The analytic site of a scheme

Bernard Le Stum Université de Rennes 1

Version of March 29, 2004

1 Rigid cohomology

Rigid cohomology associates to a variety X over a field k of characteristic p > 0 some vector spaces $H^q_{rig}(X/K)$ over a p-adic field K of characteristic 0. More generally, one defines overconvergent isocrystals E over X and their rigid cohomology $H^*_{rig}(X/K, E)$.

The method is as follows: embed X in some proper smooth formal scheme P over the ring of integers V of K and choose a sufficiently small strict neighborhood V of X in the generic fiber of P. An overconvergent isocrystal on X is a coherent module with an integrable "overconvergent" connection E on V and

$$H^*_{\mathrm{rig}}(X/K, E) := H^*_{\mathrm{dR}}(V, E).$$

2 New interpretation

A (pre-) topology on a category \mathcal{C} is a collection of coverings $\{X_k \to X\}_k$ which is stable by pull back and composition and contains the identites. A site is a category \mathcal{C} endowed with a topology. The sheaves on \mathcal{C} are the contravariant functors from \mathcal{C} to Sets that satisfy gluing with respects to coverings. They form a topos $\widetilde{\mathcal{C}}$. A ringed site is a site \mathcal{C} endowed with a sheaf of rings.

We will show how one can associate in a *natural* way a ringed site $(AN(X), \mathcal{O}_X^{\dagger})$ to an algebraic variety X so that the category of overconvergent isocrystals on X can be identified with the category of finitely presented \mathcal{O}_X^{\dagger} -modules.

3 The conventions

K: a complete ultrametric field

 \mathcal{V} : the valuation ring of K k: the residual field of \mathcal{V}

Algebraic variety: k-scheme locally of finite type

Formal scheme : \mathcal{V} -formal scheme locally

topologically finitely presented

Analytic space: Berkovich K-analytic space

If S is a formal scheme, its special fiber S_k is an algebraic variety, its generic fiber S_K is an analytic space and there is a specialization map $sp: S_K \to S$.

4 Example

$$K := \mathbf{C}((t))$$
 $\mathcal{V} = \mathbf{C}[[t]]$ $k = \mathbf{C}$ $\pi = t$ $|F| = e^{-ord_t(F)},$
 $K := \mathbf{Q}_p$ $\mathcal{V} = \mathbf{Z}_p$ $k = \mathbf{F}_p$ $\pi = p$ $|n| = p^{-ord_p(n)}.$

$$sp: \mathbf{B}^{n}(0, 1^{+}) \to \mathbf{A}_{k}^{n} \mid sp: \mathbf{P}_{K}^{n \text{ an}} \to \mathbf{P}_{k}^{n}$$

$$(x_{1}, \dots, x_{n}) \mapsto (\tilde{x}_{1}, \dots, \tilde{x}_{n}) \mid (x_{0}, \dots, x_{n}) \mapsto (\tilde{x}_{0}, \dots, \tilde{x}_{n})$$
if $\max(|x_{1}|, \dots, |x_{n}|) = 1$

5 The objects

Let S be a formal scheme and X an algebraic variety over S_k .

An analytic variety over X/S is a couple $(U \hookrightarrow P, \lambda : V \to P_K)$ where $U \hookrightarrow P$ is a good embedding of an X-scheme into a formal scheme over S and λ is a morphism of analytic spaces over S_K . When there is no risk of confusion, we will simply write (U, V).

Remark: The formal embedding is said good if any point in $]U[_P:=sp^{-1}(U)]$ has an affinoid neighborhood (this is the case for example, if P is affine or proper over \mathcal{V}).

