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Introduction

Dans le premier chapitre, dédié aux développements limités, nous éviterons autant
que possible les notations issues de la logique ainsi que de la théorie des ensembles
afin de rendre le contenu plus accessible au risque d’être parfois imprécis.

Dans le second chapitre consacré à l’algèbre linéaire, nous ne pourrons faire ces
économies. Nous utiliserons de manière plutôt informelle les symboles⇒ d’implication
et ⇔ d’équivalence. Nous utiliserons aussi parfois les quantificateurs ∀ (« pour tous
les ») et ∃ (« il existe un »), voire même ∃! (« il existe un unique »). Nous utiliserons
la notion d’ensemble et d’élément ainsi que la relation d’appartenance x ∈ E pour
indiquer que l’élément x est dans l’ensemble E. Il ne faudra pas confondre avec la
relation d’inclusion F ⊂ E entre deux ensembles qui indique que tous les éléments
de l’ensemble F sont aussi des éléments de l’ensemble E.

Un grand merci à Vincent Guirardel d’avoir bien voulu mettre toutes ses notes à
ma disposition.





1. Développements limités

1.1 Définition/propriétés
Définition 1.1.1 Soit f une fonction réelle d’une variable réelle. Un développement
limité à l’ordre n de f au voisinage de 0 est une égalité a

f(x) = P (x) + o(xn)

ou P (x) := a0 + a1x + a2x
2 + . . . + anx

n est un polynôme de degré au plus n
appelé partie régulière et

o(xn) = xnϵ(x) avec lim
x→0

ϵ(x) = 0

est appelé terme d’erreur.

a. Pour plus de rigeur, on devrait écrire “f(x) ≡ P (x) mod o(xn)” car o(xn) est une notation
générique.

Exemple Nous montrerons que

ex = 1 + x+
1

2
x2 +

1

6
x3 + o(x3)

est un développement limité de ex à l’ordre 3 au voisinage de 0.
En prenant par exemple x = 0, 1, on aura donc

e0,1 = 1 + 0, 1 +
1

2
(0, 1)2 +

1

6
(0, 1)3 + erreur

= 1 + 0, 1 + 0, 005 + 0, 00017. . .+ erreur

= 1, 10517. . .+ erreur.

La calculette nous donne bien e0,1 = 1, 10517. . ..
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Figure 1.1 – Développement limité de ex
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Remarques Si

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n + o(xn),

alors
1. limx→0 f(x) = a0.

2. La tangente à la courbe d’équation y = f(x) en x = 0 a pour équation

y = a1x+ a0.

Exemple On a limx→0 e
x = e0 = 1 et la tangente à y = ex en 0 a pour équation

(fare un dessin)

y = x+ 1.

Si P (x) est un polynôme, on notera P (x)≤k le tronqué de P (x) à l’ordre k : si

P (x) := a0 + a1x+ . . .+ anx
n

(et k ≤ n), alors

P (x)≤k := a0 + a1x+ . . .+ akx
k.

Par exemple, si P (x) = 1 + x+ 1
2
x2 + 1

6
x3, alors P (x)≤2 = 1 + x+ 1

2
x2.
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Proposition 1.1.2 Si

f(x) = P (x) + o(xn)

est un développement limité à l’ordre n au voisinage de 0 et k ≤ n, alors

f(x) = P (x)≤k + o(xk)

est un développement limité à l’ordre k.

Démonstration. On a

f(x) = a0 + a1x+ a2x
2 + . . .+ akx

k + ak+1x
k+1 + . . .+ anx

n + xnϵ(x)

avec limx→0 ϵ(x) = 0. On a alors

f(x) = a0 + a1x+ a2x
2 + . . .+ akx

k + xk(ak+1x+ . . .+ anx
n−k + xn−kϵ(x))

et limx→0(ak+1x+ . . .+ anx
n−k + xn−kϵ(x)) = 0. ■

Exemple Si on sait déjà que

ex = 1 + x+
1

2
x2 +

1

6
x3 + o(x3),

alors

ex = 1 + x+
1

2
x2 + o(x2).

Proposition 1.1.3 Un développement limité de f à l’ordre n au voisinage de 0 est
unique (s’il existe).

Démonstration. On suppose que

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n + xnϵ(x)

avec limx→0 ϵ(x) = 0. On voit déjà que a0 = limx→0 f(x) est uniquement déterminé
par f . De plus, si on pose

g(x) =
f(x)− a0

x
,

alors

g(x) = a1 + a2x+ a3x
2 + . . .+ anx

n−1 + xn−1ϵ(x).

Par récurrence sur n, a1, . . . , an sont aussi déterminé par g et donc par f . ■

Exemple S’il existe, le développement limité est unique, mais il n’existe pas tou-
jours :
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1. La fonction f(x) = |x| n’a pas de développement limité au voisinage de 0. Il
faudrait que a1 = 1 lorsque x > 0 mais il faudrait aussi que a1 = −1 lorsque
x < 0. Or a1 est une constante !

2. La fonction f(x) = x sin(1/x) n’a pas de développement limité au voisinage de
0 (ni à droite, ni à gauche). Sinon, on aurait a1 = limt→+∞ sin(t) mais cette
limite n’existe pas.

Proposition 1.1.4 1. Si

f(x) = P (x) + o(xn) et g(x) = Q(x) + o(xn)

sont des développement limités à l’ordre n au voisinage de 0, alors

(f + g)(x) = (P +Q)(x) + o(xn)

est un développement limité de f + g à l’ordre n au voisinage de 0.
2. Si

f(x) = P (x) + o(xn)

est un développement limité à l’ordre n au voisinage de 0 et c est une
constante, alors

(cf)(x) = (cP )(x) + o(xn)

est un développement limité de λf à l’ordre n au voisinage de 0.

Démonstration. On écrit

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n + xnϵ(x)

et

g(x) = b0 + b1x+ b2x
2 + . . .+ bnx

n + xnη(x)

avec limx→0 ϵ(x) = limx→0 η(x) = 0. On aura donc

(f + g)(x) = (a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)x
n + xn(ϵ(x) + η(x))

avec limx→0(ϵ(x) + η(x)) = 0 et

cf(x) = ca0 + ca1x+ . . .+ canx
n + xn(cϵ(x))

avec limx→0 (ϵ(x) + η(x)) = limx→0 (cϵ(x)) = 0. ■

Remarques 1. Si f(x) = P (x)+o(xn) et c est une constante, alors on aura aussi

f(cx) = P (cx) + o(xn).

En effet, si limx→0 ϵ(x) = 0, alors limx→0 c
nϵ(cx) = 0.
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2. Si f(x) = P (x) + o(xn) et k est un entier, alors

f(xk) = P (xk) + o(xkn).

En effet, si limx→0 ϵ(x) = 0, alors limx→0 ϵ(x
k) = 0.

Exemples 1. En prenant f(x) = ex et c = −1 dans la remarque, on trouve
(remplacer x par −x)

e−x = 1− x+
1

2
x2 − 1

6
x3 + o(x3).

2. En prenant f(x) = e−x et c = −1 dans la proposition, on trouve (multiplier
tout par −1)

−e−x = −1 + x− 1

2
x2 +

1

6
x3 + o(x3).

3. En ajoutant à ex, on trouve

ex + e−x = 2 + x2 + o(x3) et ex − e−x = 2x+
1

3
x3 + o(x3)

4. En divisant par 2 (c’est à dire en muliptliant par 1/2), on trouve

ch(x) = 1 +
1

2
x2 + o(x3) et sh(x) = x+

1

6
x3 + o(x3).

5. On a (en multipliant ex par e)

e1+x = eex = e+ ex+
e

2
x2 +

e

6
x3 + o(x3).

6. On a aussi (en remplaçant x par x2)

ex
2

= 1 + x2 +
1

2
x4 +−1

6
x6 + o(x6).

Rappel 1.1.5 Une fonction est paire (resp. impaire) si f(−x) = f(x) (resp.
f(−x) = −f(x). Par exemple :

• x2, cos(x) et ch(x) sont paires,
• x3, sin(x) et sh(x) sont impaires,
• ex n’est ni paire ni impaire.

Un polynôme est pair (resp. impair) si et seulement si tous ses coefficients sont
de degré pair (resp. impair). Par exemple :

• 1− 1
2
x2 est pair,

• x− 1
6
x3, est impair,

• 1 + x+ 1
2
x2 + 1

6
x3 n’est ni pair ni impair.
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Proposition 1.1.6 La partie régulière d’une fonction paire (resp. impaire) est un
polynôme pair (resp. impair).

Démonstration. On sait que si f(x) = P (x) + o(xn), alors

f(−x) = P (−x) + o(xn) et − f(x) = −P (x) + o(xn).

Si f est paire, alors f(−x) = f(x) et donc, par unicité, P (−x) = P (x) si bien que
P est pair. De même, si f est impaire, alors f(−x) = −f(x) et, par unicité encore,
P (−x) = −P (x) si bien que P set impaire. ■

1.2 Formule de Taylor-Young
Rappel 1.2.1 Si f est n fois dérivable, on désigne par f ′ la dérivée de f , par f ′′ la
dérivée de f ′, par f (3) la dérivée de f ′′, et plus généralement par f (n) la n-ième
dérivée de f . Par exemple,

• Avec f(x) = ex, on a f ′(x) = ex, f ′′(x) = ex, . . . , f (n)(x) = ex, . . .
• Avec f(x) = cos(x), on a f ′(x) = − sin(x), f ′′(x) = − cos(x), f (3)(x) =
sin(x), f (4)(x) = cos(x), f (5)(x) = − sin(x), . . .,

• Avec f(x) = (1+x)α, on a f ′(x) = α(1+x)α−1, f ′′(x) = α(α−1)(1+x)α−2, . . .

f (n)(x) = α(α− 1)(α− 2) . . . (α− n+ 1)(1 + x)α−n, . . .

Rappel 1.2.2 Si n est un entier naturel, sa factorielle est

n! = n× (n− 1)× (n− 2)× . . .

Par exemple, 5! = 5× 4× 3× 2 = 120. On pose aussi 1! = et 0! = 1.

Théoreme 1.2.3 — Formule de Taylor-Young a. Si f est (continue et) n fois dérivable
en 0, alors

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 + . . .+

1

n!
f (n)(0)xn + o(xn).

a. Aussi appelée formule de Maclaurin

Démonstration. On utilise la proposition 1.2.4 plus bas et on procède par récurrence
(le cas n = 0 étant immédiat) en intégrant

f ′(x) = f ′(0) + f ′′(0)x+
1

2
f (3)(0)x2 + . . .+

1

(n− 1)!
f (n)(0)xn + o(xn). ■

Exemples 1. Avec f(x) = ex, on a

f(0) = 1, f ′(0) = 1, . . . , f (n)(0) = 1.

On en déduit que

ex = 1 + x+
1

2
x2 + . . .+

1

n!
xn + o(xn) .
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2. Avec f(x) = cos(x), on a

f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f (3)(0) = 0, f (4)(0) = 1, . . .

ou encore f (2k)(0) = (−1)k et f (2k+1)(0) = 0. On en déduit que

cos(x) = 1− 1

2
x2 +

1

24
x4 − . . .+

(−1)k

(2k)!
x2k + o(x2k+1) .

On montre de même que

sin(x) = x− 1

6
x3 +

1

120
x5 − . . .+

(−1)k+1

(2k + 1)!
x2k+1 + o(x2k+2) .

3. Avec f(x) = (1 + x)α on a

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 + . . .+

(
α

n

)
xn + o(xn) .

En posant α = −1, on obtient

1

1 + x
= 1− x+ x2 − x3 + . . .+ (−1)nxn + o(xn) .

En remplaçant x par −x, on trouve

1

1− x
= 1 + x+ x2 + x3 + . . .+ xn + o(xn) .

En prenant α = 1
2
, on trouve

√
1 + x = 1 +

1

2
x− 1

8
x2 + . . .+

(
1/2

n

)
xn + o(xn) .

Proposition 1.2.4 Si

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n + o(xn)

et si F est une primitive de f (c’est à dire que f = F ′), alors

F (x) = F (0) + a0x+
1

2
a1x

2 +
1

3
a3x

3 + . . .+
1

n+ 1
anx

n+1 + o(xn+1).

Démonstration. On rappelle d’abord que∫ x

0

f(ξ)dξ = F (x)− F (0) et

∫ x

0

ξkdξ =
1

k + 1
xk+1.
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Par hypothèse, on a

f(ξ) = a0 + a1ξ + a2ξ
2 + . . .+ anξ

n + ξnϵ(ξ)

avec limξ→0 ϵ(ξ) = 0. On intègre pour trouver

F (x)− F (0) = a0x+
1

2
a1x

2 + . . .+
1

n!
an + xnη(x).

avec

η(x) =
1

xn

∫ x

0

ξn−1ϵ(ξ)dξ.

Il reste à s’assurer que limx→0 η(x) = 0. Cela résulte de la majoration

|η(x)| ≤
∣∣∣∣ 1xn

∫ x

0

ξn−1dξ

∣∣∣∣× x
sup
0
|ϵ(ξ)| = 1

n

x
sup
0
|ϵ(ξ)|. ■

Exemple Puisque la dérivée de ln(1 + x) est

1

1 + x
= 1− x+ x2 − x3 + . . .+ (−1)nxn + o(xn),

on a

ln(1 + x) = x− 1

2
x2 +

1

3
x3 + . . .+ (−1)n+1 1

n
xn + o(xn) .

1.3 Produit et composition

Proposition 1.3.1 Si

f(x) = P (x) + o(xn) et g(x) = Q(x) + o(xn)

sont des développement limités à l’ordre n au voisinage de 0, alors

(fg)(x) = (PQ)(x)≤n + o(xn)

est un développement limité de fg à l’ordre n au voisinage de 0.

Démonstration. On écrit

f(x) = P (x)+xnϵ(x), g(x) = Q(x)+xnη(x), (PQ)(x) = (PQ)≤n(x)+xnλ(x)

avec limx→0 ϵ(x) = limx→0 η(x) = limx→0 λ(x) = 0. On aura donc

(fg)(x) = (PQ)(x)≤n + xn(λ(x) + ϵ(x)Q(x) + η(x)P (x) + xnϵ(x)η(x))

et clairement

lim
x→0

(λ(x) + ϵ(x)Q(x) + η(x)P (x) + xnϵ(x)η(x)) = 0. ■



1.3 Produit et composition 15

Exemple Déterminer 1 le développement limité de f(x) = ln(1 + x) cos(x) en 0 à
l’ordre 3.

On a

ln(1 + x) = x− 1

2
x2 +

1

3
x3 + o(x3) et cos(x) = 1− 1

2
x2 + o(x3).

On calcule

f(x) = ln(1 + x) cos(x)

=

(
x− 1

2
x2 +

1

3
x3

)(
1− 1

2
x2

)
+ o(x3)

= x− 1

2
x3 − 1

2
x2 +

1

3
x3 + o(x3)

= x− 1

2
x2 − 1

6
x3 + o(x3).

Proposition 1.3.2 Si

f(u) = P (u) + o(un) et u(x) = Q(x) + o(xn)

sont des développement limités à l’ordre n ≥ 1 au voisinage de 0 et limx→0 u(x) = 0,
alors

f(u(x)) = P (Q(x))≤n + o(xn)

est un développement limité de à l’ordre n au voisinage de 0.

Démonstration. Nos hypothèses sur u impliquent l’existence d’un développement
limité à l’ordre 1 de la forme

u(x) = 0 + bx+ xλ(x) = x(b+ λ(x)) avec lim
x→0

λ(x) = 0.

D’autre part, notre hypothèse sur f nous dit que f(u) = P (u) + unϵ(u) avec
limu→0 ϵ(u) = 0. On a donc

f(u(x)) = P (u(x)) + u(x)nϵ(u(x))) = P (u(x)) + xn(b+ λ(x))nϵ(u(x)))

et

lim
x→0

(b+ λ(x))nϵ(u(x))) = 0.

On peut donc dans la suite remplacer f par P (et ajouter ensuite le terme correcteur).
En utilisant la proposition 1.1.4, on peut même supposer que f(u) = P (u) = uk

(puisque P et une somme de multiples de puissances) et il s’agit donc de montrer que

u(x)k = Q(x)k≤n + o(xn).

1. On pourrait aussi utiliser la formule de Taylor-Young mais ce serait trop long.
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Or on a

u(x) = Q(x) + xnη(x) avec lim
x→0

η(x) = 0

et donc

u(x)k = (Q(x) + xnη(x))k

= Q(x)k + kQ(x)k−1xnη(x) + . . .+ (xnη(x))k

= Q(x)k + xn(kQ(x)k−1η(x) + . . .+ xn(k−1)η(x)k)

et limx→0(kQ(x)k−1η(x) + . . .+ xn(k−1)η(x)k) = 0. ■

Exemples 1. Déterminer le développement limité de esin(x) en 0 à l’ordre 3.
On a eu = 1 + u+ 1

2
u2 + 1

6
u3 + o(u3) et sin(x) = x− 1

6
x3 + o(x3). On calcule

alors

esin(x) = 1 +

(
x− 1

6
x3

)
+

1

2

(
x− 1

6
x3

)2

+
1

6

(
x− 1

6
x3

)3

+ o(x3)

= 1 + x− 1

6
x3 +

1

2
x2 +

1

6
x3 + o(x3)

= 1 + x+
1

2
x2 + o(x3).

2. Déterminer le développement limité de ecos(x) en 0 à l’ordre 2.
On remarque que

lim
x→0

cos(x) = 1 ̸= 0.

On procède alors comme suit. On a

eu = 1 + u+
1

2
u2 + o(u2) et cos(x)− 1 = −1

2
x2 + o(x2)

et donc

ecos(x)−1 = 1 +

(
−1

2
x2

)
+

1

2

(
−1

2
x2

)2

+ o(x2)

= 1− 1

2
x2 + o(x2).

On en déduit que

ecos(x) = eecos(x)−1 = e− e

2
x2 + o(x2).

