim(ker(A)) = 0 < rang(A) = n < im(A4) = R™. |

2.7 Opérations sur les matrices

Définition 2.7.1 La somme des matrices & n lignes et m colonnes

11 aiz ... QG1m bii bz ... bim
G21 Q22 ... Q2m bar Doy ... bay

A= . . et B :=

Ap1 Ap2 ... Apm bnl bng bnm
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est la matrice a n lignes et m colonnes

a1 +bn aia+bie ... aim +bim
A4 B as1 + bay  ase +bay ... agy + bay
an1 + bnl an2 + bn2 e Qpm + bnm

10 2 01 -2 110
Exemple {3 1 —1} +’{0 1 2} - {3 2 ]_}'

Définition 2.7.2 Le produit de la matrice a n lignes et m colonnes

ai;pr a2 ... QAim

21 A29 ... QA9m
A=

Apn1 Ap2 ... Opm

par un nombre ¢ est la matrice a n lignes et m colonnes

ta11 tCng Ce talm
A ta21 ta/22 Ce tCLQm
tanl tCLnQ . tanm
1 0 2 20 4
Exemple2{3 1 —1]_{6 9 _2}

La matrice nulle a n lignes et m colonnes est

00 .0
00 .0
0:= : . .
00 .0

et 'opposée d’une matrice A est —A := (—1)A.

Proposition 2.7.3 On a toujours

1. A+ B=B+ A,

2. (A+B)+C=A+(B+0),
3. A+0=0,

4. A+ (—A) =0,

5. 1A= A,

6. t(A+ B)=tA+1tB,

7. (t+s)A=tA+ sA,
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‘ 8. (ts)A =t(sA).

Démonstration. On peut voir une matrice a n lignes et m colonnes comme un vecteur
a nm composantes et appliquer la proposition 2.1.5. [ |

Remarques 1. Cela signifie que les matrices & n lignes et m colonnes forment
un espace vectoriel.

2. Ona“tA=tB& A=Bout=0ct“tA=sAt=sould=0"

Définition 2.7.4 Le produit des matrices

ay;; a1 ... QAim b11 b12 Ce blg

21 A29 ... QA9m bgl b22 e bQ[
A= ] } et B :=

Ap1 Ap2 ... Apm bml bmg Ce bmg

a respectivement n lignes et m colonnes et m lignes et ¢ colonnes est la matrice

Ci1 Ci2 ... Cy

Cy1 C22 ... Cy
C .=

Ch1 Cp2 ... Cyy

a n lignes ¢ colonnes avec

Cij = aﬂblj + ainQj + ...+ aimbmj.

—1
Exemples 1. [1 2 0]| 1 |=1x(-1)+2x140x3=1
3

=(-1)x(-1)+0x1+1x3=4.

4
AEFHIREIE ]
3
Remarques 1. On a bien comme espéré
ay; @12 ... Gim X1 a1121 + a12T2 + ... + AT

as1 Q22 ... Q2m M) A21%1 + A22T2 + ... + Q2T

Ap1 Apa ... Gpm T Ap1T1 + Qoo + ... + QpmTm,
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’17:2 :Agg, ey ’Jm :Agm

En effet, avec le 1 sur la iéme ligne, on trouve bien

0]
aip G2 A1 0 ayg
Q21 Q22 Q2m A2
. . 1] = .
. 0 .
Ap1  Ap2 Apm . Any;
[ 0

3. Pour que A = B, il suffit que Ae; = Be,, Aes = Beé, ...

La matrice unité a n lignes et n colonnes est

1 0 0 0]

0 1 0 0
I:=10 0

. S

|0 0 1]

Proposition 2.7.5 1. (AB)C = A(BC)
9. A=At Al = A,
3. A(B+C)=AB+ AC et (A+ B)C = AC + BC,
4. (tA)B = A(tB) = t(AB).

(=: ABC),

Démonstration. 1l est bien pratique d’utiliser la notation
m
Z @ikbkj = CLilblj + aigbgj + ...+ aimbmj
k=1
si bien que la premiére assertion résulte de
m p P m
Z@uc <Z bklclj> = Z <Z aikbkl> Cij-
k=1 =1 =1 \k=1

Les détails sont laissés en exercice ainsi que la démosntration des autres assertions. WM
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Remarque Pour multiplier A par B, il faut que le nombre de colonnes de A soit
égal au nombre de lignes de B. Si on veut auss: multiplier B par A, il faut que
A et B soient deux matrices carrées de méme taille. On a AB # BA en général.
Cependant, si A est une matrice carrée, on peut généralement trouver B telle que
AB=BA=1.

Exemples 1. (AB # BA)
AR R N R AR R L
2. (AB=BA=1)
HIE IS N
|

Définition 2.7.6 Une matrice carrée A est inversible s'il existe une autre matrice
carrée A~1 alors appelée son inverse telle que

AAT =ATTA= 1T

2 3 } est inversible et A™! = [ 2 =3 }

Exemples 1. La matrice A := [ 1 92 1 9

2. La matrice [ 8 é } n’est pas inversible.

Lemme 2.7.7 Si A est une matrice inversible, alors son inverse est unique. ‘

Démonstration. Supposons qu’il existe une autre matrice B telle que AB = BA = I.
On aura alors B = Bl = BAA ' =TA ' = A1 [ |

Proposition 2.7.8 1. Si A est inversible, alors A~! aussi et son inverse est A.

2. Si A et B sont inversibles, alors AB aussi et son inverse est B~1A~1!.

Démonstration. La premiére assertion est triviale puisque la condition est symétrique
entre A et A~!. Pour la seconde, il suffit de calculer

(B'A™)(AB) = B-{(A™Y(AB)) = B\ (A"'A)B) = B-\(IB) = B'B =1

et pareil dans 'autre sens. [ |

Proposition 2.7.9 Si A est inversible, alors le systéme AT = ba pour unique solution
Z = A~1b.

Démonstration. En effet,
AT =b=> A AD) = A b= (A'AZ=A b= I7=A"b=>7=A""

et pareil dans l'autres sens. [ |
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204+ 3y =5

?
r+2y=1

Exemple Résoudre S : {

Le systéme S s’écrit
2 3 x| |9
12| y| |1
-1
. 2 3 2 -3 P
et on sait que { 1 92 } = [ 1 9 } . On en déduit donc que
r | 2 -3 5| 7
y| | -1 2 1| | =3[

Proposition 2.7.10 La matrice [ ac

d } est inversible si et seulement si ad —be # 0

et alors
a b]70 1 d —b
c d Cad—be| —c a
Démonstration. On calcule
a b d —b ad — be 0 1 0
{cd}[—c a}_{ 0 —cb—l—da}_(ad_bc)[Ol}

et pareil dans 'autre sens. [ |

Théoreme 2.7.11 Si A est une matrice carrée, alors les conditions suivantes sont
équivalentes :

1. A est non-singuliére,

2. il existe B telle que AB =1,
3. il existe B telle que BA =1,
4.

A est inversible.

Onaalors A~'! = Bet B! = A.

