The overconvergent site

Bernard Le Stum

THE OVERCONVERGENT SITE

Bernard Le Stum¹

Université de Rennes 1

Version of October 18, 2009

¹bernard.lestum@univ-rennes1.fr

SINGULAR COHOMOLOGY

The overconvergent site

Stum

If X is a topological space, we may consider the complex of singular cochains

$$C_{\mathrm{sing}}^{ullet}(X) = \mathit{Hom}_{\mathrm{sets}}(\mathit{Hom}_{\mathrm{top}}(\triangle_{ullet}, X), \mathbf{Z})$$

and define the singular cohomology of X:

$$H^*_{\operatorname{sing}}(X) = H^*(C^{\bullet}_{\operatorname{sing}}(X)).$$

Alternatively, this may be seen as the cohomology of a sheaf:

THEOREM

If X is locally contractible, we have

$$H^*_{\mathrm{sing}}(X) \simeq H^*(X, \mathbf{Z}).$$

This gives a very rich formalism in order to compute these spaces.

DE RHAM COHOMOLOGY

The overconvergent site

Bernard Le

THEOREM (DE RHAM)

If X is a real manifold, we have

$$H^*_{\mathrm{dR}}(X/\mathbf{R}) \simeq \mathbf{R} \otimes H^*(X,\mathbf{Z}).$$

One can compute cohomology by means of differential forms:

Thus, if X is a complex manifold, we get

$$H^*_{\mathrm{dR}}(X/\mathbf{C}) \simeq \mathbf{C} \otimes H^*(X,\mathbf{Z}).$$

characteristic zero, and $\mathcal{K} \hookrightarrow \mathbf{C}$ any embedding, we have

$$\mathbf{C} \otimes_K H_{\mathrm{dR}}^*(X/K) \simeq H_{\mathrm{dR}}^*(X/\mathbf{C}) \simeq H_{\mathrm{dR}}^*(X^{\mathrm{an}}/\mathbf{C}).$$

Now, if X is a non singular algebraic variety over a field K of

This gives a purely algebraic interpretation of cohomology.

Using sheaves

The overconvergent site

Bernard Le Stum It is also possible to express de Rham cohomology as the cohomology of a sheaf:

THEOREM (GROTHENDIECK)

If X is an (non-singular) algebraic variety defined over a field K of characteristic zero, we have

$$H^*_{\mathrm{dR}}(X/K) \simeq H^*(\inf(X), \mathcal{O}_{\inf(X)}).$$

Here, $\inf(X)$ is not a topological space anymore but a site and $\mathcal{O}_{\inf(X)}$ denotes a sheaf on this site. Recall that a site is a category with given covering families, generalizing the category of open sets of a topological space and open coverings.

Anyway, we get a purely algebraic interpretation of cohomology as the cohomology of a sheaf.

CONNEXIONS

The overconvergent site

Bernard Le Stum We want to give more details on this isomorphism and do it in a more general setting.

Let $p: X \to S$ be a morphism of schemes. An integrable connection on an \mathcal{O}_X -module \mathcal{F} is a \mathcal{O}_S -linear map

$$\nabla: \mathcal{F} \to \mathcal{F} \otimes_{\mathcal{O}_X} \Omega^1_{X/S}$$

satisfying Leibnitz rule:

$$\nabla(fm)=m\otimes df+f\nabla(m)$$

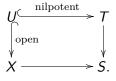
and $\nabla^2=0$. We may then form its de Rham complex $\mathcal{F}\otimes_{\mathcal{O}_X}\Omega^{ullet}_{X/S}$. And we can define the absolute de Rham cohomology of \mathcal{F} as

$$Rp_{dR}\mathcal{F} := Rp_*(\mathcal{F} \otimes_{\mathcal{O}_X} \Omega_{X/S}^{\bullet}).$$

THE INFINITESIMAL SITE

The overconvergent site

Bernard Le Stum If $X \to S$ is a morphism of schemes, then $\inf(X/S)$ is the infinitesimal site whose objects are thickenings



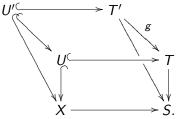
of open subsets of X over S. We will usually write $(U \subset T)$ for such an object.

The fundamental example is as follows: if X is defined by \mathcal{I} inside $X\times_S X$, the thickening of order 1 of X is the subscheme X(1) defined by \mathcal{I}^2 . In particular the ideal of X inside X(1) is nothing but $\Omega^1_{X/S}$.