3. Déterminer le développement limité de 1
cos(x)

en 0 à l’ordre 4.
On a

1

1 + u
= 1− u+ u2 + o(u2)
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et

cos(x)− 1 = −1

2
x2 +

1

24
x4 + o(x4)

(vu comme fonction de x2). On calcule alors

1

cos(x)
=

1

1 + (cos(x)− 1)

= 1−
(
−1

2
x2 +

1

24
x4

)
+

(
−1

2
x2 +

1

24
x4

)2

+ o(x4)

= 1 +
1

2
x2 − 1

24
x4 +

1

4
x4 + o(x4)

= 1 +
1

2
x2 +

5

24
x4 + o(x4).

4. Déterminer le développement limité en 0 de tan(x) à l’ordre 5.
On a

tan(x) =
sin(x)

cos(x)

= sin(x)× 1

cos(x)

=

(
x− 1

6
x3 +

1

120
x5

)(
1 +

1

2
x2 +

5

24
x4

)
+ o(x5)

= x− 1

6
x3 +

1

120
x5 +

1

2
x3 − 1

12
x5 +

5

24
x5 + o(x5)

= x+
1

3
x3 +

2

15
x5 + o(x5)

car

−1

6
+

1

2
=
−1 + 3

6
=

1

3
et

1

120
− 1

12
+

5

24
=

1− 10 + 25

120
=

2

15
.

1.4 Applications

Exemple Calculer lim
x→0

ex − esin(x)

x− sinx
.

On sait que

ex = 1 + x+
1

2
x2 +

1

6
x3 + o(x3)

et on a déjà calculé

esin(x) = 1 + x+
1

2
x2 + o(x3).

On en déduit que

ex − esin(x) =
1

6
x3 + o(x3).
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D’autre part, on sait que sin(x) = x− 1
6
x3 + o(x3) si bien que

x− sinx =
1

6
x3 + o(x3).

On en déduit que

ex − esin(x)

x− sinx
=

1
6
x3 + o(x3)

1
6
x3 + o(x3)

=
1
6
+ o(1)

1
6
+ o(1)

−→
1
6
1
6

= 1

(on rappelle que o(1) désigne une fonction qui tend vers 0 quand x tend vers 0).

Rappel 1.4.1 Règle de l’Hôpital : si u et v sont dérivables et

lim
x→x0

u(x) = lim
x→x0

v(x) = 0,

alors

lim
x→x0

u′(x)

v′(x)
= ℓ⇒ lim

x→x0

u(x)

v(x)
= ℓ.

Exemple Calculer lim
x→0

cos(x)− 1

x2
.

1. Avec la règle de l’Hôpital : on a (en vérifiant bien à chaque fois que le numérateur
et le dénominateur tendent bien vers 0)

lim
x→0

cos(x)− 1

x2
= lim

x→0

− sin(x)

2x
= lim

x→0

− cos(x)

2
= −1

2
.

2. Avec les développements limités

cos(x)− 1

x2
=
−1

2
x2 + o(x2)

x2
= −1

2
+ o(1) −→ −1

2
.

Remarque Si

f(x) = a0 + a1x+ anx
n + o(xn) avec n ≥ 2 et an ̸= 0,

alors la tangente en x = 0 à la courbe d’équation y = f(x) à pour equation
y = a1x+ a0 et la position de la courbe par rapport à la tangente est donnée par le
tableau ci-dessous 2 (faire un dessin) :

n pair n impair
an > 0 Dessus Dessous/dessus
an < 0 Dessous Dessus/dessous

De plus, on a un minimum local si a1 = 0, n est pair et an > 0 (faire un dessin). On
a un maximum local si a1 = 0, n pair et an < 0 (faire un dessin).

2. Quand n est impair, on dit que 0 est un point d’inflexion.



1.4 Applications 19

Exemples 1. Déterminer l’équation de la tangente en x = 0 à la courbe d’équa-
tion y = sin(x) ainsi que la position de la courbe par rapport à sa tangente ?
On a sin(x) = x− 1

6
x3 + o(x3) si bien que la tangente a pour équation y = x

et la courbe passe au dessus puis au dessous de la tangente (faire un dessin).
2. Déterminer l’équation de la tangente en x = 0 à la courbe d’équation y = cos(x)

ainsi que la position de la courbe par rapport à sa tangente ?
On a cos(x) = 1 − 1

2
x2 + o(x2) si bien que la tangente (horizontale) a pour

équation y = 1 et la courbe est en dessous de la tangente. C’est un maximum
local (faire un dessin).

Remarque Tous les résultats de ce chapitre ont un analogue au voisinage de a ̸= 0 :
il sufit de poser h = x− a (ou de manière équivalente x = a+ h) et remplacer x par
h. En effet, x est au voisinage de a si et seulement si h est au voisinage de 0.

Exemples 1. Déterminer la position de la courbe d’équation y = ex par rapport
à sa tangente lorsque x = 1 ?
On pose x = 1 + h. On a déjà vu que

e1+h = e+ eh+
e

2
h2 + o(h2).

On en déduit que la tangente à pour équation

y = eh+ e = e(x− 1) + e = ex

et que la courbe est au dessus de la tangente.
2. On peut aussi écrire la formule de Taylor-Young au voisinage de a ̸= 0 :

f(x) =f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + . . .+

1

n!
f (n)(a)(x− a)n

+ (x− a)nϵ(x) avec lim
x→a

ϵ(x) = 0.

.
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1.5 Exercices (6 janvier 2026)
On pourra utiliser la notion o ou la notaion ϵ au choix.

Exercice 1.1 Déterminer le développement limité au voisinage de 0 de
1. x4 − 2x3 + 5x2 − 3 à l’ordre 2, 2.−24x2 + 13x+ 7 à l’ordre 4,

3. sin(x) à l’ordre 3, 4. sin(x) à l’ordre 4,

5.− ln(1 + x) à l’ordre 3, 6. ln(1− x) à l’ordre 3,

7. 2 cos(x) à l’ordre 3, 8. cos(2x) à l’ordre 3,

9. 3
√
1 + 3x à l’ordre 2, 10. 4

√
1 + x2 à l’ordre 4.

Exercice 1.2 Déterminer le développement limité au voisinage de 0 de
1. sin(2x)− 2 cos(x) à l’ordre 4, 2.(x+ x2)2 + cos(x) à l’ordre 3,

3.
√
1 + 2x− 3

√
1 + 3x à l’ordre 2, 4.

ln(1 + x)

x
à l’ordre 3.

Exercice 1.3 A) Déterminer le développement limité à l’ordre 3 au voisinage de 0
de

1. ln(1 + x) cos(x), 2.(1 + x2) cos(x), 3. ex sin(x),
4. cos2(x), 5. e2x ln(1 + x).

B) Déterminer le développement limité à l’ordre 2 au voisinage de 0 de

1.
ex sin(x)

x
, 2.

e2x ln(1 + x)

x
.

Exercice 1.4 Déterminer le développement limité à l’ordre 2 au voisinage de 0 de

1.
1

4 + 3x
, 2.

3

x− 2
, 3.

√
2 + x,

4. 3
√
2 + 3x, 5. ln(5 + 3x), 6. e3+2x.

Exercice 1.5 Déterminer le développement limité à l’ordre 3 au voisinage de 0 de
1. sin(ln(1 + x)), 2. ln(1 + sin(2x)).

Exercice 1.6 Déterminer le développement limité à l’ordre 2 au voisinage de 0 de
1. ln(cos(x)), 2. eex ,

3.
√

ex + cos(x), 4. ln
(
ex

2
+ sin(x)

)
.

Exercice 1.7 Déterminer le développement limité à l’ordre 2 au voisinage de 0 de

1.
x+ 3

x+ 2
, 2.

ex

cos(x)
, 3.

1

1− sin(x)
,

4.
ex√

1 + 2x
, 5.

ln(1 + 2x)

sin(2x)
.
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Exercice 1.8 Calculer

1. lim
x→0

ln(1 + x)

sin(x)
, 2. lim

x→0

cos(x)− 1

x+ x2
,

3. lim
x→0

ex − 1− x

x2 + x3
, 4. lim

x→0

(
√
1 + x− 1)x sin(x)

tan(x)− x
,

5. lim
x→0

sin(2x)

1−
√
1− 3x

, 6. lim
x→0

sin(x)− tan(x)

x2 + x3
.

Exercice 1.9 Dans chacun des cas suivants, déterminer une équation de la tangente
en x = 0 à la courbe d’équation y = f(x) ainsi que la position relative de la courbe
par rapport à sa tangente. Dire s’il s’agit d’un minimum ou d’un maximum local.

1. f(x) = sin(2x)− 2 cos(x),
2. f(x) = ln(1 + x) + ex,
3. f(x) =

√
cos(x).

Exercice 1.10 Dans chacun des cas suivant, déterminer l’allure du graphe de la
fonction f au voisinage de x = 0.

1. f(x) = −1 + 4x− 3x2 + 2x3 + o(x3),
2. f(x) = 1− x2 + 2x3 + o(x3),
3. f(x) = −x− x3 + o(x3),
4. f(x) = x2 − x3 + o(x3),
5. f(x) = 1− 2x+ x2 − x3 + o(x3),
6. f(x) = 2 + 4x+ x2 + x3 + o(x3),
7. f(x) = 2 + 4x− x3 + o(x3),
8. f(x) = 2 + x3 + o(x3).

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3





2. Algèbre linéaire (partie 1)

2.1 Vecteurs
Définition 2.1.1 Un vecteur (colonne) de longueur n est une liste de n nombres a

u⃗ :=


u1

u2
...
un


appelés composantes de u⃗.

a. C’est la liste qui compte, les crochets sont là comme délimiteurs.

On désigne par Rn leur ensemble et on écrira donc u⃗ ∈ Rn.

Exemples 1. Lorsque n = 1, un vecteur est tout simplement un nombre (réel)
et on note leur ensemble R.

2. Lorsque n = 2, un vecteur est un couple de nombres

u⃗ :=

[
u
v

]
∈ R2, par exemple

[
3
2

]
ou

[
1
−1

]
(faire un dessin).

Remarque Pour des raisons de commodité, un vecteur (colonne) s’écrit aussi sous
la forme u⃗ = (u1, u2, . . . , un). On peut d’ailleurs aussi considérer la notion équivalente
de vecteur ligne

[
a1 a2 . . . an

]
de longueur n et tout ce qui suit s’applique

mutatis mutandis.
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Définition 2.1.2 La somme des vecteurs u⃗, v⃗ ∈ Rn est le vecteur u⃗+ v⃗ ∈ Rn défini
par

u⃗ :=


u1

u2
...
un

 , v⃗ :=


v1
v2
...
vn

 ⇒ u⃗+ v⃗ :=


u1 + v1
u2 + v2

...
un + vn

 .

Exemple Dans R2, si u⃗ :=

[
3
2

]
et v⃗ :=

[
1
−1

]
, alors u⃗ + v⃗ =

[
4
1

]
(faire un

dessin).

Définition 2.1.3 Le produit d’un vecteur u⃗ ∈ Rn par un nombre t est le vecteur
tu⃗ ∈ Rn défini par

u⃗ :=


u1

u2
...
un

 ⇒ tu⃗ :=


tu1

tu2
...

tun

 .

Exemple Dans R2, si u⃗ :=

[
3
2

]
, alors 4u⃗ =

[
12
8

]
, −2u⃗ =

[
−4
6

]
et

1

2
u⃗ =[

3/2
1

]
(faire un dessin).

Définition 2.1.4 On dit que t1u⃗1 + t2u⃗2 + . . . + tmu⃗m ∈ Rn est la combinaison
linéaire de u⃗1, u⃗2, . . . , u⃗m ∈ Rn avec coefficients t1, t2, . . . , tm ∈ R.

Exemple 1. tu⃗+ sv⃗ est la combinaison linéaire de u⃗ et v⃗ avec coefficients t et s.

2. Plus concrètement, dans R2, si u⃗ :=

[
3
2

]
et v⃗ :=

[
1
−1

]
, alors

2u⃗+ 3v⃗ = 2

[
3
2

]
+ 3

[
1
−1

]
=

[
9
1

]
est la combinaison linéaire de u⃗ et v⃗ avec coefficients 2 et 3 (faire un dessin).

On écrira

0⃗ :=


0
0
...
0

 et −


u1

u2
...
un

 :=


−u1

−u2
...
−un

 .
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Proposition 2.1.5 Rn est un espace vectoriel : on a toujours :
1. u⃗+ v⃗ = v⃗ + u⃗,
2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗),
3. u⃗+ 0⃗ = u⃗,
4. u⃗+ (−u⃗) = 0⃗,
5. 1u⃗ = u⃗,
6. t(u⃗+ v⃗) = tu⃗+ tv⃗,
7. (t+ s)u⃗ = tu⃗+ su⃗,
8. (ts)u⃗ = t(su⃗).

Démonstration. Laissé en exercice. ■

Remarques 1. Un espace vectoriel est un ensemble muni d’une addition et
d’une multiplication par les constantes qui satisfait les huit propriétés de la
proposition (ce qui inclut l’existence de l’élément nul ainsi que de l’opposé de
n’importe quel élément).

2. On écrit tout simplement u⃗+ v⃗ + w⃗ sans les parenthèses.
3. On écrit u⃗− v⃗ := u⃗+ (−v⃗).
4. Simplification : on a toujours u⃗+ w⃗ = v⃗ + w⃗ ⇔ u⃗ = v⃗.
5. Simplification : on a toujours (exercice)

tu⃗ = tv⃗ ⇔ u⃗ = v⃗ ou t = 0 et

tu⃗ = su⃗⇔ t = s ou u⃗ = 0⃗.

Définition 2.1.6 Un élément de Rn s’appelle aussi un point et on dit alors coor-
données au lieu de composantes. Si P et Q sont deux points de Rn, le vecteur−→
PQ ∈ Rn est défini par

P :=


a1
a2
...
an

 et Q :=


b1
b2
...
bn

 ⇒
−→
PQ :=


b1 − a1
b2 − a2

...
bn − an

 .

La translation de vecteur u⃗ ∈ Rn associe au point P ∈ Rn le point P + u⃗ ∈ Rn

défini par

u⃗ :=


u1

u2
...
un

 et P :=


a1
a2
...
an

 ⇒ P + u⃗ :=


a1 + u1

a2 + u2
...

an + un

 .

Remarques 1. On a donc u⃗ =
−→
PQ⇔ Q = P + u⃗ (faire un dessin).
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2. En particulier, en considérant le point

O :=


0
0
...
0

 ,

on a u⃗ =
−→
OP ⇔ P = O + u⃗ (on identifie un point avec l’extrémité du vecteur

placé à l’origine).
3. Contrairement aux vecteurs, on ne peut pas ajouter des points entre eux ou les

multiplier par des constantes.

Exemple Dans R2,

1. si P :=

[
2
1

]
et Q :=

[
3
4

]
, alors

−→
PQ :=

[
1
3

]
(faire un dessin),

2. si P :=

[
2
1

]
et u⃗ :=

[
1
3

]
, alors P + u⃗ =

[
3
4

]
(faire un dessin).

2.2 Droites et plans
Définition 2.2.1 Une équation cartésienne plane est une équation de la forme
ax+ by = c avec a, b, c non tous nuls. La droite associée est

D :=

{[
x
y

]
∈ R2 / ax+ by = c

}
⊂ R2.

Exemple La droite d’équation 2x − 3y = 6 passe par les points P :=

[
0
−2

]
et

Q :=

[
3
0

]
(faire un dessin). Attention, l’équation

2

3
x− y = 2 définit la même droite !

Définition 2.2.2 Une représentation linéaire paramétrique plane est un système de
la forme{

x = αt+ β
y = γt+ δ

avec α, γ non tous nuls. La droite associée est

D :=

{[
αt+ β
γt+ δ

]
: t ∈ R

}
⊂ R2.

De manière équivalente, on a

D := {P + tu⃗ : t ∈ R} avec P =

[
β
δ

]
et u⃗ =

[
α
γ

]
.

On dit alors que (P, u⃗) est un repère pour D ou plus informellement, que D est la
droite passant par P et dirigée par u⃗.
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Exemple
{

x = 3t
y = 2t− 2

qui s’écrit aussi
[
x
y

]
=

[
0
−2

]
+ t

[
3
2

]
(faire un dessin).

C’est donc la droite passant par P :=

[
0
−2

]
et dirigée par u⃗ :=

[
3
2

]
. Attention,

la représentation
{

x = 3t/2 + 3
y = t

par exemple définit la même droite !

Remarque 1. (Paramétrer) On peut passer d’une équation cartésienne à une
représentation paramétrique comme suit :

2x− 3y = 6⇔
{

2x− 3y = 6
y = t

⇔
{

x = 3
2
t+ 3

y = t.

2. (Éliminer) On peut passer d’une équation paramétrique a une équation carté-
sienne comme suit :{

x = 3t
y = 2t− 2

⇔
{

x = 3(y/2 + 1)
t = y/2 + 1

⇔ x− 3

2
y = 3.

3. On a une situation analogue dans l’espace (faire un dessin) :

ESPACE Plan Droite

Cartésien ax+ by + cz = d

{
ax+ by + cz = d
a′x+ b′y + c′z = d′

Paramétrique P + tu⃗+ sv⃗ P + tu⃗

On remarquera la propriété fondamentale suivante : « nombre d’équations » +
« nombre de paramètres » = « dimension de l’espace ».

Exemples 1. Déterminer 1 le plan P d’équation x+ 2y + 3z = 1 ? On a x
y
z

 ∈ P ⇔ x+ 2y + 3z = 1

⇔


x = 1− 2t− 3s
y = t
z = s

⇔

 x
y
z

 =

 1
0
0

+ t

 −21
0

+ s

 −30
1

 .

C’est donc le plan passant par P :=

 1
0
0

 et dirigé par u⃗ :=

 −21
0

 et par

v⃗ :=

 −30
1

.

1. Comprendre « Paramétrer ».
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2. Déterminer une équation du plan P passant par P :=

 1
2
3

 et dirigé par

u⃗ :=

 1
−1
1

 et v⃗ :=

 −12
−3

 ?

On a  x
y
z

 ∈ P ⇔
 x

y
z

 =

 1
2
3

+ t

 1
−1
1

+ s

 −12
−3


⇔


x = 1 + t− s
y = 2− t+ 2s
z = 3 + t− 3s

⇔


t = x+ s− 1
y = 2− (x+ s− 1) + 2s
z = 3 + (x+ s− 1)− 3s

⇔
{

y = 3− x+ s
z = 2 + x− 2s

⇔
{

s = x+ y − 3
z = 2 + x− 2(x+ y − 3)

⇔ z = 8− x− 2y

⇔ x+ 2y + z = 8.