Démonstration. e (1) = (2) : Puisque A est non-singuliére, il existe des vecteurs
U1, U, . .., Uy tels que
Avy = €1, ATy = €, ..., At, = é),.
Il suffit alors de poser B := [ Uy Uy ... Uy }

e (3)=(1):Si AZ =0, alors ¥ = [# = BAZ = A0 = 0.

e (2) = (4) : En échangeant A et B dans (3) = (1), on voit que B est non-
singuliére. En appliquant (1) = (2) a B, on voit donc qu’il existe donc C' tel
que BC' = 1. On a alors C = IC = ABC = AI = A. Cela montre que B est
inversible et que B~! = A = C. En particulier, A est inversible et A~! = B.

e (4) = (3) : par définition. [
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Lemme 2.7.12 Si B la matrice obtenue en faisant une opération élémentaire sur
A et F la matrice obtenue en faisant la méme opération élémentaire sur I, alors
B=FI.

Démonstration. On note A = [a;;], B = [b;;] et E = [e;;]. On considére 'opération
Ly < Ly + cLy. On aura donc b;; = a;; pour i # k et by = ax; + cay;. D’autre part,
on aura

csii=k,j=14
eij: 18122]
0 sinon.

On calcule alors ) €imam; = a;; sii # k et
E EkmUmj = Qkj + CaAy;.
m

On procede de méme avec les deux autres opérations. Les détails sont laissé en
exercice. ]

Proposition 2.7.13 Une matrice est inversible si et seulement si on peut la trans-
former en I en opérant sur ses lignes. On obtient alors A~! en faisant ses mémes
opérations sur les lignes de [.

Démonstration. Supposons que A est inversible. On peut déja ’échelonner. Puis-
qu’elle est inversible, elle est non est non-singuliére, et sera donc de la forme

a1 *
0 a92 S
0 0
| 0 0 ann |

On effectue alors (dans 'ordre) les opérations suivantes :

I - I awg T X e * 0
Ll . Ll ann L" 0 agy * - * 0
2 27 g n
Ln_l « Ln_l B a(zfl)n Ln : e el %
L, <+ g 0 v e 0 ap-nm-1 0
ann 0 0 o ... 0 1]

On recommence jusqu’a obtenir I (formellement, on fait une récurrence sur n).

Supposons maintenant que I = E, ... E;E1 A ou E; est la matrice obtenue en
faisant la 7éme opération élémentaire sur les lignes de I. On considére alors la matrice
B =FE, ... E5E I obtenue en faisant les mémes opérations dans le méme ordre sur /.
On a

BA=FE,...E,EIA=E,....E,EA=1.

Cela montre que A est inversible et que A™! = B. [ |
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Exemple En pratique on fait directement la transformation

(A T]—[1 A].

1. Retrouver par cette méthode que l'inverse de {21 g] est[ 1 _23 1 ?
[ 2310
120 1] Ly < Lo
[1 2 0 1
_2 3 1 0:| LQ%L2_2L1
1 20 1
0 -1 1 —2} Ly =L
(12 01
01 -1 2} Ly = Ly = 2Ly
10 2 -3
01 -1 2]
1 -1 0
2. Déterminer 'inverse de 2 -1 0|7
1 -2 2
1 -1 0100 Ly« L — 2L,
2 -1 0010 A
|1 -2 20 0 1 3 3
(1 -1 0 10 0]
0 1 -2 -210 L3 <= L3+ Lo
0 -1 1 -1 0 1
(1 -1 0 10 0]
0 1 -2 —210 L+ —Ls
0 0 -1 -3 1 1
L-b o 1o Ly« Ly — Ly
O Ly Ly —2L
0 0 1 3 -1 -1 2 2 3
1 -1 0 -2 1 1
0 1 0 4 -1 -2 L+ L1+ L,
0 01 3 -1 -1
1002 0 -1
0104 -1 —2
0013 -1 -1
On a donc
1 -1 07" 2 0 -1
2 —1 0 =1 4 -1 =2
1 -2 2 3 -1 —1
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2.8 Exercices (6 janvier 2026)

Exercice 2.1 Déterminer une représentation paramétrique du plan d’équation
2z — 3y + 4z = 6. Donner un point du plan ainsi que deux vecteurs directeurs.
Meéme question avec le plan d’équation 2x — 3y + 4z = 0.

0 1 2
Exercice 2.2 Soit P le plan passant par | —1 | dirigé par 2 et |1
1 —1 1

1. Donner une représentation paramétrique du plan. Est ce que 2|1 eP?

3
2. Déterminer une équation cartésienne du plan. Est ce que | 2 | € P?
1

Exercice 2.3 Déterminer l'intersection des plans d’équations
1. 24+2y—32=0¢et 22 —y+42=0,
22 x—y+32=12r4+y—z2z=3etx —4y+ 10z =1,
3. 20 —2y—z=2,2+2y+z=1letx+8y+4z=1.

—x+4y —2z4+dw=c
et ¢ = —6. Résoudre le systéme homogeéne associé. En général, a quelle condition
sur a, b, ¢, le systéme a-t-il une solution ?

Exercice 2.5 Déterminer le nombre de solutions du systéeme linéaire
20 +y="7 r+y—z=-2
1.4 3o +2y=12 , 2.0 20 —y+z=5
dr — 3y =2 r+4dy —4z = —11

Exercice 2.6 A quelle condition le systéme suivant a-t-il une solution ?
r+3y=a
3r—y=>»
20 +2y=c’
r—4y=d

r+y—z=a
2.8 x+y=> .
—xr+y+2z=c

Exercice 2.7 Déterminer un systéme d’équations linéaires pour le plan passant
par P et dirigé par 4 et v :
1

1.P: q: v , 2. P:

r—4dy—z+w=a
Exercice 2.4 Résoudre le systéme ¢ 2x — 8y + 2z — 4w =0>b lorsquea =3,b=9

4
3
2
1

= o = O
]
S

1
1 2
1 Y 3 Y
1 4
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5

Exercice 2.8 Résoudre le systéme
(

T+ 2y+2w =0 2v+4dy+ 2+ 2w =4
20 +4y + 2z + 2w =2 3r+6y+z+w=0
1. , 2. ,
3r+5y — 2+ 6w= -1 r+3y+z+w=1
[ 22 —T7z+ 10w =—10 rT+2y+z2+4+2w=4
( N
§x++215/ +—21zu+_6€’3w— 17 rroytz=1
3. 4 v 4.¢ 2z +(a+4)y+ (a+2)z=4 .
20 +4y 4+ 2z + 2w = 12 et (a—2ytz—a—1
2r —Tz+ 10w =7 Y N

\

Exercice 2.9 Montrer que B := ([ 1 } , { _; }) est une base de R? et calculer

les composantes de [ 1

o } dans B.

Exercice 2.10 Montrer que B est une base de R? et calculer les composantes de

Y

Exercice 2.11 Déterminer une base ainsi que la dimension de E :

v ER® {a:+2y—3z:0

]_E: y 2x_y+4220 ,

z

INEENSE

3. F:=

4 r+y+2z4+w=0
€R /{ r+y—z—w=0

2.E:{ €ER /o —3y=0,,

f v 8

Exercice 2.12 Déterminer une base ainsi que la dimension de 'intersection des
sous-espaces vectoriels F et F' de R* :

T

1. £ = et

3 r+4y+z—-2w=0
€R /{ —x—4y+z—4w =0

SRS
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3 z—=3w=0
€R /{ r+4y+w=20

S
|
S v 8

2. E .= Vect et I := Vect

=W N =

O~ O
S

= = =

Exercice 2.13 Déterminer une base de 'image de A, le rang de A, la dimension
du noyau de A ainsi qu’un systéme d’équations pour im(A) :

12 3 1 0
1 2 -1

1A= o | 2. A= )
1

-1
3

— N =

1 0

dont le noyau contient u; et us :

Exercice 2.15 Soient

10 2 2 -1 2 10
A'—{—z 3 1]’ B'—[ 3 2 o}’ O'_{—2 3}'

Déterminer si possible 2A, A — Bet A+ C.