Morphisms

The overconvergent site

Bernard Le Stum A morphism in the category $\inf(X/S)$ is simply a commutative diagram



In practice, we will simply write $g:(U'\subset T')\to (U\subset T)$.

Covering families are $\{(U_i, T_i) \rightarrow (U, T)\}$ where $T = \cup T_i$ is a Zariski open covering.

The structural sheaf is defined as

$$\mathcal{O}_{\inf(X/S)}: (U \subset T) \mapsto \Gamma(T, \mathcal{O}_T).$$

REALIZATIONS

The overconvergent site

Bernard Le Stum If we are given a thickening $(U \subset T)$ of an open subset U of X over S and a sheaf E on $\inf(X/S)$, we may consider the realization E_T of E on T which is the sheaf on T given by

$$\Gamma(V,E_T)=\Gamma(V\cap U\subset V,E).$$

Giving E is equivalent to giving all realizations E_T and transition maps

$$g^{-1}E_T \rightarrow E_{T'}$$

for all morphisms $g:(U',T')\to (U,T)$ (subject to a cocycle condition).

For example, the sheaf $\mathcal{O}_{\inf(X/S)}$ corresponds to the family of all sheaves \mathcal{O}_T with natural transition maps

$$g^{-1}\mathcal{O}_{\mathcal{T}} \to \mathcal{O}_{\mathcal{T}'}$$
.

INDUCED CONNECTIONS

The overconvergent site

Stum

There is a commutative diagram of thickenings

$$X \stackrel{\frown}{\longrightarrow} X(X)$$

$$X \stackrel{p_1}{\downarrow} X$$

If E is a finitely presented $\mathcal{O}_{\inf(X)}$ -module (or more generally, a

crystal), we may consider the composite map $n: E_X \xrightarrow{\sim} p_2^* E_X \xrightarrow{\simeq} E_{X(1)} \xleftarrow{\simeq} p_1^* E_X.$

The difference $abla := \mathbf{p}_1^* - \eta$ takes values inside

$$E_X \otimes \Omega^1_X/S \subset p_1^*E_X$$

and defines an integrable connection on E_X .

CLASSICAL THEOREMS

The overconvergent site

Bernard Le Stum Let $p: X \to S$ be a smooth morphism between two algebraic varieties over a field K of characteristic zero. Then,

THEOREM (PART 1)

There is an equivalence of categories:

 $\{Finitely\ presented \simeq \{Coherent\ modules\ with\ modules\ on\ \inf(X/S)\}$ integrable connection on $X/S\}$

⊢

 (E_X, ∇)

THEOREM (PART 2)

There exists a morphism of topos $p_{\inf}:(X/S)_{\inf}\to S$ with

 $Rp_{\mathrm{dR}}E_X \simeq Rp_{\mathrm{inf}*}E$.

RIGID COHOMOLOGY

The overconvergent site

Bernard Le Stum If X is an algebraic variety over a field k of characteristic p>0, de Rham cohomology has to be replaced with Berthelot's rigid cohomology

$$H^*_{\mathrm{rig}}(X/K),$$

where K is a complete ultrametric field of characteristic zero with residue field k.

More generally, let $\mathcal V$ denote the ring of integers of K and S a formal $\mathcal V$ -scheme. One can define overconvergent isocristals E on X/S which are analogous to coherent modules with integrable connections in characteristic zero. Then, if $p:X\to S_k$ is a morphism of algebraic varieties, we can define the rigid cohomology $Rp_{\mathrm{rig}}E$.

Let us be more precise now:

Tubes

The overconvergent site

Stum

If P is a formal \mathcal{V} -scheme, we may consider

- its special fiber P_k which is an algebraic variety over k.
- its generic fiber P_K which is an analytic variety (we use Berkovich theory) over K.

This is functorial. Moreover, there is a nilpotent immersion and a specialization map

$$P_k \hookrightarrow P \xleftarrow{\operatorname{sp}} P_K$$
.

Note that sp is **not** continuous. If X is an algebraic subvariety of P_k , we will consider its tube

$$|X|_{P} := \operatorname{sp}^{-1}(X) \subset P_{K}.$$

Note: we consider only formal schemes that have a locally finite covering by finitely presented m-adic formal schemes.