2.3 Systèmes linéaires
Définition 2.3.1 Un système linéaire a est une liste de n équations linéaires à m
inconnues :

S :


a11x1 + a12x2 + . . .+ a1mxm = b1
a21x1 + a22x2 + . . .+ a2mxm = b2

...
an1x1 + an2x2 + . . .+ anmxm = bn.

Le système homogène associé est

S0 :


a11x1 + a12x2 + . . .+ a1mxm = 0
a21x1 + a22x2 + . . .+ a2mxm = 0

...
an1x1 + an2x2 + . . .+ anmxm = 0.

Si S = S0, on dit que le système est homogène.

a. On devrait dire « système d’équations linéaires ».

On dispose de la notation vectorielle



2.3 Systèmes linéaires 29

S : x1


a11
a21
...

an1

+ x2


a12
a22
...

an2

+ · · ·+ xm


a1m
a21
...

anm

 =


b1
b2
...
bn

 ,

ou encore la notation en ligne

S : x1u⃗1 + x2u⃗2 + . . .+ xmu⃗m = b⃗

avec

u⃗1 :=


a11
a21
...

an1

 , u⃗2 :=


a12
a22
...

an2

 , . . . , u⃗m :=


a1m
a21
...

anm

 et b⃗ :=


b1
b2
...
bn

 .

On préférera en pratique la notation matricielle :
Définition 2.3.2 Une matrice à n lignes et m colonnes (on dira aussi n×m) est
un tableau a de nombres

A :=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm


appelés coefficients. Lorsque m = n, on dit que A est une matrice carrée de taille
n.

a. Ici encore, ce sont les nombres qui comptent, les crochets étant là comme délimiteurs.

Remarque On peut voir un vecteur (colonne) comme une matrice à une seule
colonne et un vecteur ligne comme une matrice à une seule ligne. De même on peut
voir - et on verra - une matrice comme une suite horizontale de vecteurs (colonnes)

A =
[
u⃗1 u⃗2 . . . u⃗m

]
ou comme une suite verticale de vecteurs lignes.

On écrira alors notre système sous forme stylisée 2

S :


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm




x1

x2
...
xm

 =


b1
b2
...
bn

 ,

2. Cette notation sera justifiée plus tard.
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ou encore en notation compacte

S : Ax⃗ = b⃗

avec x⃗ :=


x1

x2
...
xm

 et b⃗ :=


b1
b2
...
bn

. On dit que A est la matrice du système et que

[
A b⃗

]
:=
[
u⃗1 u⃗2 . . . u⃗m b⃗

]
:=


a11 a12 . . . a1m b1
a21 a22 . . . a2m b2
...

...
...

an1 an2 . . . anm bn


est la matrice augmentée.

Exemple On considère le système

S :

{
x+ y = 1
x− z = 1

.

C’est un système linéaire à deux équations et trois inconnues et le système homogène
associé est

S0 :

{
x+ y = 0
x− z = 0

.

En notation vectorielle, on a

S : x

[
1
1

]
+ y

[
1
0

]
+ z

[
0
−1

]
=

[
1
1

]
et en notation matricielle

S :

[
1 1 0
1 0 −1

] x
y
z

 =

[
1
1

]
.

La matrice augmentée est[
1 1 0 1
1 0 −1 1

]
.

On désignera par Sol(S) ⊂ Rm l’ensemble des solutions du système linéaire S.
Par définition, on a donc

S : x⃗ ∈ Sol(S) et S0 : x⃗ ∈ Sol(S0).
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Proposition 2.3.3 1. Sol(S0) ̸= ∅ et si x⃗, y⃗ ∈ Sol(S0), alors tx⃗+ sy⃗ ∈ Sol(S0).
2. Si P ∈ Sol(S), alors P + x⃗ ∈ Sol(S)⇔ x⃗ ∈ Sol(S0).

La première assertion dit que toute combinaison linéaire de solutions de S0 est
encore solution (de S0). La seconde dit que « les solutions de S s’obtiennent en
ajoutant la solution générale de S0 à une solution particulière de S ».

Démonstration. On utilise la notation vectorielle. Pour la première assertion, on
remarque d’abord que 0⃗ ∈ Sol(S0). On suppose ensuite que

x1u⃗1 + x2u⃗2 + . . .+ xmu⃗m = 0⃗ et y1u⃗1 + y2u⃗2 + . . .+ ymu⃗m = 0⃗.

On multiplie respectivement par t et s, on additionne et on factorise pour obtenir

(tx1 + sy1)u⃗1 + (tx2 + sy2)u⃗2 + . . .+ (txm + sym)u⃗m = 0⃗.

Pour la seconde assertion, on procède de même et on suppose donc que l’on a une
solution particulière

c1u⃗1 + c2u⃗2 + . . .+ cmu⃗m = b⃗.

Maintenant, dire que x⃗ ∈ S0 signifie que

x1u⃗1 + x2u⃗2 + . . .+ xmu⃗m = 0⃗.

En additionnant et en factorisant, c’est équivalent à

(c1 + x1)u⃗1 + (c2 + x2)u⃗2 + . . .+ (cm + xm)u⃗m = b⃗. ■

Exemple On considère le système

S :

{
x+ y = 1
x− z = 1

.

On cherche d’abord une solution « évidente » : 1
0
0

 .

On résout ensuite le système homogène

S0 :

{
x+ y = 0
x− z = 0

⇔


x = t
y = −t
z = t

⇔

 x
y
z

 = t

 1
−1
1

 .

On en déduit que

Sol(S) =


 1

0
0

+ t

 1
−1
1

 : t ∈ R

 =


 t+ 1
−t
t

 : t ∈ R

 .
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2.4 Méthode du pivot
Définition 2.4.1 1. Dans une matrice, le pivot d’une ligne est le premier coeffi-

cient non nul.
2. Une matrice est échelonnée a si « le pivot se décale vers la droite ligne par

ligne ».
3. Le rang d’une matrice échelonnée est le nombre de pivots.

a. Il existe aussi une notion de matrice échelonnée réduite que nous ne verrons pas ici.

Exemple Voici une matrice échelonnée (de rang 2) et deux matrices non-échelonnées : 0 1 2 3 4
0 0 0 5 6
0 0 0 0 0

 ,

 0 0 0 5 6
0 1 2 3 4
0 0 0 0 0

 ,

 0 0 0 0 0
0 1 2 3 4
0 0 0 5 6

 .

Définition 2.4.2 Un système linéaire

S : Ax⃗ = b⃗

est dit échelonné si la matrice augmentée [A b⃗] est échelonnée. Le rang du système
S est alors le rang de la matrice A. S’il y a un pivot sur la jème colonne de A, on
dit que xj est une variable pivot. Sinon, on dit que xj est une variable libre.

Exemples 1. Le système à 3 équations et 3 inconnues

S :


2x+ y + z = 5
−8y − 2z = −12
z = 2

est échelonné de rang 3 (sans variable libre). La troisième équation fournit
z = 2. On remplace dans la seconde qui s’écrit −8y− 4 = −12 et fournit y = 1.
On remplace dans la première qui s’écrit 2x+ 1 + 2 = 5 qui fournit x = 1. Il
existe donc une unique solution, c’est le point 1

1
2

 ∈ R3.

2. Le système à 4 équations et 5 inconnues

S :


x1 + x2 + x3 + x4 + x5 = 0
x3 − x5 = 0
2x4 + x5 = 1
0 = 0

est échelonné de rang 3 avec deux variables libres x2 et x5. On pose t := x2

et s := x5. On remplace dans la troisième équation pour trouver 2x4 + s = 1
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et donc x4 =
1
2
− 1

2
s. On remplace dans la seconde pour trouver x3 − s = 0 et

donc x3 = s. Enfin, on remplace dans la première pour trouver

x1 + t+ s+
1

2
− 1

2
s+ s = 0 et x1 = −

1

2
− t− 3

2
s.

En écriture vectorielle, notre système est donc équivalent à
x1

x2

x3

x4

x5

 =


−1

2
− t− 3

2
s

t
s

1
2
− 1

2
s

s

 =


−1

2

0
0
1
2

0

+ t


−1
1
0
0
0

+ s


−3

2

0
1
−1

2

1

 .

L’ensemble Sol(S) est donc le plan dans R5 passant par P et dirigé par u⃗ et v⃗
avec

P :=


−1

2

0
0
1
2

0

 , u⃗ :=


−1
1
0
0
0

 et v⃗ :=


−3

2

0
1
−1

2

1

 .

Lemme 2.4.3 Soit S un système linéaire échelonné à n équations et m inconnues.
1. S’il y a un pivot sur la dernière colonne de la matrice augmentée, alors le

système n’a pas de solution,
2. sinon, les solutions s’écrivent de manière unique

P + t1v⃗1 + t2v⃗2 + · · ·+ tdv⃗d

avec P, v⃗1, v⃗2, . . . , v⃗d ∈ Rm fixés (mais pas uniques) où d est le nombre de
variables libres.

Démonstration. S’il y a un pivot p sur la dernière colonne, alors la dernière ligne
non nulle s’écrit

0x1 + 0x2 + . . .+ 0xm = p,

ce qui est impossible.
On suppose dorénavant que ce n’est pas le cas. Les variables libres xj peuvent

prendre n’importe quelle valeur t1, . . . , td. On procède alors en remontant comme
suit. Si xm est libre, alors xm = td. Sinon, c’est une variable pivot et la dernière ligne
non nulle s’écrit ar,mxm = br si bien que

xm = cr :=
br
ar,m

.

On passe ensuite à xm−1, etc. La ligne correspondant à xj s’écrira

ai,jxj + ai,j+1xj+1 + . . .+ ai,mxm = bi



34 Chapitre 2. Algèbre linéaire (partie 1)

avec aij ̸= 0. On aura donc

xj =
bi
ai,j
− ai,j+1

ai,j
xj+1 + . . .− ai,m

ai,j
xm

= cj + cj1t1 + . . .+ cjdtd

après simplification par recurrence descendante. Il suffit alors de poser

P =


c1
c2
...

cm

 , v⃗1 =


c11
c21
...

cm1

 , v⃗2 =


c12
c22
...

cm2

 , . . . , v⃗d =


c1d
c2i
...

cmd

 . ■

Définition 2.4.4 Les opérations élémentaires sur les lignes d’une matrice sont les
suivantes :

1. ajouter (ou retrancher) à une ligne un multiple d’une autre ligne (Li ←
Li + cLj avec j ̸= i),

2. échanger deux ligne (Li ↔ Lj),
3. multiplier (ou diviser) une ligne par une constante non nulle (Li ← cLi avec

c ̸= 0).

Proposition 2.4.5 Les opérations élémentaires sur une matrice augmentée ne
changent pas les solutions du système linéaire correspondant.

Démonstration. Montrons qu’une solution reste solution lorsqu’on effectue une opé-
ration élémentaire :

1. (Li ← Li + cLj) Si

ai1x1 + ai2x2 + . . .+ aimxm = bi et aj1x1 + aj2x2 + . . .+ ajmxm = bj

alors

(ai1 + caj1)x1 + (ai2 + caj2)x2 + . . .+ (aim + cajm)xm = bi + cbj.

2. (Li ↔ Lj) Si

ai1x1 + ai2x2 + . . .+ aimxm = bi et aj1x1 + aj2x2 + . . .+ ajmxm = bj

alors

aj1x1 + aj2x2 + . . .+ ajmxm = bj et ai1x1 + ai2x2 + . . .+ aimxm = bi.

3. (Li ← cLi) Si

ai1x1 + ai2x2 + . . .+ aimxm = bi

alors

cai1x1 + cai2x2 + . . .+ caimxm = cbi.
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Pour la réciproque, on remarque que les opérations élémentaires sont réversibles :
1. Avec Li ← Li + cLj, il suffit de faire Li ← Li − cLj,
2. Avec Li ↔ Lj, il suffit de faire Li ↔ Lj,

3. Avec Li ← cLi, il suffit de faire Li ←
1

c
Li. ■

.

Exemples 1. Résoudre

S :


2x+ y + z = 5
4x− 6y = −2
−2x+ 7y + 2z = 9

?

On échelonne la matrice augmentée en appliquant la méthode du pivot : 2 1 1 5
4 −6 0 −2
−2 7 2 9

 L2 ←− L2 − 2L1

 2 1 1 5
0 −8 −2 −12
−2 7 2 9

 L3 ←− L3 + L1

 2 1 1 5
0 −8 −2 −12
0 8 3 14

 L3 ←− L3 + L2

 2 1 1 5
0 −8 −2 −12
0 0 1 2

 .

On en déduit que

S ⇔


2x+ y + z = 5
−8y − 2z = −12
z = 2

.

On sait alors que le point

 1
1
2

 est l’unique solution.

2. Résoudre

S :


x1 + x2 + x3 + x4 + x5 = 0
x1 + x2 + x3 + 3x4 + 2x5 = 1
2x1 + 2x2 + 3x3 + 2x4 + x5 = 0
x1 + x2 + 2x3 + 3x4 + x5 = 1

?

On échelonne la matrice augmentée en groupant au maximum les opérations :
1 1 1 1 1 0
1 1 1 3 2 1
2 2 3 2 1 0
1 1 2 3 1 1

 L2 ← L2 − L1

L3 ← L3 − 2L1

L4 ← L4 − L1
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1 1 1 1 1 0
0 0 0 2 1 1
0 0 1 0 −1 0
0 0 1 2 0 1

 L2 ↔ L3


1 1 1 1 1 0
0 0 1 0 −1 0
0 0 0 2 1 1
0 0 1 2 0 1

 L4 ← L4 − L2 − L3


1 1 1 1 1 0
0 0 1 0 −1 0
0 0 0 2 1 1
0 0 0 0 0 0

 .

On a donc

S ⇔


x1 + x2 + x3 + x4 + x5 = 0
x3 − x5 = 0
2x4 + x5 = 1
0 = 0.

On sait alors que Sol(S) est le plan dans R5 passant par P et dirigé par u⃗ et v⃗
avec

P :=


−1

2

0
0
1
2

0

 , u⃗ :=


−1
1
0
0
0

 et v⃗ :=


−3

2

0
1
−1

2

1

 .

3. À quelle condition sur a, b, c le système
x+ 2y − z + t = a
2x+ 7y + 4z + 2t = b
−x+ 4y + 13z − t = c

admet il une solution ?
On échelonne la matrice augmentée 1 2 −1 1 a

2 7 4 2 b
−1 4 13 −1 c

 L2 ← L2 − 2L1

L3 ← L3 + L1 1 2 −1 1 a
0 3 6 0 b− 2a
0 6 12 0 a+ c

 L3 ← L3 − 2L2

 1 2 −1 1 a
0 3 6 0 b− 2a
0 0 0 0 5a− 2b+ c

 .

La condition est donc 5a− 2b+ c = 0 (pas de pivot sur la dernière colonne).
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Théoreme 2.4.6 — du pivot de Gauss. On peut toujours échelonner une matrice
en effectuant des opérations élémentaires sur ses lignes.

Démonstration. Il s’agit de la méthode du pivot. Le premier pivot p1 est le premier
coefficient non nul de la première colonne non-nulle :

0 · · · 0 0 ∗ · · · ∗
...

...
...

...
...

...
... 0

...
...

...
... p1

...
...

...
... ∗ ...

...
...

...
...

...
...

0 · · · 0 ∗ ∗ · · · ∗


On échange la ligne du pivot avec la première ligne pour obtenir une matrice de la
forme

0 · · · 0 p1 ∗ · · · ∗
...

... c2
...

...
...

...
...

...
...

0 · · · 0 cn ∗ · · · ∗


avec p1 ̸= 0. On effectue ensuite les opérations Li ← Li − ci

p
L1 pour obtenir une

matrice de la forme
0 · · · 0 p1 ∗ · · · ∗
...

... 0
...

...
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗


On conserve dorénavant L1 et on effectue les mêmes opérations sur la matrice
constituée de L2, . . . , Ln. ■

Définition 2.4.7 1. Le rang rang(A) d’une matrice A est le rang (nombre de
pivots) de la matrice après échelonnement a.

2. Le rang rang(S) d’un système linéaire S est le rang de la matrice A du
système.

a. Par la méthode du pivot.

Exemples 1. Le rang de

S :


2x+ y + z = 5
4x− 6y = −2
−2x+ 7y + 2z = 9

ou de

 2 1 1
4 −6 0
−2 7 2


est 3.



38 Chapitre 2. Algèbre linéaire (partie 1)

2. Le rang de

S :


x1 + x2 + x3 + x4 + x5 = 0
x1 + x2 + x3 + 3x4 + 2x5 = 1
2x1 + 2x2 + 3x3 + 2x4 + x5 = 0
x1 + x2 + 2x3 + 3x4 + x5 = 1

ou de


1 1 1 1 1
1 1 1 3 2
2 2 3 2 1
1 1 2 3 1


est 3.

Remarques 1. Un système linéaire peut n’avoir aucune solution, en avoir une
seule, ou alors une infinité.

2. Un système linéaire avec même nombre n d’équations que d’inconnues est de
rang n si et seulement si il possède une unique solution.

3. Un système linéaire homogène de n équations à m inconnues avec n < m a une
infinité de solutions.

Définition 2.4.8 Une matrice A à n lignes et n colonnes de rang n est dite non-
singulière. Un système linéaire S à n équations et n inconnues de rang n est appelé
système de Cramer.

Remarque Un système linéaire S est un système de Cramer si et seulement si la
matrice A du système est non-singulière. Cela signifie que la matrice échelonnée est
de la forme

p1 ∗ ∗ · · · ∗
0 p2 ∗ · · · ∗
0 0

. . . . . . ...
... . . . . . . ∗
0 · · · · · · 0 pn


avec p1, p2, . . . , pn non nuls.

2.5 Sous-espace vectoriel
Définition 2.5.1 On dit qu’une partie E de Rn est un sous-espace vectoriel si

1. 0⃗ ∈ E,
2. u⃗, v⃗ ∈ E ⇒ u⃗+ v⃗ ∈ E,
3. u⃗ ∈ E, t ∈ R⇒ tu⃗ ∈ E.