6 Example

We let

$$S := \operatorname{Spf}(\mathcal{V}) \text{ and } A := \mathcal{V}[T_1, \dots, T_N]/I.$$

We want

$$U = X = \operatorname{Spec}(A \otimes_{\mathcal{V}} k)$$
 and $V := [\operatorname{Spec}(A \otimes_{\mathcal{V}} K)]^{\operatorname{an}}$.

$$P = \operatorname{Spf}(\hat{A}) \quad ? \quad \text{No, because } [\operatorname{Spf}(\hat{A})]_K = V \cap \mathbf{B}^N(0, 1^+).$$

$$P = \widehat{\mathbf{A}_{\mathcal{V}}^N} \qquad ? \quad \text{Not better, because } [\widehat{\mathbf{A}_{\mathcal{V}}^N}]_K = B^N(0, 1^+).$$

$$P = \widehat{\mathbf{P}_{\mathcal{V}}^N} \qquad ? \quad \text{Yes since } [\widehat{\mathbf{P}_{\mathcal{V}}^N}]_K = \mathbf{P}_K^{\operatorname{Nan}} \supset \mathbf{A}_K^{\operatorname{Nan}} \supset V.$$

$$P = \mathbf{A}_{\mathcal{V}}^{N}$$
? Not better, because $[\mathbf{A}_{\mathcal{V}}^{N}]_{K} = B^{N}(0, 1^{+})$.

$$P = \mathbf{P}_{\mathcal{V}}^{N}$$
? Yes since $[\mathbf{P}_{\mathcal{V}}^{N}]_{K} = \mathbf{P}_{K}^{Nan} \supset \mathbf{A}_{K}^{Nan} \supset V$

7 The notion of tube

If $(U \hookrightarrow P, \lambda : V \to P_K)$ is an analytic variety over X/S, the tube of U in V is

$$]U[_V := \lambda^{-1}(sp^{-1}(U)).$$

We will denote by

$$i_U:]U[_V\hookrightarrow V$$

the canonical embedding and by

$$]U[_V \to U, \quad x \mapsto \tilde{x} = sp(\lambda(x))$$

the specialization map.

8 The morphisms

A hard morphism

$$(f,u):(U',V')\to(U,V)$$

is a couple where $f:U'\to U$ is a morphism of algebraic varieties over X and $u:V'\to V$ is a morphism of analytic spaces over S_K such that

$$x' \in]U'[_{V'} \Rightarrow f(\widetilde{x'}) = \widetilde{u(x')},$$

and the same is true after any isometric extension of K.

We obtain a category $\overline{\mathrm{AN}}(X/S)$ which has non-empty finite inverse limits.

9 The category

If we localize on the right the category $\overline{\mathrm{AN}}(X/S)$ with respect to hard morphisms

$$(Id_U, j): (U, V') \hookrightarrow (U, V)$$

where j is an open immersion of analytic spaces that induces

$$]U[_{V'}\simeq]U[_{V},$$

we obtain the category AN(X/S) of analytic varieties over X/S.

Remark: Right localization with respect to a subcategory made of monomorphisms and stable under pull-back is always possible.

10 The topology

A family

$$(Id_U, j_k) : \{(U, V_k) \to (U, V)\}_{k \in I}$$

is an *open covering* if there exists open neighborhoods W_k of $]U[_{V_k}$ in V_k such that j_k induces an open immersion $W_k \hookrightarrow V$ and $]U[_V \subset \cup W_k$.

This is a pretopology on AN(X/S). The corresponding site has fibered products and the topology is coarser than the canonical topology. We will denote by $(X/S)_{AN}$ the corresponding topos.

This construction is functorial in $X/S/\mathcal{V}$.

11 The sheaves

If E is a sheaf on AN(X/S) and (U, V) an analytic variety over X/S, the realization of E on (U, V) is the sheaf on $]U[_V]$ defined by

$$E_{U,V}:]U[_{V'}\mapsto E(U,V').$$

Giving E is equivalent to the following: the sheaves $E_{U,V}$ and the transitions morphisms

$$\phi_{f,u}: u^{-1}E_{U,V} \to E_{U',V'}$$

coming from morphisms $(f, u) : (U', V') \to (U, V)$.

12 The crystals

The presheaf

$$\mathcal{O}_{X/S}^{\dagger}: (U,V) \mapsto \Gamma(]U[_V,i_U^{-1}\mathcal{O}_V)$$

of dagger functions on X/S is a sheaf and a module on this ring is called a dagger module.