LOCAL DESCRIPTION

The overconvergent site

Bernard Le Stum

If
$$P = \operatorname{Spf} A$$
, $A_k := k \otimes_{\mathcal{V}} A$ et $A_K := K \otimes_{\mathcal{V}} A$, then $P_k = \operatorname{Spec}(A_k)$ and $P_K = \mathcal{M}(A_K)$.

To $x \in P_k$, we associate

$$\ker(A \to A_k \to k(x)) \in P$$

and to $x \in P_K$, we associate its specialization

$$\ker(A \to \mathcal{V}(x) \to k(x)) \in P$$

(where the first application is induced by $A_K \to \mathcal{K}(x)$).

Finally, if $X \subset P_k$ is defined by

$$\forall i, \overline{f}_i(x) = 0 \quad \text{and} \quad \exists j, \overline{g}_j(x) \neq 0,$$

then $]X[_P \subset P_K]$ is defined by

$$\forall i, |f_i(x)| < 1 \quad \text{and} \quad \exists j, |g_i(x)| = 1.$$

EXAMPLE

The overconvergent site

Bernard Le Stum We can consider the affine Legendre family

$$X: y^2 = x(x-1)(x-\lambda) \subset \mathbf{A}_k^3$$

over the affine line $S=\mathbf{A}_{\mathcal{V}}^1$ and embed it into the formal projective Legendre family

$$P: y^2 = x(x-z)(x-\lambda z) \subset \widehat{\mathbf{P}_S^2}.$$

Then, we will have

$$]X[_{P}=V^{\mathrm{an}}\cap \mathbf{B}^{3}(0,1^{+})$$

where V^{an} denotes the analytification of the affine Legendre family:

$$V: y^2 = x(x-1)(x-\lambda) \subset \mathbf{A}_K^3.$$

FORMAL EMBEDDINGS

The overconvergent site

Bernard Le Stum We fix a formal \mathcal{V} -scheme S. A formal embedding is a locally closed embedding $X \hookrightarrow P$ of an algebraic variety into a formal

A morphism of formal embeddings is simply a commutative diagram

S-scheme. We will denote by \overline{X} the closure of X inside P.

$$P' \xrightarrow{v} I$$

$$\downarrow X' \xrightarrow{f} X$$

The morphism is said to be flat, smooth or étale if v has this property in the neighborhood of X'. It is said to be separated, proper or finite if the induced map $\overline{X}' \to P_k$ is so. We will also say that the morphism v is flat, smooth, étale, separated, proper or finite at X'. We will apply this in particular to the canonical morphism $(X \subset P) \to (S_k \subset S)$.

GEOMETRIC VERSUS ANALYTIC

The overconvergent site

Bernard Le Stum

THEOREM

In the following cases, if a morphism of formal embeddings $(f,v):(X'\subset P')\to (X\subset P)$ has the property (Geom), then then there exists neighborhoods V and V' of $]X[_P$ and $]X'[_{P'}$ respectively such that the induced map $v_K:V'\to V$ has the property (Ana).

- (Geom) = flat and (Ana) = universally flat
- $(Geom) = smooth \ and \ (Ana) = formally \ smooth$
- (Geom) = 'etale and (Ana) = formally 'etale
- (Geom) = separated and (Ana) = locally separated
- (Geom) = proper and (Ana) = boundaryless
- $(Geom) = proper\ smooth\ and\ (Ana) = smooth$
- (Geom) = finite étale and (Ana) = étale

Overconvergent isocrystals

The overconvergent site

Bernard Le Stum We fix a formal embedding $X \subset P$. In order to avoid problems with the translation into Berkovich theory, we will assume that all points of $]X[_P]$ have an affinoid neighborhood in P_K (this is the case for example if S is affine and \overline{X} is proper over S_k).

The functor of overconvergent sections on a neighborhood V of $]X[_P$ in $]\overline{X}[_P$ is defined as

$$j^{\dagger}\mathcal{F}:=i_{X*}i_X^{-1}\mathcal{F}$$

where $i_X:]X[_P \hookrightarrow V$ denotes the inclusion map.

Let $\mathcal F$ be a coherent $j^\dagger\mathcal O_{|\overline{X}[_P}$ -module. An integrable connection on $\mathcal F$ is overconvergent if its Taylor series comes from an isomorphism

$$j^{\dagger}p_2^*\mathcal{F}\simeq j^{\dagger}p_1^*\mathcal{F}$$

on $]\overline{X}[_{P\times_{S}P}.$

Berthelot's theorem 1

The overconvergent site

Bernard Le Stum An overconvergent isocrystal on $X \subset P$ is a coherent $j^{\dagger}\mathcal{O}_{|\overline{X}|_P}$ -module \mathcal{F} with an overconvergent integrable connection.