Exemples 1. Rn et {⃗0} sont des sous-espaces vectoriels de Rn.

2. E =

{[
x
y

]
∈ R2 / x− y = 0

}
est un sous-espace vectoriel de R2.

E =

{[
x
y

]
∈ R2 / x− y = 1

}
n’est pas un sous-espace vectoriel de R2.

E =

{[
x
y

]
∈ R2 / x2 − y = 0

}
n’est pas un sous-espace vectoriel de R2.
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3. E =

{[
t
t

]
: t ∈ R

}
est un sous-espace vectoriel de R2.

E =

{[
t

t− 1

]
: t ∈ R

}
n’est pas un sous-espace vectoriel de R2.

E =

{[
t
t2

]
: t ∈ R

}
n’est pas un sous-espace vectoriel de R2.

Proposition 2.5.2 Une partie E de Rn est un sous-espace vectoriel si et seulement si
1. E ̸= ∅,
2. u⃗, v⃗ ∈ E, t, s ∈ R⇒ tu⃗+ sv⃗ ∈ E.

Démonstration. Supposons tout d’abord que E est un sous-espace vectoriel. Puisque
0⃗ ∈ E, on a E ̸= ∅. De plus, si on se donne u⃗, v⃗ ∈ E et t, s ∈ R, alors tu⃗ ∈ E et
tv⃗ ∈ E si bien que tu⃗+sv⃗ ∈ E. Réciproquement, puisque E ≠ ∅, il existe au moins un
vecteur u⃗ ∈ E et alors 0⃗ = 0u⃗ ∈ E. Si on se donne u⃗, v⃗ ∈ E, alors u⃗+ v⃗ = 1u⃗+1v⃗ ∈ E.
Enfin, si u⃗ ∈ E et t ∈ R, alors tu⃗ = tu⃗+ 0u⃗ ∈ E. ■

Remarque Pour une partie E de Rn, les conditions suivantes sont équivalentes :
1. E est un sous-espace vectoriel,
2. E est stable par combinaison linéaire,
3. E est un espace vectoriel (les huit propriétés de la proposition 2.1.5) pour

l’addition des vecteurs et la multiplication par des constantes.

Proposition 2.5.3 1. Si S0 est un système linéaire homogène à n inconnues, alors
Sol(S0) est un sous-espace vectoriel de Rn.

2. Si u⃗1, u⃗2, . . . , u⃗r ∈ Rn, alors

Vect(u⃗1, u⃗2, . . . , u⃗r) := {t1u⃗1 + t2u⃗2 + . . .+ tru⃗r : t1, t2, . . . , tr ∈ R}

est un sous-espace vectoriel de Rn.

Démonstration. La première assertion résulte de la proposition 2.3.3. Pour la seconde,
on pose E := Vect(u⃗1, u⃗2, . . . , u⃗r) et on remarque d’abord que

0⃗ = 0u⃗1 + 0u⃗2 + . . . 0u⃗r ∈ E.

Ensuite, si

t1u⃗1 + t2u⃗2 + . . .+ tru⃗r ∈ E et s1u⃗1 + s2u⃗2 + . . .+ sru⃗r ∈ E,

alors

(t1 + s1)u⃗1 + (t2 + s2)u⃗2 + . . . (tr + sr)u⃗r ∈ E.

Enfin, si

t1u⃗1 + t2u⃗2 + . . . tru⃗r ∈ E

alors

tt1u⃗1 + tt2u⃗2 + . . . ttru⃗r ∈ E. ■
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Définition 2.5.4 Soient E un sous-espace vectoriel de Rn et u⃗1, u⃗2, . . . , u⃗d ∈ E. On
dit que B := (u⃗1, u⃗2, . . . , u⃗d) est une base de E si tout b⃗ ∈ E s’écrit de manière
unique comme combinaison linéaire

x1u⃗1 + x2u⃗2 + . . .+ xdu⃗d = b⃗.

On dit alors que x1, x2, . . . , xd sont les composantes du vecteur b⃗ dans la base B
et on pose

[⃗b]B :=


x1

x2
...
xd


Remarquons que, dans ce cas, on aura

E := Vect(u⃗1, u⃗2, . . . , u⃗d)

mais que notre condition est plus forte car on requiert l’unicité de l’écriture.

Exemples 1. Dans R2, on a

x

[
1
0

]
+ y

[
0
1

]
=

[
x
y

]
.

On voit donc que
[
1
0

]
et
[
0
1

]
forment une base de R2 et que les composantes

de
[
x
y

]
dans cette base sont x et y.

2. Plus généralement, dans Rn, on pose

e⃗1 =


1
0
0
...
0

 , e⃗2 =


0
1
0
...
0

 , . . . , e⃗n =


0
0
...
0
1

 .

Alors, B := (e⃗1, e⃗2, . . . , e⃗n) est la base canonique de Rn et [⃗b]B = b⃗. En effet, on
a

b⃗ =


b1
b2
...
bn

⇔ b1e⃗1 + b2e⃗2 + . . .+ bne⃗n = b⃗

(écriture en ligne).
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3. Dans R2, si deux vecteurs u⃗ et v⃗ ne sont pas multiples l’un de l’autre, alors
B = (u⃗, v⃗) est toujours une base Concrètement, on peut prendre par exemple

u⃗ :=

[
3
2

]
et v⃗ :=

[
1
−1

]
. Quelles sont alors les composantes de b⃗ :=

[
9
1

]
dans la base B ?
On cherche x, y tels que

xu⃗+ yv⃗ = b⃗⇔ x

[
3
2

]
+ y

[
1
−1

]
=

[
9
1

]

⇔
{

3x+ y = 9
2x− y = 1

⇔
{

3x+ (2x− 1) = 9
y = 2x− 1

⇔
{

x = 2
y = 3

.

On trouve donc [⃗b]B =

[
2
3

]
.

4. Déterminer une base de l’ensemble E des solutions du système homogène

S0 :


x− 2y + z = 0
x+ y − 2z = 0
2x− y − z = 0

?

On applique la méthode du pivot 1 −2 1
1 1 −2
2 −1 −1

→
 1 −2 1

0 3 −3
0 3 −3

→
 1 −2 1

0 1 −1
0 0 0

 .

On en déduit que x
y
z

 ∈ E ⇔
{

x− 2y + z = 0
y − z = 0

⇔


x = t
y = t
z = t

⇔

 x
y
z

 = t

 1
1
1

 .

On voit ainsi que

 1
1
1

 est une base de E.

Remarque Si on pose

A =
[
u⃗1 u⃗2 . . . u⃗d

]
,

alors B := (u⃗1, u⃗2, . . . , u⃗d) est une base de E si et seulement si, pour tout b⃗ ∈ E,
l’équation

S : Ax⃗ = b⃗

a une unique solution.
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Proposition 2.5.5 Soit

S : Ax⃗ = b⃗

un système linéaire avec même nombre n d’équations que d’inconnues. Alors, les
conditions suivantes sont équivalentes

1. S a une unique solution,
2. S est un système de Cramer,
3. A est non-singulière,
4. les colonnes de A forment une base de Rn.

Démonstration. Par définition, on a (4) ⇒ (1). D’autre part, on sait déjà que
(1)⇔ (2)⇔ (3) et on sait que (4)⇒ (1). Mais comme (3) ne dépend pas de b⃗, on
peut remplacer b⃗ par n’importe quel vecteur u⃗ ∈ E dans l’implication (3)⇒ (1) et
on a donc aussi (3)⇒ (4). ■

2.6 Dimension

Lemme 2.6.1 Soient E et F deux sous-espaces vectoriels de Rn ayant pour bases
respectives B := (u⃗1, u⃗2, . . . , u⃗d) et C := (v⃗1, v⃗2, . . . , v⃗r). Si F ⊂ E, alors r ≤ d.

Démonstration. On procède par l’absurde et on suppose que d < r. Puisque B est
une base de E et que v⃗1, v⃗2, . . . , v⃗r ∈ E (car F ⊂ E), on peut écrire

v⃗1 := a11u⃗1 + a21u⃗2 + . . .+ ad1u⃗d

v⃗2 := a12u⃗1 + a22u⃗2 + . . .+ ad2u⃗d,

...
v⃗r := a1pu⃗1 + a2ru⃗2 + . . .+ adru⃗d.

Le système
a11x1 + a12x2 + . . .+ a1rxr = 0
a21x1 + a22x2 + . . .+ a2rxr = 0

...
ad1x1 + ad2x2 + . . .+ adrxr = 0

a une infinité de solutions puisque d < r. Pour chacune de ces solutions, on aura (en
additionnant et factorisant)

x1v⃗1 + x2v⃗2 + . . .+ xrv⃗r = 0u⃗1 + 0u⃗2 + . . .+ 0u⃗d = 0⃗

et donc plusieurs façons d’écrire le vecteur nul comme combinaison linéaire de
v⃗1, v⃗2, . . . , v⃗r, ce qui contredit le fait que C est une base de F . ■
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Lemme 2.6.2 Soient E et F deux sous-espaces vectoriels de Rn avec F ⊂ E. Si
C := (u⃗1, u⃗2, . . . , u⃗r) est une base de F , alors il existe une base de E de la forme

B := (u⃗1, u⃗2, . . . , u⃗r, u⃗r+1, u⃗r+2, . . . , u⃗d).

Démonstration. Tout d’abord, puisque F ⊂ Rn et que la base canonique a n vecteurs,
le lemme 2.6.1 implique que r ≤ n. Maintenant, si F ≠ E, alors il existe u⃗r+1 ∈ Rn

avec u⃗r+1 ∈ E mais u⃗r+1 /∈ F . On peut alors remplacer F par le sous-espace qui a
pour base (u⃗1, u⃗2, . . . , u⃗r+1). On aura donc r + 1 ≤ n. Le processus doit s’arrêter et
à un certain moment et on trouve F = E. ■

Théoreme 2.6.3 Tout sous-espace vectoriel E de Rn possède une base. Deux bases
quelconques ont même nombre d’éléments.

Démonstration. Pour la première assertion, il suffit d’appliquer le lemme 2.6.2 avec
F = {⃗0}. Pour la seconde, il suffit d’appliquer le lemme 2.6.1 au cas F = E. ■

Comme conséquence immédiate, on obtient une caractérisation des sous-espaces
vectoriels :

Proposition 2.6.4 Pour E ⊂ Rn, les conditions suivantes sont équivalentes
1. E est un sous-espace vectoriel de Rn,
2. il existe un système linéaire homogène à n inconnues S0 tel que E = Sol(S0),
3. il existe u⃗1, u⃗2, . . . , u⃗r ∈ Rn tels que E = Vect(u⃗1, u⃗2, . . . , u⃗r),

Démonstration. On a vu dans le lemme 2.5.3 que (3)⇒ (1) et (2)⇒ (1) et il résulte
du théorème 2.6.3 que (1) ⇒ (3). Il reste donc seulement à montrer que (1) ⇒ (2).

On introduit la notion de produit scalaire x⃗ · y⃗ ∈ Rn de deux vecteurs en posant

x⃗ :=


x1

x2
...
xn

 , y⃗ :=


y1
y2
...
yn

 ⇒ x⃗ · y⃗ := x1y1 + x2y2 + . . .+ xnyn.

On vérifie ensuite que l’orthogonal

E⊥ := {v⃗ ∈ Rn / ∀u⃗ ∈ E, v⃗ · u⃗ = 0}

est un sous-espace vectoriel de Rn et on choisit une base

v⃗1 :=


a11
a12
...

a1n

 , v⃗2 :=


a21
a22
...

a2n

 , v⃗d :=


ad1
ad2
...

adn


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de E⊥. On considère alors le système

S0 :


a11x1 + a12x2 + . . .+ a1nxn = 0
a21x1 + a22x2 + . . .+ a2nxm = 0

...
ad1x1 + an2x2 + . . .+ adnxn = 0.

et on vérifie que Sol(S0) = E. Les détails sont laissés en exercice (on utilisera pas ce
résultat par la suite). ■

Définition 2.6.5 La dimension dim(E) d’un sous-espace vectoriel E de Rn est
le nombre d’éléments d’une base. Si dim(E) = 1, on dit que E est une droite
(vectorielle). Si dim(E) = 2, on dit que E est un plan (vectoriel).

Exemples 1. dim(Rn) = n.
2. Si

S0 :


x− 2y + z = 0
x+ y − 2z = 0
2x− y − z = 0

alors, Sol(S0) est une droite.

Remarques 1. Si des vecteurs appartiennent à une même droite (resp. un même
plan), il sont dits colinéaires (resp. coplanaires).

2. Un vecteur u⃗ d’une droite est une base si et seulement si u⃗ ≠ 0⃗. Deux vecteurs
u⃗ et v⃗ forment une base d’un plan si et seulement si ils ne sont pas colinéaires.

Proposition 2.6.6 Soient E et F deux sous-espaces vectoriels de Rn avec F ⊂ E.
Alors dimF ≤ dimE avec égalité si et seulement si E = F .

Démonstration. Résulte du lemme 2.6.1. ■

Exemples 1. Les sous-espaces vectoriels de R2 sont {0}, les droites vectorielles
D et R2.

2. Les sous-espaces vectoriels de R3 sont {0}, les droites vectorielles D, les plans
vectoriels P et R3.

3. Si D1,D2 sont deux droites et D1 ⊂ D2, alors D1 = D2.
4. Si P1,P2 sont deux plans et P1 ⊂ P2, alors P1 = P2.

Théoreme 2.6.7 — du rang. Si S0 est un système linéaire homogène à m inconnues,
alors

dim(Sol(S0)) + rang(S0) = m.

Démonstration. On peut supposer que le système est échelonné auquel cas cela
résulte du lemme 2.4.3. ■

Remarque La dimension de l’espace des solutions est égale au nombre de variables
libres du système échelonné.
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Définition 2.6.8 Soit A une matrice à n lignes et m colonnes.
1. Le noyau de A est l’ensemble ker(A) des x⃗ ∈ Rm qui sont solution du système

homogène Ax⃗ = 0⃗.
2. L’image de A est l’ensemble im(A) des b⃗ ∈ Rn tels que le système Ax⃗ = b⃗ a

au moins une solution.

Remarques 1. On a donc

x⃗ ∈ kerA⇔ Ax⃗ = 0⃗ et b⃗ ∈ im(A)⇔ ∃x⃗ ∈ Rm, Ax⃗ = b⃗.

2. Si on désigne par S le système Ax⃗ = b⃗, on voit donc que

Sol(S0) = ker(A) et Sol(S) ̸= ∅ ⇔ b⃗ ∈ im(A).

3. Si A =
[
u⃗1 u⃗2 . . . u⃗m

]
, alors

b⃗ ∈ im(A)⇔ ∃x1, . . . , xm, x1u⃗1 + x2u⃗2 + . . .+ xmu⃗m = b⃗

et donc im(A) = Vect(u⃗1, u⃗2, . . . , u⃗m).

4. En d’autres termes,

Vect(u⃗1, u⃗2, . . . , u⃗m) = im
([

u⃗1 u⃗2 . . . u⃗m

])
.

Exemple 1. Determiner le noyau de
[

1 2 3
4 5 6

]
?

On doit donc résoudre[
1 2 3
4 5 6

] x
y
z

 =

 0
0
0

 .

On échelonne la matrice[
1 2 3
4 5 6

]
→
[

1 2 3
0 −3 −6

]
.

On pose z = t (variable libre) et on aura donc −3y + −6t = 0 qui donne
y = −2t puis x− 4t+ 3t = 0 qui donne x = t et donc finalement x

y
z

 =

 t
−2t

t

 = t

 1
−2
1


si bien que

ker

([
1 2 3
4 5 6

])
= vect

 1
−2
1

 .
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2. Déterminer l’image de

 1 2 −1 1
2 7 4 2
−1 4 13 −1

 ?

On échelonne la matrice augmentée 1 2 −1 1 a
2 7 4 2 b
−1 4 13 −1 c

→
 1 2 −1 1 a

0 3 6 0 b− 2a
0 0 0 0 5a− 2b+ c

 .

On voit donc que a
b
c

 ∈ im

 1 2 −1 1
2 7 4 2
−1 4 13 −1

⇔ 5a− 2b+ c = 0.

L’image est donc le plan d’équation 5x− 2y + z = 0.

Proposition 2.6.9 Si A est une matrice à n lignes et m colonnes, alors

dim(im(A)) = rang(A).

Démonstration. On vérifie d’abord que si P est une matrice inversible, alors

dim(im(A)) = dim(im(PA)).

Plus précisément (v⃗1, v⃗2, . . . , v⃗r) est une base de im(A) si et seulement si (P v⃗1, P v⃗2, . . . , P v⃗r)
est une base de im(PA). Il en résulte que dim(im(A)) ne dépend que de la forme
échelonnée de A. En effet, effectuer une opération élémentaire sur A revient à rempla-
cer A par EA ou E est la matrice (inversible) obtenue en effectuant cette opération
sur I. Enfin, si la matrice est échelonnée, il est aisé de voir que les colonnes avec
pivot forment une base. Les détails sont laissés en exercice. ■

Remarques 1. La démonstration de la proposition 2.6.9 montre que si A =[
u⃗1 u⃗2 . . . u⃗m

]
, alors les vecteurs correspondant aux colonnes des pivots

de la matrice échelonnée forment une base de im(A).

2. On peut écrire le théorème du rang sous la forme

dim(ker(A)) + dim(im(A)) = dim(Rm).

3. Si A est échelonnée, alors dim(ker(A)) est le nombre de variables libres et
dim(im(A)) est le nombre de variables pivots.

Exemple On considère la matrice

A :=

 1 2 0 1
2 4 2 0
0 0 1 1

 .
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On pose

u⃗1 :=

 1
2
0

 , u⃗2 :=

 2
4
0

 , u⃗3 :=

 0
2
1

 et u⃗4 :=

 1
0
1

 .

On échelonne

A :=

 1 2 0 1
2 4 2 0
0 0 1 1

 L2 ← L2 − 2L1

A :=

 1 2 0 1
0 0 2 −2
0 0 1 1

 L3 ← L3 −
1

2
L2

A :=

 1 2 0 1
0 0 2 −2
0 0 0 0

 .