Note that any morphism $(f, u): (U', V') \to (U, V)$ induces a morphism of ringed spaces

$$(u^{\dagger}, u_*) : (]U'[_{V'}, i_{U'}^{-1}\mathcal{O}_{V'}) \to (]U[_{V}, i_{U}^{-1}\mathcal{O}_{V}).$$

.../...

Giving a dagger module E is equivalent to the following: the $i_U^{-1}\mathcal{O}_V$ -modules $E_{U,V}$ and the transition morphisms

$$\phi_{f,u}: u^{\dagger}E_{U,V} \to E_{U',V'}.$$

A dagger module E is a *crystal* if the transition morphisms are bijective. Actually, a dagger module E is finitely presented if and only if it is a crystal and the $E_{U,V}$ are coherent $i_U^{-1}\mathcal{O}_V$ -modules.

Remark: we could also consider the convergent situation with

$$\hat{\mathcal{O}}_{X/S}: (U,V) \mapsto \Gamma(]U[_V,\mathcal{O}_{]U[_V}).$$

13 Varieties over a formal scheme

If $X \hookrightarrow P$ is a good embedding, we denote by

$$AN(X_P/S)$$

the full subcategory of objects (U, V) of AN(X/S) which admit some morphism $(U, V) \to (X, P_K)$.

We can do with this category exactly the same as what we did with AN(X/S). In particular, we have a ringed site

$$(AN(X_P/S), \mathcal{O}_{X_P/S}^{\dagger}),$$

the notions of dagger module or dagger crystals on X_P/S , and their realizations.

14 The Taylor isomorphism

If E is a dagger crystal on X_P and $E_P := E_{X,P_K}$, the isomorphism

$$\epsilon_P: p_2^{\dagger} E_P \simeq E_{P^2} \simeq p_1^{\dagger} E_P$$

on $]X[_{P^2}$ is the *Taylor isomorphism* of E_P . If E_P is coherent, it extends to a module with an integrable connexion on some neighborhood V of $]X[_P$ in $]\bar{X}[_P$ (where \bar{X} is the Zariski closure of X).

Proposition 1 (CharK = 0) If P is smooth in the neighborhood of X, we obtain an equivalence of categories between finitely presented $\mathcal{O}_{X_P/S}^{\dagger}$ -modules and isocrystals on \bar{X} in P which are overconvergent along $\bar{X} \setminus X$.

15 The main theorem

Theorem 1 If $X \hookrightarrow P$ is a good admissible embedding with P/S proper and smooth on X, there is a canonical equivalence of toposes

$$(X_P/S)_{AN} \simeq (X/S)_{AN}$$
.

From this, we deduce, when $\operatorname{Char} K = 0$, an equivalence between the category of finitely presented $\mathcal{O}_{X/S}^{\dagger}$ -modules and the category of overconvergent isocrystals on X/S.

Remarks: 1) $X \hookrightarrow P$ is admissible if P has no V-torsion. 2) $u: P' \to P$ is proper on $X \subset P'$ if the Zariski closure \overline{X} of X in P'_k has proper irreducible components over P_k .

16 The method

The theorem reduces successively to the next two theorems.

Theorem 2 If $X \hookrightarrow P$ is a good admissible embedding with P/S proper and smooth on X, then (X, P_K) is a covering of (the final object of) $(X/S)_{AN}$.

Theorem 3 Let $u: P' \to P$ be a morphism of good admissible embeddings of X. If u is proper and smooth on X, the morphism

$$(Id_X, u_K): (X, P_K') \to (X, P_K)$$

has locally a section in AN(X/S).

17 The proof

Using results of Berkovich, Temkin and Ducros, one shows that the morphism of the last theorem induces a smooth morphism $u_K: V' \to V$ between good neighborhoods of the tubes.

The smoothness of u_K gives for each $x \in]X[_V]$ an isomorphism

$$\phi_x : u_K^{-1}(x) \simeq \mathbf{B}_K^d(0, 1^-).$$

One then needs an approximation theorem in order to show that there exists neighborhoods W of x in V and W' of $\phi_x^{-1}(x)$ in V' such that ϕ_x extends to an open immersion

$$\phi: W' \hookrightarrow \mathbf{B}_W^d(0, 1^-).$$