THEOREM (BERTHELOT)

- If P is smooth at X, this definition only depends on the pair $X \subset \overline{X}$.
- ② If P is proper smooth at X, this definition only depends on X.

Using this theorem, it is possible to define the category of overconvergent isocrystals on $(X \subset \overline{X})$, or even on X. In this case, we will call $\mathcal F$ the realization on P of the overconvergent isocrystal E.

BERTHELOT'S THEOREM 2

The overconvergent site

Bernard Le
Stum In general, if we denote by $v:P\to S$ the structural morphism and write $v_K:]\overline{X}[_{P}\to S_K$ for the induced map, the absolute rigid cohomology of $\mathcal F$ is

 $Rp_{\mathrm{rig}}\mathcal{F} := Rv_{K*}(\mathcal{F} \otimes_{\mathcal{O}_{|\overline{X}|_{P}}} \Omega^{\bullet}_{|\overline{X}|_{P}/S_{K}})$

THEOREM (BERTHELOT)

- **1** If P is smooth at X, this definition only depends on the pair $X \subset \overline{X}$.
- If P is proper smooth at X, this definition only depends on X.

We may therefore define the cohomology of an overconvergent isocrystal on $X \subset \overline{X}$ or the cohomology of an overconvergent isocrystal on X.

FIRST THEOREM

The overconvergent site

Bernard Le Stum

THEOREM (PART 1)

There exists a ringed site $(\operatorname{an}^{\dagger}(X/S), \mathcal{O}_{\operatorname{an}^{\dagger}(X/S)})$ and an equivalence of categories

Actually, if we are given any immersion $X \hookrightarrow P$ into a formal S-scheme, there exists a realization functor that send any $\mathcal{O}_{\mathrm{an}^{\dagger}(X/S)}$ -module E to an $i_X^{-1}\mathcal{O}_{]\overline{X}[_P}$ -module E_P where $i_X:]X[_P\hookrightarrow]\overline{X}[_P$.

If E is finitely presented and P is proper smooth at X, then E_P is the realization on $X \subset P$ of the corresponding overconvergent isocrystal.

SECOND THEOREM

The overconvergent site

Bernard Le Stum

THEOREM (PART 2)

If X is an algebraic variety over S_k , there exists a morphism of ringed toposes

$$p_{\mathrm{an}^{\dagger}}:(X/S)_{\mathrm{an}^{\dagger}}\longrightarrow S_{K}$$

such that

$$Rp_{\mathrm{rig}}E \simeq Rp_{\mathrm{an}^{\dagger}*}E.$$

COROLLARY

If X is an algebraic variety over k and K is a complete ultrametric field of characteristic zero with residue field k, then

$$H^*_{\mathrm{rig}}(X/K) \simeq H^*(\mathrm{an}^\dagger(X/K), \mathcal{O}_{\mathrm{an}^\dagger(X/K)}).$$

This is the analog of Grothendieck theorem in positive characteristic.

OBJECTS

The overconvergent site Bernard Le Stum

Let S be a formal V-scheme as before and X an algebraic variety over S_k . An object of the (small) overconvergent site is a pair made of a formal embedding $X \subset P$ and an open subset $V \subset P_{\kappa}$:

$$X \hookrightarrow P \stackrel{\text{sp}}{\leftarrow} P_{\kappa} \stackrel{\text{open}}{\leftrightarrow} V$$

The tube of X inside V is

$$|X|_{V}:=V\cap |X|_{P}.$$

A morphism

$$(X \subset P' \leftarrow P'_{K} \hookleftarrow V') \rightarrow (X \subset P \leftarrow P_{K} \hookleftarrow V)$$

is simply a morphism $V' \longrightarrow V$ defined on a neighborhood of $|X|_{V'}$ such that $\operatorname{sp}(u(x)) = \operatorname{sp}(x)$ for $x \in |X|_{V'}$, and the same holds after any isometric extension of K.