Exercice 2.16 Calculer

1 1 1 2
L[10 2] =21, 2.[_502} -2 ,3.[ 102} -2 1
3

Exercice 2.17 Calculer lorsque c’est possible AB, AC, CA,A%, C? avec

-2 4 1 =3

| Exercice 2.14 Construire si possible une matrice dont I'image contient v} et U5 et

-1 2
A:—{ L 2], B:—{_2 6] et C:= 1 3
2 2
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11 =2
Exercice 2.18 Montrer que A := 1 2 —1 | est inversible et que A~! =
2 3 =2
-1 -4 3
0 2 —1 [, puis résoudre les systeémes
-1 -1 1

r+y—22=0 rT+y—22=2 r+y—2z=-1
r+2y—2=0 , r+2y—z=4 | rT+2y—z2=2
20 +3y —22=0 2043y —22=17 20+ 3y —22=3

Exercice 2.19 Calculer la matrice inverse lorsque c’est possible

013 10 —1
1.[_? _g} 2.{2 __12}, 3.0 1 1|, 4|11 o0
015 2 1

)

—_

—1

N}
—_

AL
r+y—2z=1
2. Résoudre le systéme ¢ x+2y—z=1
20 +3y —2z=1

2 2 3
3. Montrer que B := Of,{11],]1 est une base de R? et calculer
-1 2 1

1
les composantes de | 1 | dans B.
1

Exercice 2.21 1. Trouver deux matrices 2 x 2 telles que
(A+ B)* # A* 4+ 2AB + B>
2. Montrer que si A et B deux matrices carrées de taille n, alors
(A4 B)? = A’ 4 2AB + B? & AB = BA.

3. Montrer que deux matrices carrées A et B d’ordre n sont inversibles si et
seulement si AB est inversible.

4. Soit A une matrice carrée telle que A% — 3A + 21 = 0. Montrer que A est
inversible.

5
2 2 3
Exercice 2.20 1. Montrer que A := 01 est inversible et calculer



Dans ce chapitre, nous utiliserons ’expression « espace vectoriel » dans le sens
« sous-espace vectoriel de R” pour un certain n ». Cependant, toutes les définitions

font sens pour des espaces vectoriels abstraits et tous les résultats restent alors
valides.

3.1 Applications linéaires
Définition 3.1.1 Une application
f:E—=F 4w~ f(u)
entre deux espaces vectoriels est linéaire si
FE+7) = (@) + f(5) et f(ta) = tf ().
Exemples 1. Si A est une matrice a n lignes et m colonnes, alors 'application
f:R"—=R" dw— Au

est linéaire. Plus généralement, si F est un sous-espace vectoriel R™ et F' un
sous-espace vectoriel de R™ tels que v € F = Au € F, alors I'application

FiESF e Al

est linéaire.

2. (a) L’homothétie hy de rapport A # 0 dans un espace vectoriel E est 'appli-
cation linéaire

f:EF—=E 4w )\
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(b) En particulier, 'homothétie de rapport A dans R™ est I'application linéaire

R" 5 R", @ Ad

avec
A 0 0 0]
0 A O 0
A=X=1]0 0
: w0
0 - oo 0 X

(c) L’homothétie de rapport 1 dans un espace vectoriel E est identité
Idg : E — E,u — .

Dans le cas E = R", ¢a correspond au cas A = I.
3. Avec £ = F = R?, on peut considérer
(a) La rotation ry d’angle 6 centrée a l'origine (faire un dessin),
(b) La réflexion sa par rapport une droite A passant par 0 (faire un dessin),

(c) La projection orthogonale pa sur une droite A passant par 0 (faire un
dessin).

Proposition 3.1.2 Si E et F sont deux espaces vectoriels, alors une application
f: E — F est linéaire si et seulement si on a toujours

[t + sv) = tf(ud) + sf (V).

Démonstration. Si f est linéaire, alors

f(ti + sv) = f(td) + f(sU) = tf(d) + sf (V).

Réciproquement, en prenant ¢t = s = 1, on aura f(@+ ) = f(@) + f(U) et en prenant
s =0et/ou v =0, on aura f(tu) = tf(u). [

Remarque Alternativement, une application est linéaire si et seulement si elle
préserve les combinaisons linéaires :

f(tl’ljl —|— tQﬁQ —|— e —|— trﬁr) - t1f<ﬁl) —|— tgf(ﬁg) —|— e —|— trf<ﬁr)

Proposition 3.1.3 Si f : E — F est une application linéaire, alors f(0) = 0 et
f(=) = —f(a).

Démonstration. On a

FO)=f0x0)=0x f(0) =0

et
f(=u) + f((=1) x @) = (=1) x f(@) = —f(u). u
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Définition 3.1.4 Le noyau d’une application linéaire f : F — F est

ker(f) ={i / f(i) =0} C E
et son image est

m(f) = {f(@)} € F.

Remarque En d’autres termes, @ € ker f < f(@) = 0 et ¢ € im(f) & I €
E, f(d) =17.
Exemples 1. Avec

f:R™—=>R" 4~ Au,
on a ker(f) = ker(A) et im(f) = im(A).
Homothétie : ker(hy) = {0} et im(hy) = E.
Rotation : ker(rg) = {0} et im(rg) = R2.
Reflection : ker(sa) = {0} et im(sa) = R2.
Projection : ker(pa) = A* est la droite perpendiculaire & A a Dorigine et
im(pa) = A.

U N

Proposition 3.1.5 Si f : E — F est une application linéaire, alors ker(f) est un
sous-espace vectoriel de E et im(f) est un sous-espace vectoriel de F.

-,

Démonstration. On sait déja que f(0) = 0, ce qui montre que ker(f) # 0 et im(f) # 0.
Ensuite, puisque f est linéaire, si f(u) = 0 et f(v) = 0, alors
Ftid+ sT) = tf(@) +sf(T) =t x 04+ sx 0=0.

Cela montre que ker(f) est un sous-espace vectoriel. De méme, puisque f est linéaire,
on a toujours

tf(a) + sf(v) = f(tu + sv),

ce qui montre que im(f) est aussi un sous-espace vectoriel. [

I Définition 3.1.6 Si f : E — F est une application linéaire, alors de rang de f est
rang(f) := dim(im(f)).
Exemples 1. Avec
f:R™"=>R" 4~ Au,
on a rang(f) = rang(A).
Homothétie : rang(hy) = dim E.

Rotation : rang(rg) = 2.
Reflection : rang(sa) = 2.

AN

Projection : rang(pa) = 1.
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Théoreme 3.1.7 — durang. Si f : E — F est une application linéaire, alors
dim(ker(f)) 4+ rang(f) = dim(FE).

Démonstration. On se donne une base (7, ua, ..., Uy) de ker f. On la prolonge en
une base

(ul, Uy« ooy Uy, U1, U425 - - - ,uk+7.)
de E. On pose vy := f(ugs1), v2 := f(uks2), -+ Uy = f(Ugs,). Tout @ € E s’écrit

de maniére unique
11' == tlﬁl + tgﬁg —|— ‘e —|— tk+rﬁk+r'
On en déduit que f(@) s’écrit de maniére unique

(@) = f(tithy + totis + . . . + g pllerr)
= t1f (1) + tof (o) + ...+ tppr f (Upsr)
= 1,0+ 190 + .. 140 + L1 + trrolo + - .. + toy U
= 5101 + SaUs + ... + 5, T,

avec §1 1= tgi1,S82 ‘= tgio, ..., S ‘= tgr,. Cela montre que (U4, vs,...,7,) est une

base de im(f). [

Rappel 3.1.8 1.Sif: X —>Yetg:Y — Zsont deux applications, alors leur
composée est 'application

gof: X —2Z 1z g(f(x)).

