
Université de Rennes 2025-2026

Homological algebra
Homework (due November 7th)

You can compose in english or in french. You can freely (no need to make a precise
reference) use any result obtained prior to the statement of the exercise in the (online)
course.

1. Show that, if k is a commutative ring, then Op(k-Mod) is isomorphic to k[t]-Mod.

Solution: If E is a k[t]-module, then it is a k-module by restriction of scalars
and the map u : E → E, x 7→ tx is k-linear. Conversely, if E is a k-module and
u ∈ L(E), then there exists a unique morphism of k-algebras k[t] → L(E), t 7→ u.
This defines the structure of a k[t]-module on E. Concretely, fx := f(u)(x)
for f ∈ k[t] and x ∈ E. Thus, we have an explicit bijection on objects and
we turn now to morphisms. First of all, functoriality is automatic. Now,
if we are given a morphism of k[t]-modules φ : E → F and we denote by
u ∈ L(E) and v ∈ L(F ) the corresponding endomorphisms, then we have
(φ ◦ u)(x) = φ(tx) = tφ(x) = (v ◦ φ)(x) for x ∈ E so that φ ◦ u = v ◦ φ.
It remains to show that, any k-linear map φ : E → F satisfying φ ◦ u = v ◦ φ is
a morphism of k[t]-modules. We give ourselves f ∈ k[t] and x ∈ E and we need
to prove that φ(fx) = fφ(x), or equivalently φ(f(u)(x)) = f(v)(φ(x)). In other
words, we have to show that φ ◦ f(u) = f(v) ◦ φ. By linearity, we may assume
that f = tn for some n ∈ N and the assertion reduces to φ ◦ un = vn ◦ φ which is
easily obtained by induction.

2. Show that a split monomorphism is a regular monomorphism and that a regular
monomorphism is a monomorphism (and dual).

Solution: Assume i : X → Y is a split monomorphism. By definition, it admits
a retraction r : Y → X (so that r ◦ i = IdX) and we will prove that the diagram

X Y Yi i◦r

IdY

is left exact. If we are given a morphism f : Z → Y such that i ◦ r ◦ f = f , and
we set g = r ◦ f : Z → X, then i ◦ g = f . Assume conversely, that g satisfies
i ◦ g = f . Then, g = r ◦ i ◦ g = r ◦ f which shows uniqueness.
Assume now that i : X → Y is a regular monomorphism so that there exists a
left exact diagram

X Y Y.i u

v

We give ourselves g1, g2 : Z → X such that i ◦ g1 = i ◦ g2 and we denote this
common map by f so that f = i ◦ gk for k = 1, 2. We have u ◦ f = u ◦ i ◦ gk =



v ◦ i ◦ gk = v ◦ f . Therefore, there exists a unique g : Z → X such that f = g ◦ i.
It follows that g = gk and then g1 = g2.
By duality, a split epimorphism is a regular epimorphism and a regular epimor-
phism is an epimorphism.

3. Show that a morphism X → Y in a category C is a monomorphism (resp. an
epimorphism) if and only if the induced functor C/X → C/Y (resp. Y \C → X\C)
is fully faithful.

Solution: If we denote the morphism by i : X → Y , then an object in C/X

is a morphism f : Z → X and the induced functor sends f to the composite
i ◦ f : Z → Y . A morphism between f : Z → X and f ′ : Z ′ → X is a morphism
g : Z → Z ′ such that f ′ ◦ g = f . It is sent to the same morphism g but the
condition now reads i ◦ f ′ ◦ g = i ◦ f . To make it clear, we have

HomC/X
(f, f ′) ⊂ HomC/Y

(i ◦ f, i ◦ f ′) ⊂ HomC(Z, Z ′).

The induced functor is fully faithful when the first inclusion is an equality. It
means that condition “i ◦ f ′ ◦ g = i ◦ f ⇒ f ′ ◦ g = f” is always satisfied. By
definition, this is automatic when i is a monomorphism. Conversely, the condition
in the case Z = Z ′ and g = IdZ will tell us that i is a monomorphism.
By duality, π : X → Y is an epimorphism in C if and only it is a monomorphism
(from Y to X) in Cop if and only if Cop

/Y → Cop
/X is fully faithful, or equivalently since

it boils down to the same condition, if and only if Y \C = (Cop
/Y )op → (Cop

/X)op = X\C
is fully faithful.