ALTERNATIVE DESCRIPTION

The overconvergent site

Bernard Le Stum The big overconvergent site has a more "formal" defintion. A formal morphism is a commutative diagram

$$U' \stackrel{\longleftarrow}{\longrightarrow} P' \stackrel{\longleftarrow}{\longleftarrow} P'_{K} \stackrel{\longleftarrow}{\longleftarrow} V'$$

$$\downarrow^{f} \qquad \downarrow^{v} \qquad \downarrow^{u}$$

$$U \stackrel{\longleftarrow}{\longrightarrow} P \stackrel{\longleftarrow}{\longleftarrow} P_{K} \stackrel{\longleftarrow}{\longleftarrow} V$$

over X and S. We obtain a category AN(X/S).

A formal morphism is said to be a strict neighborhood if $f = \operatorname{Id}_U$ ans u is an open immersion that induces an isomorphism $]U[_{V'} \simeq] U[_V$ on the tubes.

The category $\mathrm{AN}(X/S)$ admits right calculus of fractions with respect to strict neighborhoods. We can define $\mathrm{AN}^\dagger(X/S)$ as the category of fractions with respect to strict neighborhoods.

TOPOLOGY AND SHEAVES

The overconvergent site

Bernard Le Stum A covering in $an^{\dagger}(X/S)$ is a family

$$(X \subset P \stackrel{\mathrm{sp}}{\leftarrow} P_K \supset V_i) \to (X \subset P \stackrel{\mathrm{sp}}{\leftarrow} P_K \supset V)$$

where each V_i is open into V and $\cup V_i$ is a neighborhood of $]U[_V]$ into V. This defines a pretopology on $\mathrm{an}^\dagger(X/S)$ turning it into a site and giving rise to a topos $(X/S)_{\mathrm{an}^\dagger}$.

The structural sheaf is defined as

$$\mathcal{O}_{\mathrm{an}^{\dagger}(X/S)}: (X \subset P \leftarrow P_K \supset V) \mapsto \Gamma(]X[_V, i_X^{-1}\mathcal{O}_V).$$

This way, we obtain a ringed site.

THE RELATIVE SITE

The overconvergent site

Bernard Le Stum If $X \hookrightarrow P$ is a formal immersion, we may consider the full subcategory of $\mathrm{an}^\dagger(X/S)$ of all objects who admit some morphism

$$(X \subset Q \leftarrow Q_K \supset V) \rightarrow (X \subset P \leftarrow P_K = P_K)$$

and we denote by $\operatorname{an}^{\dagger}(X_P/S)$ the corresponding ringed site. Then, we have:

PROPOSITION

If P is smooth at X, there is an equivalence of categories

$$\{ \text{Finitely presented} \simeq \{ \text{Overconvergent isocrystals} \}$$
 on $X \subset P/S \}$

The proof goes as in the classical case as we shall see:

STRATEGY OF PROOF

vergent site Bernard Le Stum

The overcon-

We define an overconvergent stratification on an $i_{\mathbf{Y}}^{-1}\mathcal{O}_{P_{\nu}}$ -module \mathcal{F} as an isomorphism

 $i_{\nu}^{-1}p_{2}^{*}i_{X*}\mathcal{F} \simeq i_{\nu}^{-1}p_{1}^{*}i_{X*}\mathcal{F}$

on $]X[_{P\times_S P}$ and we prove an equivalence {Crystals $\simeq \{i_x^{-1}\mathcal{O}_{P_k}\text{-modules with}\}$ on $(X_P/S)^{\dagger}_{an}$ overconvergent stratification}

Then, the difficult part is fulfaithfulness of

Finally, we have

 $\{ \text{Coherent } i_{\textbf{\textit{X}}}^{-1}\mathcal{O}_{P_{\textbf{\textit{K}}}}\text{-modules} \qquad \rightarrow \quad \{ \text{Coherent stratified}$ with overconvergent stratification $i_Y^{-1}\mathcal{O}_{P_{\nu}}$ -modules

THE MAIN THEOREM

The overconvergent site

Bernard Le Stum

THEOREM

If $X \hookrightarrow P$ is a formal embedding with P proper and smooth at X, there is an equivalence of toposes

$$(X_P/S)_{\mathrm{an}}^{\dagger} \simeq (X/S)_{\mathrm{an}}^{\dagger}.$$

This theorem and the previous proposition implies theorem 1. And we get as a corollary the independence on \overline{X} and P of the category of overconvergent isocrystals.