2. Si h:Z — W est une autre application, alors (hog)o f =ho (go f).
3. Si f: X — Y est une application, alors foldx = f et Idy o f = f.

Proposition 3.1.9 Si f : F — F et g : F — G sont deux applications linéaires,
alors g o f est aussi une application linéaire.

Démonstration. On a (go f)(tu+sv) = g(f(tu+1tv)) = g(tf(@)+sf(0)) = tg(f(@))+
sg(f(v)) = t(g o f) (@) + s(g o f)(©). u

Exemples 1. Avec f:R™ 5> R" 4+ Auet g:R" - RP, ¥ — B, on a
gof:R™— RP, u+— BAu.

2. Homothéties : h, o hy = h), (faire un dessin).
3. Rotations : 7, 0 19 = g4, (faire un dessin).

4. Réflexions : s’y 0 sp = rgp ou 6 est 'angle entre A et A’ et en particulier,
sa 0 sp = Idge (faire un dessin).

5. Projections : pa o pa = pa (faire un dessin).
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Rappel 3.1.10 1. Une application f: X — Y est bijective si et seulement si il
existe une application f~!:Y — X telle que f~!(y) =2 &y = f(x).

2. Si f: X — Y est bijective, alors f~! aussi et (f7')7! = f.

Proposition 3.1.11 Si f est une application linéaire bijective, alors f~! est aussi
linéaire.

Démonstration. Puisque f est linéaire, on a
Ff=Ha@) +sf~H@) = tf(f7H(@) + sf(fH(D) = tid + .
On en déduit que [ (¢t + s0) = tf (@) + sf (V). |

Exemples 1. L’application f: R"™ — R", & — Au est bijective si et seulement si
A est inversible et on a alors

YR =R, = AT
2. Homothéties : (hy)~! = hy/, (faire un dessin).
3. Rotations : (ry)~! = r_y (faire un dessin).
4. Réflexion : (sp)~' = sa (faire un dessin).
5. Projection : pa n’est pas bijective (faire un dessin).

Proposition 3.1.12 Pour une application linéaire f : E' — FE| les conditions suivantes
sont équivalentes :

1. f est bijective,

2. ker(f) = {0},
3. im(f) = E.

Démonstration. 11 résulte du théoréme du rang que les deux derniéres assertions
sont équivalentes. Supposons celles-ci satisfaites. Il résulte alors de la troisiéme
que si ¥ € E, il existe © € E tel que f(#) = ¢. Si on a aussi f(«') = v, alors
f@—a) = f(@) — f(@) = 7 — 0 =0. On aura donc @ — @ = 0 et donc @ = @, ce
qui donne l'unicité. [ ]

Matrice d’une application linéaire

Proposition 3.2.1 Si B := (uy, U, ..., Uy) est une base de F et ¢1,7,,...,U4 € F,
alors il existe une unique application linéaire f : E — F telle que
f(’ljl) = ’171, f('ljg) = '172, RN 9 f(ﬁd> = V4.

Démonstration. Nécessairement, si @ = t1iy + tatls + . . . + tqily, alors

f(u) = f(tith + totis + ... + tatly)
=ty f(t) + tof () + ... + taf (Ug)
- t1171 —+ tQUQ + ...+ tdﬁr-

On vérifie alors aisément mais laborieusement qu’un tel f est bien linéaire. [ |
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Exemples 1. Soit B := (€, é,...,€,) la base canonique de R™ et
Aiz[ﬁl ﬁg ﬁm}

Alors, I'application f : R™ — R™, & — AZX est 'unique application linéaire telle
que

f(€1> :617 f(€2) :7127 5 f(gm) :ﬁm

2. Soit B := (uy, Uy, ..., Uy) une base de E. Alors, I'homothétie hy : E — E est
I'unique application linéaire telle que

ha(thy) = Aidy,  hy(tdp) = Mig, ...,  ha(tag) = Mg

3. Soit B := (€}, &) la base canonique de R?. Alors, la rotation 7y : R> — R? est
I'unique application linéaire telle que (faire un dessin)

i) = | ) | et @ = | .

4. Soit 0 AadeANet0£Te AL et B:= (@, ). Alors, la réflexion sa : R? — R?
est 'unique application linéaire telle que sa (i) = 4 et sa(¥) = —7.

5. Avec les mémes notations, la projection pa : R? — R? est 'unique application
linéaire telle que pa (@) = U et pa (V) = 0.

Définition 3.2.2 Soit f : E — F une application linéaire, B := (i1, Uy, . . ., U,,) une
base de E et C := (¥, ¥, ..., 1,) une base de F. Alors, la matrice de f dans les
bases B et C est I'unique matrice

a;pr a1 ... QAim
c a21 A29 ... QA9m
[f ]B =
ap1 Ap2 ... Apm
telle que

f(ﬁl) = CL11171 + a21172 4+ ...+ anﬂ_fn,

f(ﬁz) = Q1201 + Q22U + . .. + GpoUy,

f(ﬁl) = almﬁl -+ agmﬁg + ...+ anmﬁn.

Remarques 1. Sous forme compacte, on a

2. Lorsque E = F et B=C, on écrira simplement [f]z.
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Exemples 1. Avec f : R™ — R™", ¥ — AZ et B,C les bases canoniques, on a

15 = A.
2. Dans n’importe quelle base B d’un espace vectoriel F, on a
[halg = M.

En particulier, [Idg|s = 1.

3. Dans la base canonique B de R?, on a

[rols = { Z?I?((g)) —cilsr(lg) }

4. Si0£TeAet 04T e A et B:=(d,7), alors
5a] 10
SAB__O 1 .

5. Avec les mémes notations,

[pA]B::(ll 8]-

Proposition 3.2.3 Soit f : E — F une application linéaire, B une base de E et C
une base de F. Si ¥ € E, alors

[f(@)]e = [f]5l7]5-

Démonstration. On reprends les notations de la définition on on rappelle que

X

-
signifie que
T= 21U + Tols + ... + Tyl
On aura donc
f(@) = 2 f(tdy) + 2o f (d2) + ..+ 2 f W),
puis
f(Z) = o f(dy) + o f (d2) + .. + 2 f ()
= z1(a1101 + an ¥y + ... + ap10y,)
+ xo(a19¥) + AUz + . .. + anaty,)
+ ...
+ (1,01 + agnts + ...+ A Uy).
= (a1171 + a19T2 + . . . + A1 Ty
+ (a1 + agxs + . .. + A2 T ) Vs
+...
+ (@11 + apo®o + . .. + AT Up- [ |
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Exemples 1. Toute application linéaire f : R™ — R™ est de la forme f(¥) = A%
ou A est une matrice & n lignes et m colonnes.