Les pivots sont sur la première et la troisième colonne. On en déduit que (u⃗1, u⃗3) est
une base de im(A).

Proposition 2.6.10 Pour une matrice carrée A de taille n, les conditions suivantes
sont équivalentes :

1. A est non-singulière,
2. ker(A) = {⃗0},
3. im(A) = Rn.

Démonstration. La matrice A est non-singulière si et seulement si le système Ax⃗ = 0⃗
a une unique solution. Or on sait que A0⃗ = 0⃗. Cela veut donc dire que ker(A) = {⃗0}.
De plus, par le théorème du rang,

ker(A) = {⃗0} ⇔ dim(ker(A)) = 0⇔ rang(A) = n⇔ im(A) = Rn. ■

2.7 Opérations sur les matrices
Définition 2.7.1 La somme des matrices à n lignes et m colonnes

A :=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
an1 an2 . . . anm

 et B :=


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
bn1 bn2 . . . bnm


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est la matrice à n lignes et m colonnes

A+B :=


a11 + b11 a12 + b12 . . . a1m + b1m
a21 + b21 a22 + b22 . . . a2m + b2m

...
...

an1 + bn1 an2 + bn2 . . . anm + bnm

 .

Exemple
[
1 0 2
3 1 −1

]
+

[
0 1 −2
0 1 2

]
=

[
1 1 0
3 2 1

]
.

Définition 2.7.2 Le produit de la matrice à n lignes et m colonnes

A :=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
an1 an2 . . . anm


par un nombre t est la matrice à n lignes et m colonnes

tA :=


ta11 ta12 . . . ta1m
ta21 ta22 . . . ta2m

...
...

tan1 tan2 . . . tanm


Exemple 2

[
1 0 2
3 1 −1

]
=

[
2 0 4
6 2 −2

]
.

La matrice nulle à n lignes et m colonnes est

0 :=


0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0


et l’opposée d’une matrice A est −A := (−1)A.

Proposition 2.7.3 On a toujours
1. A+B = B + A,
2. (A+B) + C = A+ (B + C),
3. A+ 0 = 0,
4. A+ (−A) = 0,
5. 1A = A,
6. t(A+B) = tA+ tB,
7. (t+ s)A = tA+ sA,
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8. (ts)A = t(sA).

Démonstration. On peut voir une matrice à n lignes et m colonnes comme un vecteur
à nm composantes et appliquer la proposition 2.1.5. ■

Remarques 1. Cela signifie que les matrices à n lignes et m colonnes forment
un espace vectoriel.

2. On a “tA = tB ⇔ A = B ou t = 0” et “tA = sA⇔ t = s ou A = 0”.

Définition 2.7.4 Le produit des matrices

A :=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
an1 an2 . . . anm

 et B :=


b11 b12 . . . b1ℓ
b21 b22 . . . b2ℓ
...

...
bm1 bm2 . . . bmℓ


à respectivement n lignes et m colonnes et m lignes et ℓ colonnes est la matrice

C :=


c11 c12 . . . c1ℓ
c21 c22 . . . c2ℓ
...

...
cn1 cn2 . . . cnℓ


à n lignes ℓ colonnes avec

cij = ai1b1j + ai2b2j + . . .+ aimbmj.

Exemples 1.
[
1 2 0

]  −11
3

 = 1× (−1) + 2× 1 + 0× 3 = 1.

et
[
−1 0 1

]  −11
3

 = (−1)× (−1) + 0× 1 + 1× 3 = 4.

2.
[

1 2 0
−1 0 1

] −11
3

 =

[
1
4

]

et
[

1 2 0
−1 0 1

] 1
2
4

 =

[
5
3

]
.

3.
[

1 2 0
−1 0 1

] −1 1
1 2
3 4

 =

[
1 5
4 3

]
.

Remarques 1. On a bien comme espéré
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
an1 an2 . . . anm




x1

x2
...
xm

 =


a11x1 + a12x2 + . . .+ a1mxm

a21x1 + a22x2 + . . .+ a2mxm
...

an1x1 + an2x2 + . . .+ anmxm

 .
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2. Si

A =
[
u⃗1 u⃗2 . . . u⃗m

]
et (e⃗1, e⃗2, . . . , e⃗m) désigne la base canonique de Rm, alors

u⃗1 = Ae⃗1, u⃗2 = Ae⃗2, . . . , u⃗m = Ae⃗m.

En effet, avec le 1 sur la ième ligne, on trouve bien


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
an1 an2 . . . anm





0
...
0
1
0
...
0


=


a1i
a2i
...
ani



3. Pour que A = B, il suffit que Ae⃗1 = Be⃗1, Ae⃗2 = Be⃗2, . . ., Ae⃗m = Be⃗m.

La matrice unité à n lignes et n colonnes est

I :=


1 0 0 · · · 0
0 1 0 · · · 0

0 0
. . . . . . ...

... . . . . . . 0
0 · · · · · · 0 1

 .

Proposition 2.7.5 1. (AB)C = A(BC) (=: ABC),
2. IA = A et AI = A,
3. A(B + C) = AB + AC et (A+B)C = AC +BC,
4. (tA)B = A(tB) = t(AB).

Démonstration. Il est bien pratique d’utiliser la notation

m∑
k=1

aikbkj = ai1b1j + ai2b2j + . . .+ aimbmj

si bien que la première assertion résulte de

m∑
k=1

aik

(
p∑

l=1

bklclj

)
=

p∑
l=1

(
m∑
k=1

aikbkl

)
clj.

Les détails sont laissés en exercice ainsi que la démosntration des autres assertions. ■
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Remarque Pour multiplier A par B, il faut que le nombre de colonnes de A soit
égal au nombre de lignes de B. Si on veut aussi multiplier B par A, il faut que
A et B soient deux matrices carrées de même taille. On a AB ̸= BA en général.
Cependant, si A est une matrice carrée, on peut généralement trouver B telle que
AB = BA = I.

Exemples 1. (AB ̸= BA)[
0 0
1 0

] [
0 1
0 0

]
=

[
0 0
0 1

]
et

[
0 1
0 0

] [
0 0
1 0

]
=

[
1 0
0 0

]
.

2. (AB = BA = I)[
2 3
1 2

] [
2 −3
−1 2

]
=

[
1 0
0 1

]
et

[
2 −3
−1 2

] [
2 3
1 2

]
=

[
1 0
0 1

]
.

Définition 2.7.6 Une matrice carrée A est inversible s’il existe une autre matrice
carrée A−1 alors appelée son inverse telle que

AA−1 = A−1A = I.

Exemples 1. La matrice A :=

[
2 3
1 2

]
est inversible et A−1 =

[
2 −3
−1 2

]
.

2. La matrice
[
0 1
0 0

]
n’est pas inversible.

Lemme 2.7.7 Si A est une matrice inversible, alors son inverse est unique.

Démonstration. Supposons qu’il existe une autre matrice B telle que AB = BA = I.
On aura alors B = BI = BAA−1 = IA−1 = A−1. ■

Proposition 2.7.8 1. Si A est inversible, alors A−1 aussi et son inverse est A.
2. Si A et B sont inversibles, alors AB aussi et son inverse est B−1A−1.

Démonstration. La première assertion est triviale puisque la condition est symétrique
entre A et A−1. Pour la seconde, il suffit de calculer

(B−1A−1)(AB) = B−1(A−1(AB)) = B−1((A−1A)B) = B−1(IB) = B−1B = I

et pareil dans l’autre sens. ■

Proposition 2.7.9 Si A est inversible, alors le système Ax⃗ = b⃗ a pour unique solution
x⃗ = A−1⃗b.

Démonstration. En effet,

Ax⃗ = b⃗⇒ A−1(Ax⃗) = A−1⃗b⇒ (A−1A)x⃗ = A−1⃗b⇒ Ix⃗ = A−1⃗b⇒ x⃗ = A−1⃗b

et pareil dans l’autres sens. ■
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Exemple Résoudre S :

{
2x+ 3y = 5
x+ 2y = 1

?

Le système S s’écrit[
2 3
1 2

] [
x
y

]
=

[
5
1

]

et on sait que
[

2 3
1 2

]−1

=

[
2 −3
−1 2

]
. On en déduit donc que[

x
y

]
=

[
2 −3
−1 2

] [
5
1

]
=

[
7
−3

]
.

Proposition 2.7.10 La matrice
[

a b
c d

]
est inversible si et seulement si ad− bc ̸= 0

et alors[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
Démonstration. On calcule[

a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 −cb+ da

]
= (ad− bc)

[
1 0
0 1

]
et pareil dans l’autre sens. ■

Théoreme 2.7.11 Si A est une matrice carrée, alors les conditions suivantes sont
équivalentes :

1. A est non-singulière,
2. il existe B telle que AB = I,
3. il existe B telle que BA = I,
4. A est inversible.

On a alors A−1 = B et B−1 = A.

Démonstration. • (1)⇒ (2) : Puisque A est non-singulière, il existe des vecteurs
v⃗1, v⃗2, . . . , v⃗n tels que

Av⃗1 = e⃗1, Av⃗2 = e⃗2, . . . , Av⃗n = e⃗n.

Il suffit alors de poser B :=
[
v⃗1 v⃗2 . . . v⃗n

]
.

• (3)⇒ (1) : Si Ax⃗ = 0⃗, alors x⃗ = Ix⃗ = BAx⃗ = A0⃗ = 0⃗.

• (2) ⇒ (4) : En échangeant A et B dans (3) ⇒ (1), on voit que B est non-
singulière. En appliquant (1)⇒ (2) à B, on voit donc qu’il existe donc C tel
que BC = I. On a alors C = IC = ABC = AI = A. Cela montre que B est
inversible et que B−1 = A = C. En particulier, A est inversible et A−1 = B.

• (4)⇒ (3) : par définition. ■
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Lemme 2.7.12 Si B la matrice obtenue en faisant une opération élémentaire sur
A et E la matrice obtenue en faisant la même opération élémentaire sur I, alors
B = EI.

Démonstration. On note A = [aij], B = [bij] et E = [eij]. On considère l’opération
Lk ← Lk + cLℓ. On aura donc bij = aij pour i ̸= k et bkj = akj + calj. D’autre part,
on aura

eij =


c si i = k, j = ℓ
1 si i = j
0 sinon.

On calcule alors
∑

m eimamj = aij si i ̸= k et∑
m

ekmamj = akj + calj.

On procède de même avec les deux autres opérations. Les détails sont laissé en
exercice. ■

Proposition 2.7.13 Une matrice est inversible si et seulement si on peut la trans-
former en I en opérant sur ses lignes. On obtient alors A−1 en faisant ses mêmes
opérations sur les lignes de I.

Démonstration. Supposons que A est inversible. On peut déjà l’échelonner. Puis-
qu’elle est inversible, elle est non est non-singulière, et sera donc de la forme

a11 ∗ ∗ · · · ∗
0 a22 ∗ · · · ∗
0 0

. . . . . . ...
... . . . . . . ∗
0 · · · · · · 0 ann

 .

On effectue alors (dans l’ordre) les opérations suivantes :

L1 ← L1 − a1n
ann

Ln

L2 ← L2 − a2n
ann

Ln

...
Ln−1 ← Ln−1 −

a(n−1)n

ann
Ln

Ln ← 1
ann

Ln



a11 ∗ ∗ · · · ∗ 0
0 a22 ∗ · · · ∗ 0

0 0
. . . . . . ...

...
... . . . . . . ∗ ...
0 · · · · · · 0 a(n−1)(n−1) 0
0 0 · · · · · · 0 1


.

On recommence jusqu’à obtenir I (formellement, on fait une récurrence sur n).
Supposons maintenant que I = Er . . . E2E1A ou Ei est la matrice obtenue en

faisant la ième opération élémentaire sur les lignes de I. On considère alors la matrice
B = Er . . . E2E1I obtenue en faisant les mêmes opérations dans le même ordre sur I.
On a

BA = Er . . . E2E1IA = Er . . . E2E1A = I.

Cela montre que A est inversible et que A−1 = B. ■
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Exemple En pratique on fait directement la transformation[
A I

]
−→

[
I A−1

]
.

1. Retrouver par cette méthode que l’inverse de
[

2 3
1 2

]
est
[

2 −3
−1 2

]
?[

2 3 1 0
1 2 0 1

]
L1 ↔ L2[

1 2 0 1
2 3 1 0

]
L2 ← L2 − 2L1[

1 2 0 1
0 −1 1 −2

]
L2 ← −L2[

1 2 0 1
0 1 −1 2

]
L1 ← L1 − 2L2[

1 0 2 −3
0 1 −1 2

]
.

2. Déterminer l’inverse de

 1 −1 0
2 −1 0
1 −2 2

 ?

 1 −1 0 1 0 0
2 −1 0 0 1 0
1 −2 2 0 0 1

 L2 ← L2 − 2L1

L3 ← L3 − L1 1 −1 0 1 0 0
0 1 −2 −2 1 0
0 −1 1 −1 0 1

 L3 ← L3 + L2

 1 −1 0 1 0 0
0 1 −2 −2 1 0
0 0 −1 −3 1 1

 L3 ← −L3

 1 −1 0 1 0 0
0 1 −2 −2 1 0
0 0 1 3 −1 −1

 L1 ← L1 − L3

L2 ← L2 − 2L3 1 −1 0 −2 1 1
0 1 0 4 −1 −2
0 0 1 3 −1 −1

 L1 ← L1 + L2

 1 0 0 2 0 −1
0 1 0 4 −1 −2
0 0 1 3 −1 −1

 .

On a donc 1 −1 0
2 −1 0
1 −2 2

−1

=

 2 0 −1
4 −1 −2
3 −1 −1

 .
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2.8 Exercices (6 janvier 2026)

Exercice 2.1 Déterminer une représentation paramétrique du plan d’équation
2x − 3y + 4z = 6. Donner un point du plan ainsi que deux vecteurs directeurs.
Même question avec le plan d’équation 2x− 3y + 4z = 0.

Exercice 2.2 Soit P le plan passant par

 0
−1
1

 dirigé par

 1
2
−1

 et

 2
1
1

.

1. Donner une représentation paramétrique du plan. Est ce que

 0
2
−1

 ∈ P ?

2. Déterminer une équation cartésienne du plan. Est ce que

 3
2
1

 ∈ P ?

Exercice 2.3 Déterminer l’intersection des plans d’équations
1. x+ 2y − 3z = 0 et 2x− y + 4z = 0,
2. x− y + 3z = 1, 2x+ y − z = 3 et x− 4y + 10z = 1,
3. 2x− 2y − z = 2, x+ 2y + z = 1 et x+ 8y + 4z = 1.

Exercice 2.4 Résoudre le système


x− 4y − z + w = a
2x− 8y + z − 4w = b
−x+ 4y − 2z + 5w = c

lorsque a = 3, b = 9

et c = −6. Résoudre le système homogène associé. En général, à quelle condition
sur a, b, c, le système a-t-il une solution ?

Exercice 2.5 Déterminer le nombre de solutions du système linéaire

1.


2x+ y = 7
3x+ 2y = 12
4x− 3y = 2

, 2.


x+ y − z = −2
2x− y + z = 5
x+ 4y − 4z = −11

.

Exercice 2.6 À quelle condition le système suivant a-t-il une solution ?

1.


x+ 3y = a
3x− y = b
2x+ 2y = c
x− 4y = d

, 2.


x+ y − z = a
x+ y = b
−x+ y + 2z = c

.

Exercice 2.7 Déterminer un système d’équations linéaires pour le plan passant
par P et dirigé par u⃗ et v⃗ :

1. P :


1
1
1
1

, u⃗ :


1
2
3
4

, v⃗ :


4
3
2
1

, 2. P :


0
1
0
1

, u⃗ :


1
1
−1
−1

, v⃗ :


1
−1
1
−1

.
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Exercice 2.8 Résoudre le système

1.


x+ 2y + 2w = 0
2x+ 4y + z + 2w = 2
3x+ 5y − z + 6w = −1
2x− 7z + 10w = −10

, 2.


2x+ 4y + z + 2w = 4
3x+ 6y + z + w = 0
x+ 3y + z + w = 1
x+ 2y + z + 2w = 4

,

3.


x+ 2y + 2w = 6
3x+ 5y − z + 6w = 17
2x+ 4y + z + 2w = 12
2x− 7z + 10w = 7

. 4.


x+ 2y + z = 1
2x+ (a+ 4)y + (a+ 2)z = 4
−x+ (a− 2)y + z = a− 1

.

Exercice 2.9 Montrer que B :=

([
1
1

]
,

[
−1
2

])
est une base de R2 et calculer

les composantes de
[

5
−1

]
dans B.

Exercice 2.10 Montrer que B est une base de R3 et calculer les composantes de 2
2
3

 dans B :

1. B =

 1
1
1

 ,

 1
2
3

 ,

 1
4
8

, 2. B =

 1
2
3

 ,

 1
1
1

 ,

 4
5
6

 .

Exercice 2.11 Déterminer une base ainsi que la dimension de E :

1. E :=


 x

y
z

 ∈ R3 /

{
x+ 2y − 3z = 0
2x− y + 4z = 0

 ,

2. E :=


 x

y
z

 ∈ R3 / x− 3y = 0

 ,

3. E :=




x
y
z
w

 ∈ R4 /

{
x+ y + 2z + w = 0
x+ y − z − w = 0

 .

Exercice 2.12 Déterminer une base ainsi que la dimension de l’intersection des
sous-espaces vectoriels E et F de R4 :

1. E :=




x
y
z
w

 ∈ R3 /

{
x+ 4y + z − 2w = 0
−x− 4y + z − 4w = 0

 et
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F :=




x
y
z
w

 ∈ R3 /

{
z − 3w = 0
x+ 4y + w = 0

 .

2. E := Vect




1
2
3
4

 ,


1
0
1
0


 et F := Vect



−1
−1
0
0

 ,


1
1
4
4


.

Exercice 2.13 Déterminer une base de l’image de A, le rang de A, la dimension
du noyau de A ainsi qu’un système d’équations pour im(A) :

1. A =


1 2 3
0 1 −1
−1 2 0
3 1 1

, 2. A =


1 0 2
2 −1 1
−1 2 4
0 1 3

.