We can reformulate the conclusion of the theorem as follows:

THEOREM

The object $(X \subset P \leftarrow P_K = P_K)$ is a covering of the final object of the topos $(X/S)_{\rm an}^{\dagger}$.

THE PROOF

The overconvergent site

Bernard Le Stum Using the diagonal embedding, it is sufficient to prove the following geometric result:

PROPOSITION

Let $v: P' \to P$ be a morphism of formal embeddings of X which is proper and smooth at X. Then, the morphism

$$(X \subset P' \leftarrow P'_K = P'_K) \rightarrow (X \subset P \leftarrow P_K = P_K)$$

induced by v has locally a section in $\operatorname{an}^{\dagger}(X/S)$.

As already mentioned, we know that v induces a smooth morphism $v_K:V'\to V$ between two neighborhoods of the tubes.

THE PROOF

The overconvergent site

Bernard Le Stum

The smoothness of v implies for all $x \in]X[_P]$ an isomorphism

an open immersion

Proof of theorem 1 is complete.

section:

 $\phi_{x}: v_{K}^{-1}(x) \simeq \mathbf{B}_{\mathcal{K}(x)}^{d}(0, 1^{-})$

x in V and W' of $x' := \phi_x^{-1}(0)$ in V' such that ϕ_x extends to

 $\phi: W' \hookrightarrow \mathbf{B}_{W}^{d}(0,1^{-}).$

 $(X \subset P \leftarrow P_{\kappa} \supset W) \rightarrow (X \subset P' \leftarrow P'_{\kappa} = P'_{\kappa}).$

We can then use the zero section s and we get the expected

(this is a consequence of the weak fibration theorem). One can then show that there exists two neighborhoods W of

STRONG FIBRATION

The overconvergent site

Bernard Le Stum In order to compare also the cohomology, we really need a strong fibration theorem:

THEOREM (BERTHELOT)

Let $v:P'\to P$ be a morphism of formal embeddings of X that is proper and smooth at X. Then, locally for the Zariski topology on X and for the Grothendieck topology on P_K , there is an isomorphism

$$(X \subset P' \leftarrow P'_K = P'_K) \simeq (X \subset \widehat{\mathbf{A}}_P^n \leftarrow \mathbf{B}_{P_K}^n = \mathbf{B}_{P_K}^n).$$

The proof is a geometric reduction to the finite étale case. The finite étale case is a consequence of the weak fibration theorem and properties of the étale topology for (Berkovich) analytic varieties.

THE POINCARÉ LEMMA

The overconvergent site

Bernard Le Stum From the strong fibration theorem, one can derive the Poincaré lemma:

Lemma (Berthelot)

Let $v: P' \to P$ be a morphism of formal embeddings of X that is proper and smooth at X. If $\mathcal F$ is a coherent $i_X^{-1}\mathcal O_{P_K}$ -module and $v_K:]X[_{P'} \to]X[_P$ is the induced map, we have

$$\mathcal{F} \simeq \mathsf{Rv}_{K*}(\mathcal{F} \otimes_{i_X^{-1}\mathcal{O}_{P_K}} i_X^{-1}\Omega^{ullet}_{P_K'/P_K})$$

In order to prove this lemma, one uses the strong fibration theorem to reduce to the case of the projection of $\widehat{\mathbf{A}}_P^n$ onto P. Then, one uses induction on n to reduce to the case n=1. The final computation is done directly.

LINEARIZATION

The overconvergent site

Bernard Le Stum If $X \hookrightarrow P$ is a formal embedding , we may consider the site $\operatorname{an}^\dagger(X \subset P/S)$ of objects defined above $(X \subset P \leftarrow P_K = P_K)$. Restriction is the inverse image functor for a morphism of ringed toposes

$$j: (X \subset P/S)_{\mathrm{an}^{\dagger}} \to (X/S)_{\mathrm{an}^{\dagger}}.$$

On the other hand, realization is the direct image for a morphism of ringed sites

$$\varphi: \operatorname{an}^{\dagger}(X \subset P/S) \to]X[_{P}.$$

Then, if \mathcal{F}^{\bullet} is a complex of $i^{-1}\mathcal{O}_{P_K}$ -modules and differential operators, its derived linearization is

$$RL\mathcal{F}^{\bullet} := Rj_*\varphi^*\mathcal{F}^{\bullet}.$$

Poincaré Lemma

The overconvergent site

Stum

So far, I did not tell you what exactly a realization is: If
$$E$$
 is a sheaf on $\operatorname{an}^{\dagger}(X/S)$ and $X \hookrightarrow P$ is a formal embedding, the realization of E on P is the sheaf on $]X[_P$ defined by

$$\Gamma(]X[_V,E_P) := \Gamma(X \subset P \leftarrow P_K \supset V,E)$$

From the Poincaré lemma, one deduces:

LEMMA

Let $X \hookrightarrow P$ be a formal embedding with P proper and smooth at X over S. If E is a finitely presented $\mathcal{O}_{(X/S)_{\mathrm{an}}^{\dagger}}$ -module, we have

$$E \simeq RL(E_P \otimes_{i_{\mathbf{v}}^{-1}\mathcal{O}_{P_{\mathcal{K}}}} i_{\mathbf{X}}^{-1}\Omega_{P_{\mathcal{K}}/S_{\mathcal{K}}}^{\bullet}).$$

One easily sees that, if we are given another formal embedding $X \subset P'$, then $(RL\mathcal{F}^{\bullet})_{P'} = Rp_{1*}i_X^{-1}p_2^*i_{X*}\mathcal{F}^{\bullet}$. The lemma follows.

END OF THE PROOF

The overconvergent site

Bernard Le Stum

LEMMA

Let $(X \subset P)$ be a formal embedding and \mathcal{F}^{\bullet} a complex of $i_X^{-1}\mathcal{O}_{P_K}$ -modules and differential operators. If $v:P\to S$ is the structural map and $v_K:]X[_{P\to S_K}$ the induced map. Then,

$$Rp_{\mathrm{an}^{\dagger}*}RL\mathcal{F}^{\bullet}=Rv_{K*}\mathcal{F}^{\bullet}.$$

It follows that if E is a finitely presented $\mathcal{O}_{\mathrm{an}^\dagger(X/S)}$ -module, we obtain thanks to the Poincaré Lemma, a de Rham formula

$$Rp_{\mathrm{an}^{\dagger}*}E = Rp_{\mathrm{an}^{\dagger}}RL(E_{P} \otimes_{i_{\mathsf{v}}^{-1}\mathcal{O}_{P_{\mathsf{v}}}} i_{X}^{-1}\Omega_{P_{\mathsf{K}}/S_{\mathsf{K}}}^{\bullet})$$

$$= Rv_{K*}(E_P \otimes_{i_{*}^{-1}\mathcal{O}_{P_{\mathsf{L}'}}} i_{\mathsf{X}}^{-1}\Omega^{\bullet}_{P_{\mathsf{K}}/S_{\mathsf{K}}}) = Rp_{\mathrm{rig}}E. \quad \Box$$

We obtain as a corollary the independence of the rigid cohomology with respect to the formal embedding $X \subset P$.

GELFAND SPECTRUM

The overconvergent site

Bernard Le Stum If A is an affinoid algebra, then $V := \mathcal{M}(A)$ is the set of continuous semi-absolute values (or multiplicative semi-norms) $x : A \to \mathbf{R}$ over K. The "kernel" of x is a prime \mathfrak{p}_x and $\mathcal{K}(x)$ will denote the completion of the fraction field of A/\mathfrak{p}_x . We write f(x) for the image of $f \in A$ into $\mathcal{K}(x)$ so that |f(x)| = x(f). We get a bijection

$$V_0 := \operatorname{Spm}(A) \simeq \{x \in V, \quad [\mathcal{K}(x) : K] < \infty\}$$

The set V is endowed with the simple convergence topology. The simplest non trivial example is given by

$$\mathbf{D}(0,1^+) = \mathcal{M}(K\{t\}).$$

Besides rigid points $\in \mathbf{D}(0,1^+)_0$, there are many other points such as

$$|(\sum_i a_i t^i)(x)| = \sup |a_i| r^i \quad \text{with} \quad r \in [0, 1].$$

Affinoid varieties

The overconvergent site

Bernard Le Stum An affinoid variety is a topological space V endowed with a homeomorphism $V \simeq \mathcal{M}(A)$. We will write $\mathcal{O}(W) = A$. Any homomorphism of affinoid algebra $A \to A'$ will induce an affinoid map

$$V'\simeq \mathcal{M}(A') o \mathcal{M}(A)\simeq V.$$

A subspace W of $V:=\mathcal{M}(A)$ is an affinoid domain if it is universal for affinoid maps: W has an affinoid structure and if a composite map $V'\to W\hookrightarrow V$ is affinoid, so is the first one. For example, the disk

$$\mathbf{D}(0, \eta^+) := \{ x \in \mathbf{D}(0, 1^+), |t(x)| < \eta \}$$

is an affinoid domain for $\eta \in \sqrt{|\mathcal{V}|}$: if $\eta^k = |a|$, we have $\mathbf{D}(0,\eta^+) \simeq \mathcal{M}(K\{t,s\}/(t^k-as))$. Note that Berkovich theory can be enlarged in order to work with any $\eta \leq 1$: this is essential if we want to work with trivial valuations (which is not the case here).