2. Dans n’importe quelle base B de F, on retrouve bien stir

[ha(2)]5 = [a]sl7]s = M [Z]s = N[Z]5 = [M]s.
on([3])- [y 2 (5] - Lot ]
4.801to7éaeAL,o7AueAet_B. (i, D).

sst@le =kl = | o % ||| =] %]

5. De méme,

Si W = au + b, alors

(s =aleldle = | o o | |3 |= 5]

Proposition 3.2.4 Soientt f: E — F et g : F' — G des applications linéaires et B,
C et D des bases respectives de E, F' et GG. Alors

g0 f15 = l9)¢ [f]5-
Démonstration. Si B =: (i, Us, . .., Uy), alors, pour i = 1,...,m,

g0 flslals = [(g 0 (@) = [(g(f(@)lp = [9le [f (@)]e = 9]¢ [fI5[d]s.

—_

L’assertion résulte alors formellement du fait que [@;]g = + iéme place. W

U
Exemples 1. Avec f:R™ - R", ¥ — AZ et g: R" — RP,y — By, on trouve
gof:R™ = RP ¥— (BA)Z
2. On sait que g4, = 19 01y, et donc [roi,]s = [re]s[ry]s. On a d’une part
Fosols = cos(f + ) —sin(0 + )
OrelB = sin(@ + @)  cos(f + )
et d’autre part
[rolslrols = (0) cos(p) —sin(p)
6iBl¢lB sin(f)  cos(0) sin(p)  cos(yp)
(0) cos(p) — sin(f) sin(p) — cos(8) sin(p) — sin(#) cos(p)
) sin(p) —sin(f) sin(yp) + cos(f) cos(y)
On retrouve ainsi
cos(f + ¢) = cos(f) cos(p) — sin(f) sin(y),
sin(f + ) = sin(#) cos(p) + cos(0) sin(y).
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Proposition 3.2.5 Soit f : E — F une application linéaire bijective, B une base de
E et C une base de F. Alors, [f]§ est bijective et

(I15) " =1IE
Démonstration. On a

e =" o fls = ldpls = 1

et

ASFHE = [fo f e =[ldplc = I. m

Exemple Puisque 7, =y 4y ona

cos(f) —sin(0) ]1 _ [cos(—@) — sin(—0) } _ [ cos() sin(0)
sin(f)  cos(0) sin(—#)  cos(—0) —sin(#) cos(0)

Définition 3.2.6 Si B et B’ sont deux bases de E, alors la matrice de passage de B
a B est
P = [1dg]5,.

Remarques 1. En pratique, on dit que B est I’ancienne base et que B’ est la
nouvelle.

2. La matrice de passage de B’ a B sera alors P~! (exercice).

3. Si B est la base canonique de R™ et B’ =: (uy, U, . . ., U,) est une autre base de
R™, alors
P:[Ul Uy ... ﬁn}

Exemple On considére le cas £/ = R? et les bases

e ([LL[2]) e (3] 2)

2

Alors, la matrice de passage de B a B’ est P := { 1 92

} et la matrice de passage de

2 —3
N / -1 __
B aB est P —[_1 2].

Proposition 3.2.7 Si P est la matrice de passage de B a B et qu’on pose X := [Z]g
et X' := [Z]p, alors

X' =P 'X e X=PX.

Démonstration. En effet, [Idg]5 [7]s = [ldp(Z)]s = [T]s - |
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Théoreme 3.2.8 Soit f : E — E une application linéaire et B, B’ deux bases de E.
Si P est la matrice de passage de B a B’ et qu’on pose A := [f]|z et A" := [f]s,
alors

A =P 'AP et A= PAP

Démonstration. En effet, [Idg]5 [f]5[lds]E = [f]s |
Remarque On dit alors que les matrices A et A’ sont semblables.

Exemple Quelle est la matrice dans la base canonique B de la symétrie s par rapport
a la droite A d’équation x — 2y = 0 (faire un dessin) ?
. ) . 2 . -1
On voit immédiatement que u := { 1 } € A et que v := { 9 1 € At. On
connait la matrice A’ de s dans la base B’ = (u, ¥), la matrice de passage P de B a
B’ et on calcule P! :

, 1 o 2 -1 L1 21
A_{o —1}’ P‘L 2} e _5{—1 2}'

On en déduit la matrice A de la symétrie dans la base canonique :

A=PAP!
12 —1'[1 oH 21}
501 2]]0 —1]]-12
12 —1'{2 1}
51 2|1 —2
_ 13 4]
5l4 -3

R B EA

3.3 Déterminants

Définition 3.3.1 Le déterminant de la matrice carrée

ajp a2 ... Qin

21 Q22 ... Q2
A=

Ap1 Ap2 ... QApp

est le nombre ¢

det(A) = Z 6(0)&10(1)6120(2) )

UES’n

ou §,, désigne l'ensemble des permutations o de ’ensemble d’indices {1,2,...,n}
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et €(o) la signature de o qui vaut 1 si le nombre d’inversions est pair et —1 sinon.

a. On ne peut vraiment pas se passer de somme formelle ici.

On écrira aussi!

a1 Q12 ... Qi
det(A) = a1 Qga ... Qop
Upl Apa .. Gpp
ainsi que?
det(A) =: det (i, Us, . .., Uy)
siA:[ﬂ’l Uy ... ﬁn]

Exemples 1. Pour les matrices de taille deux, on fait le produit en croiz :

a b

¢ d = ad — bc.

2. Pour les matrices de taille trois, on peut appliquer la régle de Sarrus :

a1; Aaiz2 i3
Q21 Q22 (23 | = (11022033 + G12G23G31 + Q13021032
a31 azz Aas3

— 11023032 — Q12021033 — 413022031 -
Ca ne marche pas en dimension supérieure !

3. Pour les matrices triangulaires, on fait le produit diagonal :

C1 *

0 Co

0O 0 . . i |l=cca...cp.
: .. .. *

0 - -~ 0 ¢

4. En général, il existe une méthode récursive de développement le long d’une
colonne ou d’une ligne. Par exemple, si on désigne par A; la matrice obtenue
en enlevant la premiére colonne et la i-éme ligne, alors

det(A) = Q11 det(Al) — a921 det(Ag) + ...+ (—1)”_1an1 det(An)

On aura
1 2 3
4 5 6 |=1x 58 S‘—élx 28 S‘+7x 25 2‘
7 8 9
= (45 —48) — 4(18 — 24) + 7(12 — 15)
=-3+24-21
=0.
1. Ne pas confondre avec une valeur absolue.
2. On rencontre plus généralement detg(uy, Us, ..., 4q) = det([t1]s, [U2]B, - - -, [U4]B) lorsque B

est une base d’un espace F de dimension d.
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Remarque Si on désigne par P le parallélépipéde de base w7y, Us, . . ., U,, alors
VOl(P) = | det(ﬁl, 11'2, Ce ,ﬁn)|

(et le signe donne l'orientation).

On peut faire le calcul pour n = 2 en supposant tous les points bien placés pour
éviter les valeurs absolues. Il s’agit de montrer (faire un dessin) que l'aire A d’un
parallélogramme (O, M, P, N) est

A = det (O—]\>/./,O—]>V>

En posant M = { Z } et N = [ CCZ ], il s’agit donc de montrer que A = ad — be. On

sait (et on peut facilement vérifier) que A est le produit de la base a par la hauteur
h qu’il faut calculer. On considére pour cela la droite D dirigée par OM passant par

N puis l'intersection M’ =: [ Z, } de D avec la droite verticale passant par M. On

aura alors h = b/ — b. Puisque

wer=glal 3]}

on aura

a=c+ta
b =d+th

si bien que h =0 —b=d —b(1 —t) et a — ta = c. On calcule enfin

A=axh
=ax (d—>b(1—-1))
= ad — b(a — ta)
= ad — be.