Exercice 2.14 Construire si possible une matrice dont l’image contient v⃗1 et v⃗2 et
dont le noyau contient u⃗1 et u⃗2 :

1. v⃗1 :=

 1
1
1

 , v⃗2 :=

 0
1
1

 , u⃗1 :=

 1
0
1

 , u⃗2 :=

 0
1
0

,

2. v⃗1 :=

 1
1
1

 , v⃗2 :=

 0
1
1

 , u⃗1 :=


1
0
1
0

 , u⃗2 :=


0
1
0
1

.

Exercice 2.15 Soient

A :=

[
1 0 2
−2 3 1

]
, B :=

[
−2 −1 2
3 2 0

]
, C :=

[
1 0
−2 3

]
.

Déterminer si possible 2A, A−B et A+ C.

Exercice 2.16 Calculer

1.
[
1 0 2

]  1
−2
3

, 2.
[

1 0 2
−2 3 1

] 1
−2
3

, 3.
[

1 0 2
−2 3 1

] 1 2
−2 1
3 −1

.

Exercice 2.17 Calculer lorsque c’est possible AB, AC, CA,A2, C2 avec

A :=

[
1 2
−2 4

]
, B :=

[
−2 6
1 −3

]
et C :=

 −1 2
1 3
2 2

 .
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Exercice 2.18 Montrer que A :=

 1 1 −2
1 2 −1
2 3 −2

 est inversible et que A−1 = −1 −4 3
0 2 −1
−1 −1 1

, puis résoudre les systèmes


x+ y − 2z = 0
x+ 2y − z = 0
2x+ 3y − 2z = 0

,


x+ y − 2z = 2
x+ 2y − z = 4
2x+ 3y − 2z = 7

,


x+ y − 2z = −1
x+ 2y − z = 2
2x+ 3y − 2z = 3

.

Exercice 2.19 Calculer la matrice inverse lorsque c’est possible

1.
[

2 −5
−1 3

]
, 2.

[
4 −8
6 −12

]
, 3.

 0 1 3
1 0 1
0 1 5

, 4.

 1 0 −1
1 1 0
2 1 −1

.

Exercice 2.20 1. Montrer que A :=

 2 2 3
0 1 1
−1 2 1

 est inversible et calculer

A−1.

2. Résoudre le système


x+ y − 2z = 1
x+ 2y − z = 1
2x+ 3y − 2z = 1

3. Montrer que B :=

 2
0
−1

 ,

 2
1
2

 ,

 3
1
1

 est une base de R3 et calculer

les composantes de

 1
1
1

 dans B.

Exercice 2.21 1. Trouver deux matrices 2× 2 telles que

(A+B)2 ̸= A2 + 2AB +B2.

2. Montrer que si A et B deux matrices carrées de taille n, alors

(A+B)2 = A2 + 2AB +B2 ⇔ AB = BA.

3. Montrer que deux matrices carrées A et B d’ordre n sont inversibles si et
seulement si AB est inversible.

4. Soit A une matrice carrée telle que A2 − 3A+ 2I = 0. Montrer que A est
inversible.



3. Algèbre linéaire (partie 2)

Dans ce chapitre, nous utiliserons l’expression « espace vectoriel » dans le sens
« sous-espace vectoriel de Rn pour un certain n ». Cependant, toutes les définitions
font sens pour des espaces vectoriels abstraits et tous les résultats restent alors
valides.

3.1 Applications linéaires
Définition 3.1.1 Une application

f : E → F, u⃗ 7→ f(u⃗)

entre deux espaces vectoriels est linéaire si

f(u⃗+ v⃗) = f(u⃗) + f(v⃗) et f(tu⃗) = tf(u⃗).

Exemples 1. Si A est une matrice à n lignes et m colonnes, alors l’application

f : Rm → Rn, u⃗ 7→ Au⃗

est linéaire. Plus généralement, si E est un sous-espace vectoriel Rm et F un
sous-espace vectoriel de Rn tels que u⃗ ∈ E ⇒ Au⃗ ∈ F , alors l’application

f : E → F, u⃗ 7→ Au⃗

est linéaire.
2. (a) L’homothétie hλ de rapport λ ̸= 0 dans un espace vectoriel E est l’appli-

cation linéaire

f : E → E, u⃗ 7→ λu⃗.
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(b) En particulier, l’homothétie de rapport λ dans Rn est l’application linéaire

Rn → Rn, u⃗ 7→ Au⃗

avec

A = λI =


λ 0 0 · · · 0
0 λ 0 · · · 0

0 0
. . . . . . ...

... . . . . . . 0
0 · · · · · · 0 λ

 .

(c) L’homothétie de rapport 1 dans un espace vectoriel E est l’identité

IdE : E → E, u⃗→ u⃗.

Dans le cas E = Rn, ça correspond au cas A = I.
3. Avec E = F = R2, on peut considérer

(a) La rotation rθ d’angle θ centrée à l’origine (faire un dessin),
(b) La réflexion s∆ par rapport une droite ∆ passant par 0 (faire un dessin),
(c) La projection orthogonale p∆ sur une droite ∆ passant par 0 (faire un

dessin).

Proposition 3.1.2 Si E et F sont deux espaces vectoriels, alors une application
f : E → F est linéaire si et seulement si on a toujours

f(tu⃗+ sv⃗) = tf(u⃗) + sf(v⃗).

Démonstration. Si f est linéaire, alors

f(tu⃗+ sv⃗) = f(tu⃗) + f(sv⃗) = tf(u⃗) + sf(v⃗).

Réciproquement, en prenant t = s = 1, on aura f(u⃗+ v⃗) = f(u⃗) + f(v⃗) et en prenant
s = 0 et/ou v⃗ = 0, on aura f(tu⃗) = tf(u⃗). ■

Remarque Alternativement, une application est linéaire si et seulement si elle
préserve les combinaisons linéaires :

f(t1u⃗1 + t2u⃗2 + . . .+ tru⃗r) = t1f(u⃗1) + t2f(u⃗2) + . . .+ trf(u⃗r).

Proposition 3.1.3 Si f : E → F est une application linéaire, alors f (⃗0) = 0⃗ et
f(−u⃗) = −f(u⃗).

Démonstration. On a

f (⃗0) = f(0× 0⃗) = 0× f (⃗0) = 0⃗

et

f(−u⃗) + f((−1)× u⃗) = (−1)× f(u⃗) = −f(u⃗). ■
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Définition 3.1.4 Le noyau d’une application linéaire f : E → F est

ker(f) = {u⃗ / f(u⃗) = 0⃗} ⊂ E

et son image est

im(f) = {f(u⃗)} ⊂ F.

Remarque En d’autres termes, u⃗ ∈ ker f ⇔ f(u⃗) = 0 et v⃗ ∈ im(f) ⇔ ∃u⃗ ∈
E, f(u⃗) = v⃗.

Exemples 1. Avec

f : Rm → Rn, u⃗ 7→ Au⃗,

on a ker(f) = ker(A) et im(f) = im(A).
2. Homothétie : ker(hλ) = {⃗0} et im(hλ) = E.
3. Rotation : ker(rθ) = {⃗0} et im(rθ) = R2.
4. Reflection : ker(s∆) = {⃗0} et im(s∆) = R2.
5. Projection : ker(p∆) = ∆⊥ est la droite perpendiculaire à ∆ à l’origine et

im(p∆) = ∆.

Proposition 3.1.5 Si f : E → F est une application linéaire, alors ker(f) est un
sous-espace vectoriel de E et im(f) est un sous-espace vectoriel de F .

Démonstration. On sait déjà que f (⃗0) = 0⃗, ce qui montre que ker(f) ̸= ∅ et im(f) ̸= ∅.
Ensuite, puisque f est linéaire, si f(u⃗) = 0⃗ et f(v⃗) = 0⃗, alors

f(tu⃗+ sv⃗) = tf(u⃗) + sf(v⃗) = t× 0⃗ + s× 0⃗ = 0⃗.

Cela montre que ker(f) est un sous-espace vectoriel. De même, puisque f est linéaire,
on a toujours

tf(u⃗) + sf(v⃗) = f(tu⃗+ sv⃗),

ce qui montre que im(f) est aussi un sous-espace vectoriel. ■

Définition 3.1.6 Si f : E → F est une application linéaire, alors de rang de f est
rang(f) := dim(im(f)).

Exemples 1. Avec

f : Rm → Rn, u⃗ 7→ Au⃗,

on a rang(f) = rang(A).
2. Homothétie : rang(hλ) = dimE.
3. Rotation : rang(rθ) = 2.
4. Reflection : rang(s∆) = 2.
5. Projection : rang(p∆) = 1.
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Théoreme 3.1.7 — du rang. Si f : E → F est une application linéaire, alors
dim(ker(f)) + rang(f) = dim(E).

Démonstration. On se donne une base (u⃗1, u⃗2, . . . , u⃗k) de ker f . On la prolonge en
une base

(u⃗1, u⃗2, . . . , u⃗k, u⃗k+1, u⃗k+2, . . . , u⃗k+r)

de E. On pose v1 := f(uk+1), v2 := f(uk+2), . . ., vr := f(u⃗k+r). Tout u⃗ ∈ E s’écrit
de manière unique

u⃗ = t1u⃗1 + t2u⃗2 + . . .+ tk+ru⃗k+r.

On en déduit que f(u⃗) s’écrit de manière unique

f(u⃗) = f(t1u⃗1 + t2u⃗2 + . . .+ tk+ru⃗k+r)

= t1f(u⃗1) + t2f(u⃗2) + . . .+ tk+rf(u⃗k+r)

= t10⃗ + t20⃗ + . . . tk0⃗ + tk+1v⃗1 + tk+2v⃗2 + . . .+ tk+rv⃗r

= s1v⃗1 + s2v⃗2 + . . .+ srv⃗r

avec s1 := tk+1, s2 := tk+2, . . . , sr := tk+r. Cela montre que (v⃗1, v⃗2, . . . , v⃗r) est une
base de im(f). ■

Rappel 3.1.8 1. Si f : X → Y et g : Y → Z sont deux applications, alors leur
composée est l’application

g ◦ f : X → Z, x 7→ g(f(x)).

2. Si h : Z → W est une autre application, alors (h ◦ g) ◦ f = h ◦ (g ◦ f).
3. Si f : X → Y est une application, alors f ◦ IdX = f et IdY ◦ f = f .

Proposition 3.1.9 Si f : E → F et g : E → G sont deux applications linéaires,
alors g ◦ f est aussi une application linéaire.

Démonstration. On a (g◦f)(tu⃗+sv⃗) = g(f(tu⃗+tv⃗)) = g(tf(u⃗)+sf(v⃗)) = tg(f(u⃗))+
sg(f(v⃗)) = t(g ◦ f)(u⃗) + s(g ◦ f)(v⃗). ■

Exemples 1. Avec f : Rm → Rn, u⃗ 7→ Au⃗ et g : Rn → Rp, v⃗ 7→ Bv⃗, on a

g ◦ f : Rm → Rp, u⃗ 7→ BAu⃗.

2. Homothéties : hµ ◦ hλ = hλµ (faire un dessin).
3. Rotations : rφ ◦ rθ = rθ+φ (faire un dessin).
4. Réflexions : s′∆ ◦ s∆ = r2θ ou θ est l’angle entre ∆ et ∆′ et en particulier,

s∆ ◦ s∆ = IdR2 (faire un dessin).
5. Projections : p∆ ◦ p∆ = p∆ (faire un dessin).
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Rappel 3.1.10 1. Une application f : X → Y est bijective si et seulement si il
existe une application f−1 : Y → X telle que f−1(y) := x⇔ y = f(x).

2. Si f : X → Y est bijective, alors f−1 aussi et (f−1)−1 = f .

Proposition 3.1.11 Si f est une application linéaire bijective, alors f−1 est aussi
linéaire.

Démonstration. Puisque f est linéaire, on a

f(tf−1(u⃗) + sf−1(v⃗)) = tf(f−1(u⃗)) + sf(f−1(v⃗)) = tu⃗+ sv⃗.

On en déduit que f−1(tu⃗+ sv⃗) = tf−1(u⃗) + sf−1(v⃗). ■

Exemples 1. L’application f : Rn → Rn, u⃗ 7→ Au⃗ est bijective si et seulement si
A est inversible et on a alors

f−1 : Rn → Rn, u⃗ 7→ A−1u⃗.

2. Homothéties : (hλ)
−1 = h1/λ (faire un dessin).

3. Rotations : (rθ)−1 = r−θ (faire un dessin).
4. Réflexion : (s∆)−1 = s∆ (faire un dessin).
5. Projection : p∆ n’est pas bijective (faire un dessin).

Proposition 3.1.12 Pour une application linéaire f : E → E, les conditions suivantes
sont équivalentes :

1. f est bijective,
2. ker(f) = {⃗0},
3. im(f) = E.

Démonstration. Il résulte du théorème du rang que les deux dernières assertions
sont équivalentes. Supposons celles-ci satisfaites. Il résulte alors de la troisième
que si v⃗ ∈ E, il existe u⃗ ∈ E tel que f(u⃗) = v⃗. Si on a aussi f(u⃗′) = v⃗, alors
f(u⃗− u⃗′) = f(u⃗)− f(u⃗′) = v⃗ − v⃗ = 0⃗. On aura donc u⃗− u⃗′ = 0⃗ et donc u⃗′ = u⃗, ce
qui donne l’unicité. ■

3.2 Matrice d’une application linéaire

Proposition 3.2.1 Si B := (u⃗1, u⃗2, . . . , u⃗d) est une base de E et v⃗1, v⃗2, . . . , v⃗d ∈ F ,
alors il existe une unique application linéaire f : E → F telle que

f(u⃗1) = v⃗1, f(u⃗2) = v⃗2, . . . , f(u⃗d) = v⃗d.

Démonstration. Nécessairement, si u⃗ = t1u⃗1 + t2u⃗2 + . . .+ tdu⃗d, alors

f(u⃗) = f(t1u⃗1 + t2u⃗2 + . . .+ tdu⃗d)

= t1f(u⃗1) + t2f(u⃗2) + . . .+ tdf(u⃗d)

= t1v⃗1 + t2v⃗2 + . . .+ tdv⃗r.

On vérifie alors aisément mais laborieusement qu’un tel f est bien linéaire. ■
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Exemples 1. Soit B := (e⃗1, e⃗2, . . . , e⃗m) la base canonique de Rm et

A :=
[
u⃗1 u⃗2 . . . u⃗m

]
.

Alors, l’application f : Rm → Rn, x⃗ 7→ Ax⃗ est l’unique application linéaire telle
que

f(e⃗1) = u⃗1, f(e⃗2) = u⃗2, . . . , f(e⃗m) = u⃗m.

2. Soit B := (u⃗1, u⃗2, . . . , u⃗d) une base de E. Alors, l’homothétie hλ : E → E est
l’unique application linéaire telle que

hλ(u⃗1) = λu⃗1, hλ(u⃗2) = λu⃗2, . . . , hλ(u⃗d) = λu⃗d

3. Soit B := (e⃗1, e⃗2) la base canonique de R2. Alors, la rotation rθ : R2 → R2 est
l’unique application linéaire telle que (faire un dessin)

rθ(e⃗1) =

[
cos(θ)
sin(θ)

]
et rθ(e⃗2) =

[
− sin(θ)
cos(θ)

]
.

4. Soit 0⃗ ̸= u⃗ ∈ ∆ et 0⃗ ̸= v⃗ ∈ ∆⊥ et B := (u⃗, v⃗). Alors, la réflexion s∆ : R2 → R2

est l’unique application linéaire telle que s∆(u⃗) = u⃗ et s∆(v⃗) = −v⃗.
5. Avec les mêmes notations, la projection p∆ : R2 → R2 est l’unique application

linéaire telle que p∆(u⃗) = u⃗ et p∆(v⃗) = 0⃗.

Définition 3.2.2 Soit f : E → F une application linéaire, B := (u⃗1, u⃗2, . . . , u⃗m) une
base de E et C := (v⃗1, v⃗2, . . . , v⃗n) une base de F . Alors, la matrice de f dans les
bases B et C est l’unique matrice

[f ]CB :=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
an1 an2 . . . anm


telle que

f(u⃗1) = a11v⃗1 + a21v⃗2 + . . .+ an1v⃗n,

f(u⃗2) = a12v⃗1 + a22v⃗2 + . . .+ an2v⃗n,

...
f(u⃗1) = a1mv⃗1 + a2mv⃗2 + . . .+ anmv⃗n.

Remarques 1. Sous forme compacte, on a

[f ]CB =
[
[f(u⃗1)]C [f(u⃗2)]C . . . [f(u⃗m)]C)

]
.

2. Lorsque E = F et B = C, on écrira simplement [f ]B.
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Exemples 1. Avec f : Rm → Rn, x⃗ 7→ Ax⃗ et B, C les bases canoniques, on a
[f ]CB = A.

2. Dans n’importe quelle base B d’un espace vectoriel E, on a

[hλ]B = λI.

En particulier, [IdE]B = I.
3. Dans la base canonique B de R2, on a

[rθ]B =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

4. Si 0⃗ ̸= u⃗ ∈ ∆ et 0⃗ ̸= v⃗ ∈ ∆⊥ et B := (u⃗, v⃗), alors

[s∆]B =

[
1 0
0 −1

]
.

5. Avec les mêmes notations,

[p∆]B =

[
1 0
0 0

]
.

Proposition 3.2.3 Soit f : E → F une application linéaire, B une base de E et C
une base de F . Si x⃗ ∈ E, alors

[f(x⃗)]C = [f ]CB[x⃗]B.

Démonstration. On reprends les notations de la définition on on rappelle que

[x⃗]B :=


x1

x2
...
xm


signifie que

x⃗ = x1u⃗1 + x2u⃗2 + . . .+ xmu⃗m.

On aura donc

f(x⃗) = x1f(u⃗1) + x2f(u⃗2) + . . .+ xmf(u⃗m),

puis

f(x⃗) = x1f(u⃗1) + x2f(u⃗2) + . . .+ xmf(u⃗m)

= x1(a11v⃗1 + a21v⃗2 + . . .+ an1v⃗n)

+ x2(a12v⃗1 + a22v⃗2 + . . .+ an2v⃗n)

+ . . .

+ xm(a1nv⃗1 + a2nv⃗2 + . . .+ anmv⃗n).