NETS

The overconvergent site

Bernard Le Stum A quasi-net on a topological space V is a collection τ of subsets W of V, the bricks, such that any point x of V has a neighborhood which is a finite union of bricks containing x. The subsets [n, n+1] on the real line form a quasi-net.

It is called a **net** if whenever W is a finite intersection of bricks, all bricks contained in W form a quasi-net. The above example is not a net but the open subsets of a topological space or the affinoid domains of an affinoid variety form a net.

Then, a subset W of V will be called admissible if the bricks contained in W form a quasi-net on W. A covering of an admissible subset by admissible subsets will be admissible if it is a quasi-net. For example, the covering

$$\mathbf{D}(0,1^{-}) = \cup_{\eta < 1} \mathbf{D}(0,\eta^{-})$$

is an admissible covering of an admissible subset.

ANALYTIC VARIETIES

The overconvergent site

Bernard Le

An analytic variety is a locally Hausdorff topological space V endowed with a maximal net of affinoid domains: in other words, we want a net τ on V such that the category (τ, \subset) is a subcategory of affinoid varieties and inclusion of affinoid domains. We want it maximal: there is an obvious order by inclusions on such nets and τ must be maximal for this order.

Example: we denote by $\mathbf{A}^{1,\mathrm{an}}$ the set of semi-absolute values on K[t]/K. The subsets

$$D_R = \{x \in \mathbf{A}^{1,\mathrm{an}}, x(t) \le R\}$$

define a net of affinoid domains. To make it maximal, it is sufficient to add all the affinoid domains W that sit inside some D_R .

RIGID VERSUS BERKOVICH

The overconvergent site

Bernard Le Stum Admissible subsets of an analytic variety are called analytic domains. Analytic domains and admissible coverings define a Grothendieck topology on V giving rise to a site V_G .

We can define the residue field $\mathcal{K}(x)$ at a point $x \in V$. If V is Hausdorff, the set

$$V_0 := \{x \in V, \quad [\mathcal{K}(x) : K] < \infty\}$$

has a unique structure of rigid analytic variety such that

- **1** The affinoid open subsets are the W_0 where W is an affinoid domain.
- ② The admissible affinoid coverings are the coverings $V_0 = \bigcup W_{i0}$ where $V = \bigcup W_i$ is an admissible affinoid covering.

It follows that we have an equivalence of toposes $\widetilde{V_0}\simeq \widetilde{V_G}$.

GOOD ANALYTIC VARIETIES

The overconvergent site

Bernard Le Stum

Grothendieck topology. It induces a sheaf \mathcal{O}_V for the usual

is a morphism of ringed spaces.

good, and we have equivalences

Example: the analytic domain

natural embedding into $\hat{\mathbf{P}}_{\nu}^2$

The presheaf \mathcal{O} on τ extends uniquely to a sheaf \mathcal{O}_{V_c} for the

topology. There is a canonical morphism $\pi: V_G \to V$ which is

continuous (this is just the identity on the underlying sets). It

If any point of V has an affinoid neighborhood, V is said to be

 $V := \{(x, y) \in \mathbf{B}^2(0, 1^+), |x| = 1 \text{ or } |y| = 1\}$

is **not** good. Note that this is the tube of $\mathbf{A}_k^2 \setminus (0,0)$ for the

 $\{ \mathsf{Coherent} \quad \simeq \quad \mathsf{Coherent} \quad \stackrel{\pi_*}{\leftarrow} \quad \{ \mathsf{Coherent} \quad$ $\mathcal{O}_{V_0}\text{-modules}\} \qquad \qquad \mathcal{O}_{V_G}\text{-modules}\} \quad \stackrel{\pi^*}{\longrightarrow} \quad \mathcal{O}_{V}\text{-modules}\}$