Définition 3.3.2 La transposée d’une matrice A & n lignes et m colonne est la
matrice A a m lignes et n colonnes définie par

ai;; a1 ... QAim a1 a921 Ce QAp1
21 A29 ... QA9m a19 929 oo Ap2
A= & A=

Ap1 Ap2 ... Opm A1m A2m .. Qmn

aq
t az :
Exemples 1. [ ay az ... Gy ] = . et réciproquement.

a?’l

.. |a b ca |l a c
2.SlA—[C d},alors A—{b d}
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W N =
(@) I TSN

o [1 23 Ch
3.81A—[4 5 6},alors A=

Proposition 3.3.3 Si A est une matrice carrée, alors det(*A) = det(A).

Démonstration. Si on désigne par o~ ! la permutation inverse de o (qui a méme

signature), on aura

det(tA) = Z e(a)aa(l)lao(g)g c o Qo(n)n

O'GSn
_ -1
= (07 )a15-11)025-1(2) - - - Ang—1(n)
gESy
= E €(0)a15(1)a20(2) - - - Uno(n)
UeS?’L
= det(A). |
cc 0 O 0
* Co 0 0
Exemple | * x . Sl =ciep. . ey
: SURETU
* X Cp
Proposition 3.3.4 On a toujours :
1.det(wy, ... U1, tU, Uisq, ..., U,) = tdet(dy, ... U1, Uit1,-..,Uy),
2. det(ty, ..., U1, U+ U, U1, ... ,U) = det(dy, ..., U1, U, Uitq,...,Up)
+det(uy, ..., U1, VU, Uis1,- -, Un),
3. det(ul, ey U1, Uy Ujq 1y ooy Uj—1, Uy Ujq gy e e e ,Un) = 0.
Démonstration. On pose (attention, on utilise la notation transposée)
ai a21 an1 ay b1
o 12 . 22 . an2 S 45) S by
Uy = . , Uo = . yeeey Up =1 . , U = , U =1
U an bn

Q1n
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On a alors
det(dy, ... U1, tU, Uiyy, ..., Uy)
= €(0)a1501) - - - Cim10(—1) 00 () Qit10(i41) - - - Ano(n)
oES,

=t Z €(0)a10(1) - - - Cic10(i—1)0o (i) Git10(i+1) - - - Cno(n)
=t det(ﬁl, R ,’L_L’z;l, 71, ’Zji+1, e ,ﬁn)
On a aussi

det(ty, ..., U1, U+ U, Uis1, ..., Uy)

. Z €(0)a15(1) - - - Gi10(i-1) (o (i) + bo(i)) Qit10(i41) - - - Ano(n)
oeSy

= Z E(U)Glau) <o Q10 (i—1) Ao (1) it 10 (i41) - - - Ano(n)
O'GSn

+ Z €(0)a15(1) - - - Gi10(i-1)bo (i) Ait10(i+1) - - - Ano(n)
oES,

=det(Uy, ..., U1, Uy Uir1,---,Uy) +det(Uy, ..., U1,V U1, ..., Uy).

Pour la derniére assertion, on désigne par A, I'ensemble des permutations paires
et par A/, 'ensemble des permutations impaires. Si o est une permutation paire, on
note ¢’ la permutation définie par

o'(k)=o(k)sik #1,j
o'(1) = o(j)
0'(j) = o).
On peut alors veérifier que A/, = {0’ : 0 € A,}. On a alors
det(&’l, c. 7ﬁi_1, ’LT, ai—&-l; Ce ,l_l:j_l, l_l,', ﬁj-‘rl? Ce 7671)

= 6(0)(110(1) < Qi 10(i-1) Ao (1) it 1o (i+1) - - - Aj—10(j—1) Ao (5) Fj+1a(j41) - - - Ano(n)
O'ESTL

- E A15/'(1) -+ » Ai—107(i—1) Ao’ (3) Xit10’ (i4+1) -+ - - j—10'(j—1) Ao’ () Aj+10'(j4+1) - - - Ano’(n)
o'eA!
n

= Z A15(1) -+ » Ai—10(i—1)Co (i) Bit1o(i+1) - + - Gj—10(j—1) o () Aj+10(j+1) - - - Ano(n)
O'E.An

- Z A1g(1) -+ + Ai—10(i—1) Ao (5) Vit1o(i+1) - - - Aj—10(j—1) Ao (i) Vj+1a(j+1) - - - Ano(n)
O’EAn

= 0. |

Remarque On dit que le déterminant est une forme multilinéaire alternée. En fait,
c’est 'unique forme multilinéaire alternée telle que det(/) = n.
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2 11 111 111
Exemples .11 11}=/011|4+]1 1 1|=1+0=1
1 01 0 01 1 01
6 2 2 311 111
22031 0(=2[{310|=6/110|=6x(-1)=-6
3 01 3 0 1 1 01
3 4 6 3 2 2
3.1 2 3|=6|111]|=6x0=0.
269 2 3 3

Proposition 3.3.5 Les opérations élémentaires sur une matrice ont les effets suivants :
1. L; < L; + cL; avec j # ¢ ne change pas le déterminant,
2. L; <+ L; avec i # j change le signe du déterminant,

3. L; < cL; multiplie le déterminant par c.

Démonstration. En considérant la transposées, on peut montrer ’analogue sur les
colonnes : on a d’abord

det(ﬁl, c. 7ﬁi—l7ﬁi + C’l_[j,l_[i_i_l, c. ,ﬁn)
:det(ﬁl, . 7ﬁi—1,ﬁiaﬁi+1; R ,ﬁn>
—i—cdet(ﬁl, ce ,ﬁifl,ﬁj,ﬁprl, R ,ﬁn)
:det(ﬁl, N 7ﬁi—17ﬁiaﬁi+1a ce ,Un),

puis ensuite

det(ul, ey U1, Ugy Uy 1y -+ -5 Uj—1,y Ujy Ujp1, - - ,un)
+det(u1, ey U1, Ujy Ugp 1y v v vy Uj—1, Ugy Ujp1, - - ,Un)
:det(ul, ey Ui, Uy —+ Ujy Uig 1y ooy Uj—1, Uy —+ Ujy Ujg1y - - ,Un)
=0.
et bien str
det(ty, ..., U1, Uy, Uiyry .-, Up)
=cdet(Uy, ... U1, U, Uis1,---,Up)- [ ]

2 3 1 2 1 2
Exemples 1.‘1 2'_—‘23‘_—‘0 _1’__(_1)_1
2 46 1 01 10 1 1 0 1
21210|=-{210}|=—-{01 -2|=—-|01 —-2|=-12
1 01 2 46 0 4 4 0 0 12
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Proposition 3.3.6 Une matrice carrée A est inversible si et seulement si det(A) # 0.

Démonstration. On peut échelonner A sans changer les conditions. On sait aussi que
A est inversible si et seulement si elle est non-singuliére. Si A est échelonnée, alors
A est non-singuliére si et seulement si tous les pivots sont sur la diagonale. C’est
équivalent & dire que le déterminant est non nul (faire un dessin). |

Corollaire 3.3.7 Les conditions suivantes sont équivalentes :
1. (@y,s,...,U,) est une base de R",
2. det(ﬁl,ﬁg,...,ﬁn) 7&0 |

Théoreme 3.3.8 det(AB) = det(A) det(B).

Démonstration. Si A n’est pas inversible, alors AB non plus et on trouve 0 de chaque
coté. Sinon, on peut opérer sur les lignes de A et de AB simultanément et finalement
supposer que A = I auquel cas I’assertion est triviale. [ |

Corollaire 3.3.9 Si A est inversible, alors det(A™!) = det(A)~!.