= (a11x1 + a12x2 + . . .+ a1mxm)v⃗1

+ (a21x1 + a22x2 + . . .+ a2mxm)v⃗2

+ . . .

+ (an1x1 + an2x2 + . . .+ anmxm)v⃗n. ■
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Exemples 1. Toute application linéaire f : Rm → Rn est de la forme f(x⃗) = Ax⃗
où A est une matrice à n lignes et m colonnes.

2. Dans n’importe quelle base B de E, on retrouve bien sûr

[hλ(x⃗)]B = [hλ]B[x⃗]B = λI[x⃗]B = λ[x⃗]B = [λx⃗]B.

3. rθ

([
a
b

])
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
a
b

]
=

[
a cos(θ)− b sin(θ)
a sin(θ) + b cos(θ)

]
.

4. Soit 0⃗ ̸= u⃗ ∈ ∆⊥, 0⃗ ̸= v⃗ ∈ ∆ et B := (u⃗, v⃗). Si w⃗ = au⃗+ bv⃗, alors

[s∆(w⃗)]B = [s∆]B[w⃗)]B =

[
1 0
0 −1

] [
a
b

]
=

[
a
−b

]
.

5. De même,

[p∆(w⃗)]B = [p∆]B[w⃗)]B =

[
1 0
0 0

] [
a
b

]
=

[
a
0

]
.

Proposition 3.2.4 Soientt f : E → F et g : F → G des applications linéaires et B,
C et D des bases respectives de E, F et G. Alors

[g ◦ f ]DB = [g]DC [f ]
C
B.

Démonstration. Si B =: (u⃗1, u⃗2, . . . , u⃗m), alors, pour i = 1, . . . ,m,

[g ◦ f ]DB [u⃗i]B = [(g ◦ f)(u⃗i)]D = [(g(f(u⃗i))]D = [g]DC [f(u⃗i)]C = [g]DC [f ]
C
B[u⃗i]B.

L’assertion résulte alors formellement du fait que [u⃗i]B =



0
...
0
1
0
...
0


← ième place. ■

Exemples 1. Avec f : Rm → Rn, x⃗ 7→ Ax⃗ et g : Rn → Rp, y⃗ 7→ By⃗, on trouve

g ◦ f : Rm → Rp, x⃗ 7→ (BA)x⃗.

2. On sait que rθ+φ = rθ ◦ rφ et donc [rθ+φ]B = [rθ]B[rφ]B. On a d’une part

[rθ+φ]B =

[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
et d’autre part

[rθ]B[rφ]B =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
=

[
cos(θ) cos(φ)− sin(θ) sin(φ) − cos(θ) sin(φ)− sin(θ) cos(φ)
sin(θ) cos(φ) + cos(θ) sin(φ) − sin(θ) sin(φ) + cos(θ) cos(φ)

]
.

On retrouve ainsi{
cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ),
sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ).
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Proposition 3.2.5 Soit f : E → F une application linéaire bijective, B une base de
E et C une base de F . Alors, [f ]CB est bijective et(

[f ]CB
)−1

= [f−1]BC .

Démonstration. On a

[f−1]BC [f ]
C
B = [f−1 ◦ f ]B = [IdE]B = I

et

[f ]CB[f
−1]BC = [f ◦ f−1]C = [IdF ]C = I. ■

Exemple Puisque r−1
θ = r−θ, on a[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]−1

=

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

Définition 3.2.6 Si B et B′ sont deux bases de E, alors la matrice de passage de B
à B′ est

P := [IdE]
B
B′ .

Remarques 1. En pratique, on dit que B est l’ancienne base et que B′ est la
nouvelle.

2. La matrice de passage de B′ à B sera alors P−1 (exercice).
3. Si B est la base canonique de Rn et B′ =: (u⃗1, u⃗2, . . . , u⃗n) est une autre base de

Rn, alors

P =
[
u⃗1 u⃗2 . . . u⃗n

]
.

Exemple On considère le cas E = R2 et les bases

B := (e⃗1, e⃗2) =

([
1
0

]
,

[
0
1

])
et B′ := (u⃗1, u⃗2) =

([
2
1

]
,

[
3
2

])
.

Alors, la matrice de passage de B à B′ est P :=

[
2 3
1 2

]
et la matrice de passage de

B à B′ est P−1 =

[
2 −3
−1 2

]
.

Proposition 3.2.7 Si P est la matrice de passage de B à B′ et qu’on pose X := [x⃗]B
et X ′ := [x⃗]B′ , alors

X ′ = P−1X et X = PX ′.

Démonstration. En effet, [IdE]
B
B′ [x⃗]B = [IdE(x⃗)]B′ = [x⃗]B′ . ■
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Théoreme 3.2.8 Soit f : E → E une application linéaire et B,B′ deux bases de E.
Si P est la matrice de passage de B à B′ et qu’on pose A := [f ]B et A′ := [f ]B′ ,
alors

A′ = P−1AP et A = PA′P−1.

Démonstration. En effet, [IdE]
B′
B [f ]B[IdE]

B
B′ = [f ]B′ . ■

Remarque On dit alors que les matrices A et A′ sont semblables.

Exemple Quelle est la matrice dans la base canonique B de la symétrie s par rapport
à la droite ∆ d’équation x− 2y = 0 (faire un dessin) ?

On voit immédiatement que u⃗ :=

[
2
1

]
∈ ∆ et que v⃗ :=

[
−1
2

]
∈ ∆⊥. On

connait la matrice A′ de s dans la base B′ = (u⃗, v⃗), la matrice de passage P de B à
B′ et on calcule P−1 :

A′ =

[
1 0
0 −1

]
, P =

[
2 −1
1 2

]
et P−1 =

1

5

[
2 1
−1 2

]
.

On en déduit la matrice A de la symétrie dans la base canonique :

A = PA′P−1

=
1

5

[
2 −1
1 2

] [
1 0
0 −1

] [
2 1
−1 2

]
=

1

5

[
2 −1
1 2

] [
2 1
1 −2

]
=

1

5

[
3 4
4 −3

]
.

En particulier, on voit que s

([
1
0

])
=

[
3/5
4/5

]
et que s

([
0
1

])
=

[
4/5
−3/5

]
.

3.3 Déterminants
Définition 3.3.1 Le déterminant de la matrice carrée

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann


est le nombre a

det(A) =
∑
σ∈Sn

ϵ(σ)a1σ(1)a2σ(2) . . . anσ(n)

ou Sn désigne l’ensemble des permutations σ de l’ensemble d’indices {1, 2, . . . , n}
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et ϵ(σ) la signature de σ qui vaut 1 si le nombre d’inversions est pair et −1 sinon.

a. On ne peut vraiment pas se passer de somme formelle ici.

On écrira aussi 1

det(A) =:

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
ainsi que 2

det(A) =: det(u⃗1, u⃗2, . . . , u⃗n)

si A =
[
u⃗1 u⃗2 . . . u⃗n

]
.

Exemples 1. Pour les matrices de taille deux, on fait le produit en croix :∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

2. Pour les matrices de taille trois, on peut appliquer la règle de Sarrus :∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31.

Ça ne marche pas en dimension supérieure !
3. Pour les matrices triangulaires, on fait le produit diagonal :∣∣∣∣∣∣∣∣∣∣∣

c1 ∗ ∗ · · · ∗
0 c2 ∗ · · · ∗
0 0

. . . . . . ...
... . . . . . . ∗
0 · · · · · · 0 cn

∣∣∣∣∣∣∣∣∣∣∣
= c1c2 . . . cn.

4. En général, il existe une méthode récursive de développement le long d’une
colonne ou d’une ligne. Par exemple, si on désigne par Ai la matrice obtenue
en enlevant la première colonne et la i-ème ligne, alors

det(A) = a11 det(A1)− a21 det(A2) + . . .+ (−1)n−1an1 det(An).

On aura∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1×
∣∣∣∣ 5 6

8 9

∣∣∣∣− 4×
∣∣∣∣ 2 3

8 9

∣∣∣∣+ 7×
∣∣∣∣ 2 3

5 6

∣∣∣∣
= (45− 48)− 4(18− 24) + 7(12− 15)

= −3 + 24− 21

= 0.

1. Ne pas confondre avec une valeur absolue.
2. On rencontre plus généralement detB(u⃗1, u⃗2, . . . , u⃗d) = det([u⃗1]B, [u⃗2]B, . . . , [u⃗d]B) lorsque B

est une base d’un espace E de dimension d.
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Remarque Si on désigne par P le parallélépipède de base u⃗1, u⃗2, . . . , u⃗n, alors

Vol(P) = | det(u⃗1, u⃗2, . . . , u⃗n)|

(et le signe donne l’orientation).
On peut faire le calcul pour n = 2 en supposant tous les points bien placés pour
éviter les valeurs absolues. Il s’agit de montrer (faire un dessin) que l’aire A d’un
parallélogramme (O,M,P,N) est

A = det
(−−→
OM,

−−→
ON

)
.

En posant M =

[
a
b

]
et N =

[
c
d

]
, il s’agit donc de montrer que A = ad− bc. On

sait (et on peut facilement vérifier) que A est le produit de la base a par la hauteur
h qu’il faut calculer. On considère pour cela la droite D dirigée par

−−→
OM passant par

N puis l’intersection M ′ =:

[
a
b′

]
de D avec la droite verticale passant par M . On

aura alors h = b′ − b. Puisque

M ∈ D =

{[
c
d

]
+ t

[
a
b

]}
,

on aura{
a = c+ ta
b′ = d+ tb

si bien que h = b′ − b = d− b(1− t) et a− ta = c. On calcule enfin

A = a× h

= a× (d− b(1− t))

= ad− b(a− ta)

= ad− bc.

Définition 3.3.2 La transposée d’une matrice A à n lignes et m colonne est la
matrice tA à m lignes et n colonnes définie par

A :=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm

 ⇔ tA :=


a11 a21 . . . an1
a12 a22 . . . an2
...

...
...

a1m a2m . . . amn



Exemples 1. t
[
a1 a2 . . . an

]
=


a1
a2
...
an

 et réciproquement.

2. Si A =

[
a b
c d

]
, alors tA =

[
a c
b d

]
.
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3. Si A =

[
1 2 3
4 5 6

]
, alors tA =

 1 4
2 5
3 6

.

Proposition 3.3.3 Si A est une matrice carrée, alors det(tA) = det(A).

Démonstration. Si on désigne par σ−1 la permutation inverse de σ (qui a même
signature), on aura

det(tA) =
∑
σ∈Sn

ϵ(σ)aσ(1)1aσ(2)2 . . . aσ(n)n

=
∑
σ∈Sn

ϵ(σ−1)a1σ−1(1)a2σ−1(2) . . . anσ−1(n)

=
∑
σ∈Sn

ϵ(σ)a1σ(1)a2σ(2) . . . anσ(n)

= det(A). ■

Exemple

∣∣∣∣∣∣∣∣∣∣∣

c1 0 0 · · · 0
∗ c2 0 · · · 0

∗ ∗ . . . . . . ...
... . . . . . . 0
∗ · · · · · · ∗ cn

∣∣∣∣∣∣∣∣∣∣∣
= c1c2 . . . cn.

Proposition 3.3.4 On a toujours :

1. det(u⃗1, . . . , u⃗i−1, tu⃗, u⃗i+1, . . . , u⃗n) = t det(u⃗1, . . . , u⃗i−1, u⃗, u⃗i+1, . . . , u⃗n),

2. det(u⃗1, . . . , u⃗i−1, u⃗+ v⃗, u⃗i+1, . . . , u⃗n) = det(u⃗1, . . . , u⃗i−1, u⃗, u⃗i+1, . . . , u⃗n)

+ det(u⃗1, . . . , u⃗i−1, v⃗, u⃗i+1, . . . , u⃗n),

3. det(u⃗1, . . . , u⃗i−1, u⃗, u⃗i+1, . . . , u⃗j−1, u⃗, u⃗j+1, . . . , u⃗n) = 0.

Démonstration. On pose (attention, on utilise la notation transposée)

u⃗1 =:


a11
a12
...

a1n

 , u⃗2 =:


a21
a22
...

a2n

 , . . . , u⃗n =:


an1
an2
...

ann

 , u⃗ =:


a1
a2
...
an

 , v⃗ =:


b1
b2
...
bn

 .
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On a alors

det(u⃗1, . . . , u⃗i−1, tu⃗, u⃗i+1, . . . , u⃗n)

=
∑
σ∈Sn

ϵ(σ)a1σ(1) . . . ai−1σ(i−1)taσ(i)ai+1σ(i+1) . . . anσ(n)

=t
∑
σ∈Sn

ϵ(σ)a1σ(1) . . . ai−1σ(i−1)aσ(i)ai+1σ(i+1) . . . anσ(n)

=t det(u⃗1, . . . , u⃗i−1, u⃗, u⃗i+1, . . . , u⃗n).

On a aussi

det(u⃗1, . . . , u⃗i−1, u⃗+ v⃗, u⃗i+1, . . . , u⃗n)

=
∑
σ∈Sn

ϵ(σ)a1σ(1) . . . ai−1σ(i−1)(aσ(i) + bσ(i))ai+1σ(i+1) . . . anσ(n)

=
∑
σ∈Sn

ϵ(σ)a1σ(1) . . . ai−1σ(i−1)aσ(i)ai+1σ(i+1) . . . anσ(n)

+
∑
σ∈Sn

ϵ(σ)a1σ(1) . . . ai−1σ(i−1)bσ(i)ai+1σ(i+1) . . . anσ(n)

=det(u⃗1, . . . , u⃗i−1, u⃗, u⃗i+1, . . . , u⃗n) + det(u⃗1, . . . , u⃗i−1, v⃗, u⃗i+1, . . . , u⃗n).

Pour la dernière assertion, on désigne par An l’ensemble des permutations paires
et par A′

n l’ensemble des permutations impaires. Si σ est une permutation paire, on
note σ′ la permutation définie par

σ′(k) = σ(k) si k ̸= i, j
σ′(i) = σ(j)
σ′(j) = σ(i).

On peut alors vérifier que A′
n = {σ′ : σ ∈ An}. On a alors

det(u⃗1, . . . , u⃗i−1, u⃗, u⃗i+1, . . . , u⃗j−1, u⃗, u⃗j+1, . . . , u⃗n)

=
∑
σ∈Sn

ϵ(σ)a1σ(1) . . . ai−1σ(i−1)aσ(i)ai+1σ(i+1) . . . aj−1σ(j−1)aσ(j)aj+1σ(j+1) . . . anσ(n)

=
∑
σ∈An

a1σ(1) . . . ai−1σ(i−1)aσ(i)ai+1σ(i+1) . . . aj−1σ(j−1)aσ(j)aj+1σ(j+1) . . . anσ(n)

−
∑

σ′∈A′
n

a1σ′(1) . . . ai−1σ′(i−1)aσ′(i)ai+1σ′(i+1) . . . aj−1σ′(j−1)aσ′(j)aj+1σ′(j+1) . . . anσ′(n)

=
∑
σ∈An

a1σ(1) . . . ai−1σ(i−1)aσ(i)ai+1σ(i+1) . . . aj−1σ(j−1)aσ(j)aj+1σ(j+1) . . . anσ(n)

−
∑
σ∈An

a1σ(1) . . . ai−1σ(i−1)aσ(j)ai+1σ(i+1) . . . aj−1σ(j−1)aσ(i)aj+1σ(j+1) . . . anσ(n)

= 0. ■

Remarque On dit que le déterminant est une forme multilinéaire alternée. En fait,
c’est l’unique forme multilinéaire alternée telle que det(I) = n.
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Exemples 1.

∣∣∣∣∣∣
2 1 1
1 1 1
1 0 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
0 1 1
0 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 1 1
1 1 1
1 0 1

∣∣∣∣∣∣ = 1 + 0 = 1.

2.

∣∣∣∣∣∣
6 2 2
3 1 0
3 0 1

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
3 1 1
3 1 0
3 0 1

∣∣∣∣∣∣ = 6

∣∣∣∣∣∣
1 1 1
1 1 0
1 0 1

∣∣∣∣∣∣ = 6× (−1) = −6.

3.

∣∣∣∣∣∣
3 4 6
1 2 3
2 6 9

∣∣∣∣∣∣ = 6

∣∣∣∣∣∣
3 2 2
1 1 1
2 3 3

∣∣∣∣∣∣ = 6× 0 = 0.

Proposition 3.3.5 Les opérations élémentaires sur une matrice ont les effets suivants :
1. Li ← Li + cLj avec j ̸= i ne change pas le déterminant,
2. Li ↔ Lj avec i ̸= j change le signe du déterminant,
3. Li ← cLi multiplie le déterminant par c.

Démonstration. En considérant la transposées, on peut montrer l’analogue sur les
colonnes : on a d’abord

det(u⃗1, . . . , u⃗i−1, u⃗i + cu⃗j, u⃗i+1, . . . , u⃗n)

=det(u⃗1, . . . , u⃗i−1, u⃗i, u⃗i+1, . . . , u⃗n)

+c det(u⃗1, . . . , u⃗i−1, u⃗j, u⃗i+1, . . . , u⃗n)

=det(u⃗1, . . . , u⃗i−1, u⃗i, u⃗i+1, . . . , u⃗n),

puis ensuite

det(u⃗1, . . . , u⃗i−1, u⃗i, u⃗i+1, . . . , u⃗j−1, u⃗j, u⃗j+1, . . . , u⃗n)

+det(u⃗1, . . . , u⃗i−1, u⃗j, u⃗i+1, . . . , u⃗j−1, u⃗i, u⃗j+1, . . . , u⃗n)

=det(u⃗1, . . . , u⃗i−1, u⃗i + u⃗j, u⃗i+1, . . . , u⃗j−1, u⃗i + u⃗j, u⃗j+1, . . . , u⃗n)

=0.

et bien sûr

det(u⃗1, . . . , u⃗i−1, cu⃗i, u⃗i+1, . . . , u⃗n)

=c det(u⃗1, . . . , u⃗i−1, u⃗i, u⃗i+1, . . . , u⃗n). ■

Exemples 1.
∣∣∣∣ 2 3
1 2

∣∣∣∣ = − ∣∣∣∣ 1 2
2 3

∣∣∣∣ = − ∣∣∣∣ 1 2
0 −1

∣∣∣∣ = −(−1) = 1.