4. Show that colimits of sets are stable under pullback.

Solution: It is sufficient to consider the cases of a coproduct or a cokernel.
If X := ∐

i∈I Xi is a disjoint union of sets and we are given two maps f : X → Y
and g : Z → Y , then clearly∐

i∈I

(Xi ×Y Z) = X ×Y Z.

Actually, on both sides, an élément is a couple (x, z) with x ∈ X, z ∈ Z and
f(x) = g(z).
We consider now a pair of maps u, v : X ′ → X, a cocone which is another pair
of maps f ′ : X ′ → Y, f : X → Y satisfying f ◦ u = f ◦ v = f ′ and finally a
map g : Z → Y . We have coker (u, v) = X/R̃ where R̃ is the equivalence relation
generated by u(x′)Rv(x′) whenever x′ ∈ X ′. Since f ◦u = f ◦v, the map f factors
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through the surjection X ↠ X/R̃, x 7→ x and provides f : X/R̃ → Y . We can
then consider the canonical map

Π : X ×Y Z → X/R̃ ×Y Z, (x, z) 7→ (x, z).

It is well defined and surjective: this follows from the fact that, since f(x) = f(x),
we have

∀x ∈ X, z ∈ Z, (x, z) ∈ X ×Y Z ⇔ (x, z) ∈ X/R̃ ×Y Z.

The equivalence relation S̃ on X ×Y Z generated by (u(x′), z)S(v(x′), z) whenever
(x′, z) ∈ X ′ ×Y Z is given by

(x1, z1)S̃(x2, z2) ⇔ x1R̃x2 and z1 = z2.

Thus, Π provides a bijection

coker (U, V ) = (X ×Y Z)/S̃ ≃ X/R̃ ×Y Z = coker (u, v) ×Y Z.

5. Show that, if k is a commutative ring, then k[t] (resp. k[t]t) endowed with

µ : t 7→ t ⊗ 1 + 1 ⊗ t (resp. ν : t 7→ t ⊗ t)

is an abelian group of the category opposite to the category of k-algebras.

Solution: Commutativity is clear in both cases and makes it faster to check the
other properties. In order to prove associativity, we compute

((Id ⊗ µ) ◦ µ)(t) = (Id ⊗ µ)(t ⊗ 1 + 1 ⊗ t)
= t ⊗ µ(1) + 1 ⊗ µ(t)
= t ⊗ 1 ⊗ 1 + 1 ⊗ (t ⊗ 1 + 1 ⊗ t)
= t ⊗ 1 ⊗ 1 + 1 ⊗ t ⊗ 1 + 1 ⊗ 1 ⊗ t.

By symmetry, we see that

((Id ⊗ µ) ◦ µ)(t) = (µ ⊗ Id) ◦ µ)(t).

In the same way, we have

((Id ⊗ ν) ◦ ν)(t) = t ⊗ t ⊗ t = (ν ⊗ Id) ◦ ν)(t).

The unit is ϵ : k[t] → k, t 7→ 0 (resp. η : k[t]t → k, t 7→ 1) as the following shows:

((ϵ ⊗ Id) ◦ µ)(t) = (ϵ ⊗ Id)(t ⊗ 1 + 1 ⊗ t) = ϵ(t) × 1 + ϵ(1) × t = 0 × 1 + 1 × t = t.

(resp. (η ⊗ Id) ◦ ν)(t) = (η ⊗ Id)(t ⊗ t) = η(t) × t = 1 × t = t).
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Finally, the inverse is given by i : t 7→ −t (resp. j : t 7→ t−1): if we to compose µ
(resp. ν) with the map

k[t] ⊗k k[t] k[t]

f ⊗ g f(−t)g(t)

resp.
k[t]t ⊗k k[t]t k[t]t

f ⊗ g f(t−1)g(t)

 ,

then we get the constant map 0 (resp. 1).
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