Lemme 3.3.10 Soit f : E — E une application linéaire et B, B’ deux bases de F,
Alors,

det([f]s) = det([f]s)-

Démonstration. On désigne par
e A:=[f|s la matrice de f dans B,
o A':=|[f]|p la matrice de f dans B,
e P la matrice de passage de B a B'.

On sait alors que A’ = P~'AP et on aura donc
det(A") = det(P) ! det(A) det(P) = det(A). |

Définition 3.3.11 Si f : E — F est une application linéaire, alors le déterminant
de f est

det(f) := det([fs).

ou B est une base quelconque de F.

Exemples 1. Avec f: R™ — R" @ — A, on a det(f) = det(A).
2. Homothétie : det(hy) = A\? a vec d = dim(E).
3. Rotation : det(rg) = cos?(#) + sin®(9) = 1.
4. Reflection : det(sa) = —1.
5. Projection : det(pa) = 0.
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Proposition 3.3.12 Soit f : R® — R™ linéaire et ¢}, 0, ..., 7, € R™. Alors,

det(f(ffl), f(UQ), 500 ,f(’(_fn)) = det(f) det(ffl, 172, 500 ,Un)

Démonstration. En effet, si A est la matrice de f dans la base canonique, alors

et la formule se réduit a det(AB) = det(A) det(B). [

Remarque On peut montrer que si X C R” et f : R” — R" est linéaire, alors

Vol(£(X)) = | det(f)[Vol(X).

Diagonalisation

On dit qu’une matrice est diagonale si elle est de la forme

A 0 0 - 0]
0 X 0 -+ 0
0 0 :

. S

0 0 A |

Définition 3.4.1 Une application linéaire f : E — E est diagonalisable s’il existe
une base de E telle que [f]z est diagonale.

Remarque Si A est une matrice carrée de taille n, on appliquera directement a
A le vocabulaire utilisé pour 'application linéaire R” — R", ¥ — AZ. On dira par
exemple que A est diagonalisable lorsque f est diagonalisable.

Exemples 1. Une homothétie est diagonalisable (et méme diagonale dans n’im-
porte quelle base).

2. Une réflexion ou une projection est diagonalisable.

3. Une rotation n’est pas diagonalisable (en général).

4. La matrice { 01 n’est pas diagonale mais elle est diagonalisable (c’est la

10
réflexion par rapport a la droite d’équation y = x).

5. La matrice [ 8 (1) } n’est pas diagonale mais pas non plus diagonalisable

(exercice).
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Proposition 3.4.2 Une matrice carrée A est diagonalisable si et seulement si il existe
une matrice diagonale D ainsi qu'une matrice inversible P telles que A = PDP~!.

Démonstration. Conséquence immeédiate du théoréme 3.2.8. [ |

Exemple L’application linéaire

. R2 2 Z 4z — 6y
R [0

est diagonalisable. En effet, on peut vérifier que A = PDP~! avec
4 —6 1 0 2 3
A_{Q_%},D_{O(J et P‘{12}

Définition 3.4.3 Soit f : E — E une application linéaire. Si f(@) = M avec 4 # 0,
on dit que \ est une valeur propre de f et que u est un vecteur propre de f.

. R2 2 xr dx — 6y
Exemple Avec f: R* — R?, [y}r—){ 2x_3y},ona

(D=1 o (laD=1e)

. 2
On a donc la valeur propre A = 1 avec le vecteur propre u = 1 et la valeur

propre A = 0 avec le vecteur propre v = [ ?; ] .

Proposition 3.4.4 Une application linéaire est diagonalisable si et seulement si il
existe une base formée de vecteurs propres.

Démonstration. En effet, la condition dit qu’il existe une base B = (uy, U, . . ., Uy,)
telle que

fls=[ [f@)s [f@)s ... [f(@)]s ]

= [ [Alﬁl]B [)\2172]6 cee [)\nﬁn B }
= [ ME A o A ]
A 0 0 - 017
0 X 0 -+ 0
=10 0 . .0 . [ |
0 0 A |
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Remarque Avec f : R* — R" ¥ — AZ, si B = (i, Us,...,u,) est une base de
vecteur propres et Ai, Aa,..., A\, les valeurs propres correspondantes, alors A =
PDP~! avec
A 0 0 - 0
0O X O - 0
D=|0 0 ' et P=[1i i U |
0
| O 0 A\

Proposition 3.4.5 Si dim(E) =n et f : E — E est une application linéaire avec n
valeurs propres distinctes, alors f est diagonalisable.

Démonstration. On désigne par Aq, g, ..., A\, les valeurs propres et par iy, Us, . . ., U,
des vecteurs propres associés. On va montrer par récurrence que (i, Us, . . ., Uy) est
une base de Ej, := Vect(uy,Us, ..., u;) pour k =1,2,...,n. On aura alors E,, C E
avec dim(E,) = n = dim(F) et donc E, = FE, ce qui montre que (iy, s, ..., U,)
est une base de E. Clairement, le vecteur non nul % est bien une base de la droite
Vect(w;). On suppose maintenant que (s, Us,...,uU;) est une base de Ej et on
procéde par 'absurde. Si (41, Us, . . ., Uy, Uy1) n'est pas une base de Ej.q, il existe
alors un vecteur qui s’écrit de deux maniéres différentes

tlﬁl + tgﬁg + ...+ tkﬁk + tk+1ﬁk+1 = 81271 + Sgﬁg —+ ...+ Skﬁk + 8k+1ﬁk+1
et donc
(tl — Sl)ﬁl + (tQ — 82)1,_[2 + ...+ (tk - Sk)l_[k + (tk-i-l - Sk+1)ﬁk+1 = 6

On remarque alors que tp.1 # Sy car sinon on pourrait écrire 0 de deux maniéres
différentes dans Fj. On en déduit que

. th—s1 to — S bk — Sk
Ug+1 = — uy — 2= ...
Tet1 — Sk+1 Tktr1 — Sk+1 lkr1 — Sk+1
= Cl’l_[l + Cgﬁg + ...+ Ckﬁk
pour certaines constantes ¢y, ¢, ..., ;. On a d’une part

(1) = Meg1Ug1 = App1C1U + g1 Cotly + - o+ Apy1Crtly,
et d’autre part

f(ﬁk+1) = le<ﬁl) -+ Cgf(ﬁg) + ...+ Ckf(ﬁk) = )\101’(7:1 -+ )\202’172 + ...+ )\kckﬁk

Puisque (u, Uy, . .., U) est une base de Ej, I’écriture est unique et donc
Ak41C1 = AC1, Akp1C2 = AaCa,y oy Apy1Cp = AiCy.
Mais comme les valeurs propres sont distinctes, cela montre quec; = co = ... =¢, =0

et donc w1 = 0. Mais c’est impossible car c¢’est un vecteur propre. [
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Définition 3.4.6 Le polynéme caractéristique d’une application linéaire f : £ — E
est ¢

X(\) := det(Aldg — f).

a. On définit parfois xs(A) := det(f — Mdg), ce qui ne change rien en pratique.
Remarque Le polynéme caractéristigue d’une matrice carrée A est

Xa(A\) =det(A — A).

4 —6 A—4 6
ExempleAvecA—{ 5 _3},0na)\I—A—[ 9 )\+3]etdonc
lA—=4 6 B VI _
XA()\)—‘ 9 )\+3’—(/\—4)()\+3)+12—/\ A=AA—=1).

