Université de Rennes 2025-2026

Homological algebra
Homework (due November 7th)

You can compose in english or in french. You can freely (no need to make a precise
reference) use any result obtained prior to the statement of the exercise in the (online)
course.

1. Show that, if k is a commutative ring, then Op(k-Mod) is isomorphic to k[t]-Mod.

Solution: If F is a k[t]-module, then it is a k-module by restriction of scalars
and the map u : £ — E,x > tx is k-linear. Conversely, if E is a k-module and
u € L(E), then there exists a unique morphism of k-algebras k[t] — L(E),t — u.
This defines the structure of a k[t]-module on E. Concretely, fz := f(u)(x)
for f € k[t] and x € E. Thus, we have an explicit bijection on objects and
we turn now to morphisms. First of all, functoriality is automatic. Now,
if we are given a morphism of k[t]-modules ¢ : E — F and we denote by
u € L(FE) and v € L(F) the corresponding endomorphisms, then we have
(pou)(x) = ¢(tr) = tp(x) = (vog)(x) for x € E so that p ou = v o .
It remains to show that, any k-linear map ¢ : F — F satisfying pou =vo ¢ is
a morphism of k[t]-modules. We give ourselves f € k[t] and x € E and we need
to prove that ¢(fx) = fo(x), or equivalently o(f(u)(x)) = f(v)(¢(x)). In other
words, we have to show that ¢ o f(u) = f(v) o . By linearity, we may assume
that f = t" for some n € N and the assertion reduces to ¢ o u™ = v" o ¢ which is
easily obtained by induction.

2. Show that a split monomorphism is a regular monomorphism and that a regular
monomorphism is a monomorphism (and dual).

Solution: Assume i : X — Y is a split monomorphism. By definition, it admits
a retraction 7 : Y — X (so that r o i = Idy) and we will prove that the diagram

X 45y —Y
Idy
is left exact. If we are given a morphism f : Z — Y such that ioro f = f, and

weset g=rof:Z — X, theniog = f. Assume conversely, that g satisfies
tog=f. Then, g =roiog=ro f which shows uniqueness.

Assume now that ¢ : X — Y is a regular monomorphism so that there exists a
left exact diagram

X —5Y —V

We give ourselves g1,¢92 : Z — X such that i o gy = 7 0 go and we denote this
common map by f so that f =iog, for k =1,2. We have uo f =uoiog, =




voiog, =vo f. Therefore, there exists a unique g : Z — X such that f = goi.
It follows that g = g and then g, = gs.

By duality, a split epimorphism is a regular epimorphism and a regular epimor-
phism is an epimorphism.

3. Show that a morphism X — Y in a category C is a monomorphism (resp. an
epimorphism) if and only if the induced functor C;x — C;y (resp. \C — x\C)
is fully faithful.

Solution: If we denote the morphism by ¢« : X — Y, then an object in C,x
is a morphism f : Z — X and the induced functor sends f to the composite
iof:Z — Y. A morphism between f: 7 — X and f': Z’ — X is a morphism
g : Z — Z'such that fog = f. It is sent to the same morphism ¢ but the
condition now reads i o f' o g =i o f. To make it clear, we have

Home, , (f, f') C Home,, (io f,io f') C Home(Z, Z").

The induced functor is fully faithful when the first inclusion is an equality. It
means that condition “io ffog =i0 f = f'og = f” is always satisfied. By
definition, this is automatic when 7 is a monomorphism. Conversely, the condition
in the case Z = Z’ and g = Idz will tell us that ¢ is a monomorphism.

By duality, 7 : X — Y is an epimorphism in C if and only it is a monomorphism
(from Y to X) in C°? if and only if C)y. — C7% is fully faithful, or equivalently since
it boils down to the same condition, if and only if y2C = (C}})" — (C/% )P = x\C
is fully faithful.

4. Show that colimits of sets are stable under pullback.

Solution: It is sufficient to consider the cases of a coproduct or a cokernel.

If X :=T11,c; X; is a disjoint union of sets and we are given two maps f: X =Y
and g : Z — Y, then clearly

H(XZ Xy Z) =X Xy Z.

i€l

Actually, on both sides, an élément is a couple (z,z) with x € X, 2 € Z and
f(x) =g(2).

We consider now a pair of maps u,v : X’ — X, a cocone which is another pair
of maps f' : X' = Y, f : X — Y satisfying fou = fowv = f" and finally a
map g : Z — Y. We have coker (u,v) = X/R where R is the equivalence relation
generated by u(z') Ruv(z") whenever 2’ € X’. Since fou = fowv, the map f factors
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through the surjection X — X/R,z — T and provides f : X/R — Y. We can
then consider the canonical map

I1: X xy Z—= X/Rxy Z, (z,2)— (T,2).

It is well defined and surjective: this follows from the fact that, since f(Z) = f(z),
we have

VieX,z€Z, (z,2)€XxyZe (T,2)€X/Rxy Z.

The equivalence relation S on X xy Z generated by (u(z'), z)S(v(z'), z) whenever
(o', z) € X' xy Z is given by
(21, zl)g(xQ,ZQ) & 1Ry and 2, = 2.

Thus, II provides a bijection

coker (U, V) = (X xy Z)/S ~ X/R xy Z = coker (u,v) xy Z.

5. Show that, if k is a commutative ring, then k[t] (resp. k[t];) endowed with
pit—t@1+10t (resp.v:t—t®t)

is an abelian group of the category opposite to the category of k-algebras.

Solution: Commutativity is clear in both cases and makes it faster to check the
other properties. In order to prove associativity, we compute

(MA@ p)op)t) =A@ u)(t@1+101)
=t®p(l)+1® u(t)
=tR1Ix1I+1Q(t®wl+1®t)
=011+ 10t1+111&t.

By symmetry, we see that
((Id @ p)op)(t) = (p@1d) o u)(t).
In the same way, we have
(Idev)ov)(t) =t®tet=(r®I1d)ov)(t).
The unit is € : k[t] — k,t+— 0 (resp. n: k[t]; — k,t+— 1) as the following shows:
(e@Id)op)(t) = (eRI)(t@1+1@t) =€(t) x 1+e(l) xt=0x1+1xt=t.

(resp. (M@Id)ov)(t) = (n@I)(t@t) =n(t) x t =1 xt =1).
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Finally, the inverse is given by i : t ~ —t (resp. j : t — t~1): if we to compose
(resp. v) with the map

ki) @ kl] —— kY TN ) — )
resp. ,

feg ——— f(=t)g(t) feg ——— f(t7)g(t)

then we get the constant map 0 (resp. 1).
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