2.

∣∣∣∣∣∣
2 4 6
2 1 0
1 0 1

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
1 0 1
2 1 0
2 4 6

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
1 0 1
0 1 −2
0 4 4

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
1 0 1
0 1 −2
0 0 12

∣∣∣∣∣∣ = −12.
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Proposition 3.3.6 Une matrice carrée A est inversible si et seulement si det(A) ̸= 0.

Démonstration. On peut échelonner A sans changer les conditions. On sait aussi que
A est inversible si et seulement si elle est non-singulière. Si A est échelonnée, alors
A est non-singulière si et seulement si tous les pivots sont sur la diagonale. C’est
équivalent à dire que le déterminant est non nul (faire un dessin). ■

Corollaire 3.3.7 Les conditions suivantes sont équivalentes :
1. (u⃗1, u⃗2, . . . , u⃗n) est une base de Rn,
2. det(u⃗1, u⃗2, . . . , u⃗n) ̸= 0. ■

Théoreme 3.3.8 det(AB) = det(A) det(B).

Démonstration. Si A n’est pas inversible, alors AB non plus et on trouve 0 de chaque
coté. Sinon, on peut opérer sur les lignes de A et de AB simultanément et finalement
supposer que A = I auquel cas l’assertion est triviale. ■

Corollaire 3.3.9 Si A est inversible, alors det(A−1) = det(A)−1.

Lemme 3.3.10 Soit f : E → E une application linéaire et B,B′ deux bases de E,
Alors,

det([f ]B) = det([f ]B′).

Démonstration. On désigne par
• A := [f ]B la matrice de f dans B,
• A′ := [f ]B′ la matrice de f dans B′,
• P la matrice de passage de B à B′.

On sait alors que A′ = P−1AP et on aura donc

det(A′) = det(P )−1 det(A) det(P ) = det(A). ■

Définition 3.3.11 Si f : E → E est une application linéaire, alors le déterminant
de f est

det(f) := det([f ]B).

où B est une base quelconque de E.

Exemples 1. Avec f : Rm → Rn, u⃗ 7→ Au⃗, on a det(f) = det(A).
2. Homothétie : det(hλ) = λd a vec d = dim(E).
3. Rotation : det(rθ) = cos2(θ) + sin2(θ) = 1.
4. Reflection : det(s∆) = −1.
5. Projection : det(p∆) = 0.
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Proposition 3.3.12 Soit f : Rn → Rn linéaire et v⃗1, v⃗2, . . . , v⃗n ∈ Rn. Alors,

det(f(v⃗1), f(v⃗2), . . . , f(v⃗n)) = det(f) det(v⃗1, v⃗2, . . . , v⃗n).

Démonstration. En effet, si A est la matrice de f dans la base canonique, alors

B :=
[
v⃗1 v⃗2 . . . v⃗n

]
⇒ AB :=

[
f(v⃗1) f(v⃗2) . . . f(v⃗n)

]
et la formule se réduit à det(AB) = det(A) det(B). ■

Remarque On peut montrer que si X ⊂ Rn et f : Rn → Rn est linéaire, alors

Vol(f(X)) = | det(f)|Vol(X).

3.4 Diagonalisation
On dit qu’une matrice est diagonale si elle est de la forme

λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . . . . . ...

... . . . . . . 0
0 · · · · · · 0 λn

 .

Définition 3.4.1 Une application linéaire f : E → E est diagonalisable s’il existe
une base de E telle que [f ]B est diagonale.

Remarque Si A est une matrice carrée de taille n, on appliquera directement à
A le vocabulaire utilisé pour l’application linéaire Rn → Rn, x⃗ 7→ Ax⃗. On dira par
exemple que A est diagonalisable lorsque f est diagonalisable.

Exemples 1. Une homothétie est diagonalisable (et même diagonale dans n’im-
porte quelle base).

2. Une réflexion ou une projection est diagonalisable.

3. Une rotation n’est pas diagonalisable (en général).

4. La matrice
[
0 1
1 0

]
n’est pas diagonale mais elle est diagonalisable (c’est la

réflexion par rapport à la droite d’équation y = x).

5. La matrice
[
0 1
0 0

]
n’est pas diagonale mais pas non plus diagonalisable

(exercice).
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Proposition 3.4.2 Une matrice carrée A est diagonalisable si et seulement si il existe
une matrice diagonale D ainsi qu’une matrice inversible P telles que A = PDP−1.

Démonstration. Conséquence immédiate du théorème 3.2.8. ■

Exemple L’application linéaire

f : R2 → R2,

[
x
y

]
7→
[

4x− 6y
2x− 3y

]
est diagonalisable. En effet, on peut vérifier que A = PDP−1 avec

A =

[
4 −6
2 −3

]
, D =

[
1 0
0 0

]
et P =

[
2 3
1 2

]
.

Définition 3.4.3 Soit f : E → E une application linéaire. Si f(u⃗) = λu⃗ avec u⃗ ̸= 0,
on dit que λ est une valeur propre de f et que u⃗ est un vecteur propre de f .

Exemple Avec f : R2 → R2,

[
x
y

]
7→
[

4x− 6y
2x− 3y

]
, on a

f

([
2
1

])
=

[
2
1

]
et f

([
3
2

])
=

[
0
0

]
.

On a donc la valeur propre λ = 1 avec le vecteur propre u⃗ =

[
2
1

]
et la valeur

propre λ = 0 avec le vecteur propre u⃗ =

[
3
2

]
.

Proposition 3.4.4 Une application linéaire est diagonalisable si et seulement si il
existe une base formée de vecteurs propres.

Démonstration. En effet, la condition dit qu’il existe une base B = (u⃗1, u⃗2, . . . , u⃗n)
telle que

[f ]B =
[
[f(u⃗1)]B [f(u⃗2)]B . . . [f(u⃗n)]B

]
=
[
[λ1u⃗1]B [λ2u⃗2]B . . . [λnu⃗n]B

]
=
[
λ1e⃗1 λ2e⃗2 . . . λne⃗n

]

=


λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . . . . . ...

... . . . . . . 0
0 · · · · · · 0 λn

 . ■
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Remarque Avec f : Rn → Rn, x⃗ 7→ Ax⃗, si B = (u⃗1, u⃗2, . . . , u⃗n) est une base de
vecteur propres et λ1, λ2, . . . , λn les valeurs propres correspondantes, alors A =
PDP−1 avec

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . . . . . ...

... . . . . . . 0
0 · · · · · · 0 λn

 et P =
[
u⃗1 u⃗2 . . . u⃗n

]
.

Proposition 3.4.5 Si dim(E) = n et f : E → E est une application linéaire avec n
valeurs propres distinctes, alors f est diagonalisable.

Démonstration. On désigne par λ1, λ2, . . . , λn les valeurs propres et par u⃗1, u⃗2, . . . , u⃗n

des vecteurs propres associés. On va montrer par récurrence que (u⃗1, u⃗2, . . . , u⃗k) est
une base de Ek := Vect(u⃗1, u⃗2, . . . , u⃗k) pour k = 1, 2, . . . , n. On aura alors En ⊂ E
avec dim(En) = n = dim(E) et donc En = E, ce qui montre que (u⃗1, u⃗2, . . . , u⃗n)
est une base de E. Clairement, le vecteur non nul u⃗1 est bien une base de la droite
Vect(u⃗1). On suppose maintenant que (u⃗1, u⃗2, . . . , u⃗k) est une base de Ek et on
procède par l’absurde. Si (u⃗1, u⃗2, . . . , u⃗k, u⃗k+1) n’est pas une base de Ek+1, il existe
alors un vecteur qui s’écrit de deux manières différentes

t1u⃗1 + t2u⃗2 + . . .+ tku⃗k + tk+1u⃗k+1 = s1u⃗1 + s2u⃗2 + . . .+ sku⃗k + sk+1u⃗k+1

et donc

(t1 − s1)u⃗1 + (t2 − s2)u⃗2 + . . .+ (tk − sk)u⃗k + (tk+1 − sk+1)u⃗k+1 = 0⃗.

On remarque alors que tk+1 ̸= sk+1 car sinon on pourrait écrire 0⃗ de deux manières
différentes dans Ek. On en déduit que

u⃗k+1 = − t1 − s1
tk+1 − sk+1

u⃗1 −
t2 − s2

tk+1 − sk+1

u⃗2 − . . .− tk − sk
tk+1 − sk+1

u⃗k

= c1u⃗1 + c2u⃗2 + . . .+ cku⃗k

pour certaines constantes c1, c2, . . . , ck. On a d’une part

f(u⃗k+1) = λk+1uk+1 = λk+1c1u⃗1 + λk+1c2u⃗2 + . . .+ λk+1cku⃗k

et d’autre part

f(u⃗k+1) = c1f(u⃗1) + c2f(u⃗2) + . . .+ ckf(u⃗k) = λ1c1u⃗1 + λ2c2u⃗2 + . . .+ λkcku⃗k.

Puisque (u⃗1, u⃗2, . . . , u⃗k) est une base de Ek, l’écriture est unique et donc

λk+1c1 = λ1c1, λk+1c2 = λ2c2, . . . , λk+1ck = λ1ck.

Mais comme les valeurs propres sont distinctes, cela montre que c1 = c2 = . . . = ck = 0
et donc u⃗k+1 = 0. Mais c’est impossible car c’est un vecteur propre. ■
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Définition 3.4.6 Le polynôme caractéristique d’une application linéaire f : E → E
est a

χ(λ) := det(λIdE − f).

a. On définit parfois χf (λ) := det(f − λIdE), ce qui ne change rien en pratique.

Remarque Le polynôme caractéristique d’une matrice carrée A est

χA(λ) = det(λI − A).

Exemple Avec A =

[
4 −6
2 −3

]
, on a λI − A =

[
λ− 4 6
−2 λ+ 3

]
et donc

χA(λ) =

∣∣∣∣ λ− 4 6
−2 λ+ 3

∣∣∣∣ = (λ− 4)(λ+ 3) + 12 = λ2 − λ = λ(λ− 1).

Proposition 3.4.7 Les valeurs propres sont les racines du polynôme caractéristique.

Démonstration. Par définition, λ est une valeur propre de f si et seulement si il
existe un vecteur u⃗ ̸= 0⃗ tel que f(u⃗) = λu⃗. Cette égalité se réécrit (λIdE − f)(u⃗) = 0⃗.
La condition signifie donc que ker(λIdE − f) ̸= {⃗0}. Cela signifie que l’application
λIdE − f est bijective et nous savons que c’est équivalent à det(λIdE − f) = 0, c’est
à dire χf (λ) = 0. Autrement dit, λ est une racine de χf . ■

Exemple Pour

A :=

[
4 −6
2 −3

]
,

on a calculé χA(λ) = λ(λ− 1) et on trouve donc les valeurs propres 1 et 0 si bien que

D =

[
1 0
0 0

]
.

Pour trouver les vecteurs propres, on résout Ax⃗ = λx⃗ avec λ = 1 d’abord et avec
λ = 0 ensuite :

• (λ = 1)
{

4x− 6y = x
2x− 3y = y

⇔ x− 2y = 0⇔
[
x
y

]
= t

[
2
1

]
• (λ = 0)

{
4x− 6y = 0
2x− 3y = 0

⇔ 2x− 3y = 0⇔
[
x
y

]
= t

[
3
2

]
On trouve les vecteurs propres

[
2
1

]
et
[

3
2

]
si bien que

P =

[
2 3
1 2

]
.
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3.5 Exercices (6 janvier 2026)
Exercice 3.1 Dire dans chaque cas si l’application f : R3 → R3 est linéaire :

1. f

 x
y
z

 =

 z
x+ 2y

x

, 2. f

 x
y
z

 =

 x+ y
y + 2z
2x+ 3

,

3. f

 x
y
z

 =

 x− y
y + z
xz

.

Exercice 3.2 Soit f : R4 → R3 une application linéaire telle que

f




1
2
−1
4


 =

 1
2
3

 et f




0
3
1
−2


 =

 1
1
1

 .

Trouver un vecteur x⃗ tel que f(x⃗) =

 1
2
3

.

Exercice 3.3 Soient f : R3 → R2,

 x
y
z

 7→ [
x− 3z

−x+ 3y − 6z

]
et u⃗ :=

 3
2
−1

.

Calculer f(u⃗). Trouver une matrice A telle que f

 x
y
z

 = A

 x
y
z

. Calculer

Au⃗.

Exercice 3.4 Déterminer la matrice dans la base canonique de l’application linéaire
f : R2 → R2 obtenue en faisant une rotation d’angle π/4 autour de l’origine suivie
d’une symétrie par rapport à la droite d’équation y = x.

Exercice 3.5 Déterminer la matrice A dans la base canonique de la rotation
d’angle 2π/3 autour de l’origine. Calculer A3. Pouvait-on le prévoir ?

Exercice 3.6 On considère les situations suivantes :

1. A =

[
2 0
0 2

]
, 2. A =

[
−1 0
0 −1

]
, 3. A =

[
0 −1
−1 0

]
,

4. A =

[
0 1
−1 0

]
, 5. A =

[
0 0
0 1

]
, 6. A =

[
1 −1
1 1

]
.
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Déterminer dans chaque cas
1. l’effet de l’application linéaire f : R2 → R2 associée

à la matrice A sur la lettre L ci-contre et donner
une caractérisation géométrique de f ,

2. l’effet de f−1 sur L lorsque f est inversible ainsi
qu’une caractérisation géométrique.

x

y

(1,0)

(0,2)

Exercice 3.7 On se donne une application linéaire f : R2 → R2 .
(a) Trouver les coordon-
nées de w⃗ dans la base
(u⃗, v⃗) sur la figure ci-
dessous.

(b) Déterminer f(u⃗) sur
la figure ci-dessous. Dé-
terminer la matrice de f
dans la base canonique.

(c) Déterminer la ma-
trice de f dans la base
canonique avec la figure
ci-dessous.

Exercice 3.8 On se donne une application linéaire f : R2 → R2.
(a) Déterminer f−1(u⃗)
sur la figure ci-dessous.

(b) Déterminer la ma-
trice de f−1 dans la base
canonique sur la figure
ci-dessous.

(c) Déterminer la ma-
trice de passage de la
base (u⃗, v⃗) à la base
(
−→
u′ ,
−→
v′ ) avec la figure ci-

dessous.

Exercice 3.9 On se donne une application linéaire f : R2 → R2.
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(a) Déterminer la ma-
trice de f dans la base
(u⃗, v⃗) sur la figure ci-
dessous.

(b) Déterminer la ma-
trice de f dans la base
canonique sur la figure
ci-dessous.

(c) Déterminer la ma-
trice de f dans la base
(u⃗, v⃗) sur la figure ci-
dessous.

Exercice 3.10 Soient f : R2 → R2 la symétrie orthogonale par rapport à la droite

d’équation y =
3

2
x, u⃗1 =

[
2
3

]
, u⃗2 =

[
−3
2

]
et B = (u⃗1, u⃗2).

1. Déterminer f(u⃗1) et f(u⃗2) ainsi que la matrice de f dans la base B.
2. Déterminer la matrice de passage P de la base canonique à la base B ainsi

que son inverse.
3. En déduire la matrice de f dans la base canonique.

Exercice 3.11 Soient v⃗1 =

[
2
5

]
, v⃗2 =

[
1
3

]
, B = (v⃗1, v⃗2), A =

[
1 2
2 −1

]
et

f : R2 → R2 l’application linéaire associée à A.
1. Déterminer la matrice de passage de la base canonique à B et son inverse.
2. Déterminer f(v⃗1) et f(v⃗2).
3. Quelles sont les coordonnées de f(v⃗1) et de f(v⃗2) dans la base B ?
4. Déterminer la matrice de f dans la base B de deux façons différentes.
5. Soit g : R2 → R2 l’unique application linéaire telle que

g(v⃗1) = v⃗1 + v⃗2 et g(v⃗2) = −v⃗1 + 2v⃗2.

Déterminer la matrice de g dans la base canonique.

Exercice 3.12 Soient

A =

[
2 2
3 4

]
, B =

 1 −2 2
−3 1 4
−1 −3 8

 , C =

 −1 2 −2
1 1 −1
1 0 2



D =

 1 0 −1
−2 2 2
4 0 2

 et E =


1 1 1 1
1 2 1 2
1 1 3 1
1 1 −1 −1

 .

1. Calculer det(A) par un produit en croix.
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2. Calculer det(B) avec la règle de Sarrus.
3. Calculer det(C) en développant selon la troisième ligne.
4. Calculer det(D) en développant selon la seconde colonne.
5. Calculer det(E) en par opérations élémentaires sur les lignes.

Exercice 3.13 On considère les matrices A =


2 3 1 4
0 0 0 0
3 −1 2 −3
7 −3 5 −1



B =


230 728 230 432
1301 315 1301 539

5π 52 5π 7
√
2

−22 45 −22 18

 et C =


4 −1 2 7
0 2 π 35
0 0 −1 2
0 0 0 2

 .

1. Que valent les déterminants de A, B et C.
2. Que valent les déterminants de BC, C2, C−1 et 2C.

Exercice 3.14 Pour quelles valeurs de λ la matrice est-elle inversible ?

1.
[
λ 2
1 3

]
, 2.

 λ 1 −1
−1 2 1
−λ 1 1

.

Exercice 3.15 Soient A =

[
−11 10
−15 14

]
, v⃗1 =

[
2
3

]
et v⃗2 =

[
−1
−1

]
.

1. Montrer que v⃗1 et v⃗2 sont des vecteurs propres de A.
2. Déterminer P inversible et D diagonale telles que D = P−1AP .
3. Calculer P−1 et vérifier que D = P−1AP .

Exercice 3.16 Diagonaliser si possible

1. A =

[
1 4
1 1

]
, 2. A =

[
5 −6
1 0

]
,

3. A =

 1 1 0
0 2 2
0 0 3

, 4. A =

 1 1 −1
0 2 0
0 0 2

.

Autrement dit :
1. Déterminer le polynôme caractéristique de A.
2. Déterminer les valeurs propres de A.
3. Déterminer une base formée de vecteurs propres pour A.
4. Trouver P inversible et D diagonale telles que D = P−1AP .
5. (facultatif) Calculer P−1 et vérifier.
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