Proposition 3.4.7 Les valeurs propres sont les racines du polynéme caractéristique. ‘

Démonstration. Par définition, A est une valeur propre de f si et seulement si il
existe un vecteur @ # 0 tel que f(@0) = \ii. Cette égalité se réécrit (Mdg — f) (@) = 0.
La condition signifie donc que ker(Adg — f) # {0}. Cela signifie que I'application
Mdg — f est bijective et nous savons que c’est équivalent a det(Aldg — f) = 0, c’est
a dire xs(A) = 0. Autrement dit, A est une racine de x;. |

Exemple Pour

4 —6
e[1%)
on a calculé x4(A) = A(A—1) et on trouve donc les valeurs propres 1 et 0 si bien que
1 0
D- [ LY ] .

Pour trouver les vecteurs propres, on résout Ar¥ = Ax¥ avec A\ = 1 d’abord et avec
A = 0 ensuite :

o (X=1) { le=by=v o o —0e {;] =t[2}

2 -3y =y 1
N dr — 6y =0 - T | 3
.(AO){Qx—&y:O <:>2x—3y0<:>{y]—t[2]

On trouve les vecteurs propres [ 21 ] et [ 32 ] si bien que

P:Hg]
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3.5 Exercices (6 janvier 2026)

Exercice 3.1 Dire dans chaque cas si 'application f : R® — R? est linéaire :

T z T T4y
1. f Y = | x+2y |, 2. f Y = | y+2z |,
= |z z 2r + 3
[ 2 ] [ 2 —y
3. f Y =|y+z
KA | 2z

Exercice 3.2 Soit f : R* — R® une application linéaire telle que

; 1 g 1
f =1 2 et f = |1
—1 3 1 1
4 —2
1
Trouver un vecteur Z tel que f(Z) = | 2
3
v T — 3z 5
: : . R3 2 - o
Exercice 3.3 Soient f : R°> > R, | y | — { 43y — 62 ] et U := 2
z —1
x x
Calculer f(@). Trouver une matrice A telle que f Yy =A| y |. Calculer
z z

u.

[ : R* = R? obtenue en faisant une rotation d’angle /4 autour de l'origine suivie

Exercice 3.4 Déterminer la matrice dans la base canonique de I’application linéaire
d’une symétrie par rapport a la droite d’équation y = x.

Exercice 3.5 Déterminer la matrice A dans la base canonique de la rotation
d’angle 27 /3 autour de l'origine. Calculer A3. Pouvait-on le prévoir ?

Exercice 3.6 On considére les situations suivantes :
2 0 -1 0 0 -1
1.A_[0 2}, Q.A_{ ! _1}, 3.A_{_1 O},

01 0 0 1 -1
T R T
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Déterminer dans chaque cas

1. Deffet de lapplication linéaire f : R? — R? associée

(0,2)

a la matrice A sur la lettre L ci-contre et donner
une caractérisation géométrique de f,

2. leffet de f~!

qu’une caractérisation géométrique.

sur L lorsque f est inversible ainsi

(1,0)

Exercice 3.7 On se donne une application linéaire f : R — R? .

(a) Trouver les coordon-
nées de w dans la base
(i,7) sur la figure ci-
dessous

(b) Déterminer f(@) sur
la figure ci-dessous. Dé-
terminer la matrice de f
dans la base canonique.

u f(ep)

€1

f(e1)

(c) Déterminer la ma-
trice de f dans la base
canonique avec la figure
ci-dessous.

f(e2)

e1

f(e1)

Exercice 3.8 On se donne une application linéaire f : R? — R2

Déterminer f~1(1)

sur la figure ci-dessous.
f(e2)

f(er)

(b) Déterminer la ma-
trice de f~! dans la base
canonique sur la figure
ci-dessous.

f(e2)

€1

f(er)

(c) Déterminer la ma-
trice de passage de la
base (#,7) a la base
(u', v") avec la figure ci-
dessous.

Exercice 3.9 On se donne une application linéaire f : R? — R%
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(a) Déterminer la ma-
trice de f dans la base
(i,7) sur la figure ci-
dessous.

f(e2)

V > U
e1

f(en)

(b) Déterminer la ma-
trice de f dans la base
canonique sur la figure
ci-dessous.
v
ez U_f(v)
€1

>

f(u)

(c) Déterminer la ma-
trice de f dans la base
(4,7) sur la figure ci-
dessous.
V
e2 U_f(v)

f(u)

Exercice 3.10 Soient f : R_2 — R? la symétrie orthogonale par rapport a la droite

d’équation y = 537, U =

que son inverse.

Exercice 3.11 Soient v; = [ 2 }, Uy = {

2

1

5 3

f : R? = R? I'application linéaire associée a A.

Exercice 3.12 Soient

3 4

. s ]
G = W NN =

g(ﬁl) = 271 + ’172 et

A:{22}, B=

—_ = = =
— = N

1. Calculer det(A) par un produit en croix.

— _3 — —
3],u2:[ 2}etl’)’:(u1,u2).
1. Déterminer f(i;) et f(is) ainsi que la matrice de f dans la base B.

2. Déterminer la matrice de passage P de la base canonique a la base B ainsi

3. En déduire la matrice de f dans la base canonique.

2 -1

],B:(Ul,UQ),Az[l Q]et

. Déterminer la matrice de passage de la base canonique a B et son inverse.
. Déterminer f(v;) et f(2).
. Quelles sont les coordonnées de f(¥7) et de f(7s) dans la base B?

. Déterminer la matrice de f dans la base B de deux facons différentes.

. Soit ¢ : R? — R? 'unique application linéaire telle que
9(172) = —171 + 2’(72

Déterminer la matrice de g dans la base canonique.

-1 2 =2
11 —1
1 0 2
1
2
1
1



2 Chapitre 3. Algébre linéaire (partie 2)

2. Calculer det(B) avec la régle de Sarrus.
3. Calculer det(C') en développant selon la troisiéme ligne.

en développant selon la seconde colonne.

(B)
(©)
4. Calculer det(D)
(£)

5. Calculer det(F) en par opérations élémentaires sur les lignes.

Exercice 3.13 On considére les matrices A =

230
1301
5%3
—22

B =

728
315
52
45

230
1301
5%8
—22

432
539
™2
18

et

N W O N

C:

3
0
-1
-3

O O O =

TN O =

1. Que valent les déterminants de A, B et C.
2. Que valent les déterminants de BC, C?%, C~1 et 2C.

A2
1 3

A1 —17]
1.[ } ).

-1 2 1

A1 1
: : 11 10| . [2 LT
Exercice 3.15 Soient A = [ 15 14 ], U = [3} et Uy = _

1. Montrer que v; et v, sont des vecteurs propres de A.

2. Déterminer P inversible et D diagonale telles que D = P~1AP.

3. Calculer P! et vérifier que D = P~'AP.

Exercice 3.16 Diagonaliser si possible
1 4 }’ 9 A_ 5

1. A= 11

1
3.A=1[0 2
0

w N O

1
: 4LA=102 0
0

8
| Exercice 3.14 Pour quelles valeurs de A la matrice est-elle inversible ?
Autrement dit :
1. Déterminer le polynome caractéristique de A.
. Déterminer les valeurs propres de A.
. Déterminer une base formée de vecteurs propres pour A.

2

3

4. Trouver P inversible et D diagonale telles que D = P~'AP.
5. (facultatif) Calculer P! et vérifier.
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